Memristive technologies for data storage, computation, communication

Science 376, DOI: 10.1126/science.abj9979

Citation Report

#	Article	IF	CITATIONS
1	Neuromorphic-computing-based adaptive learning using ion dynamics in flexible energy storage devices. National Science Review, 2022, 9, .	9.5	31
2	Wear-out and breakdown of Ta2O5/Nb:SrTiO3 stacks. Solid-State Electronics, 2022, 198, 108462.	1.4	0
3	Modeling the Variability of Au/Ti/h-BN/Au Memristive Devices. IEEE Transactions on Electron Devices, 2023, 70, 1533-1539.	3.0	5
4	Electrode Engineering in Memristors Development for Non-/Erasable Storage, Random Number Generator, and Synaptic Applications. , 2022, , .		0
5	Tunable full-color emission phosphors: Enhanced security application via a patterned 3-dimensions code. Ceramics International, 2023, 49, 345-356.	4.8	6
6	Parameter extraction techniques for the analysis and modeling of resistive memories. Microelectronic Engineering, 2022, 265, 111876.	2.4	9
7	Spiking neural networks based on two-dimensional materials. Npj 2D Materials and Applications, 2022, 6, .	7.9	20
8	A Statistical Study of Resistive Switching Parameters in Au/Ta/ZrO ₂ (Y)/Ta ₂ O ₅ /TiN/Ti Memristive Devices. Physica Status Solidi (A) Applications and Materials Science, 2023, 220, .	1.8	2
9	Roles of Lowâ€Dimensional Nanomaterials in Pursuing Human–Machine–Thing Natural Interaction. Advanced Materials, 2023, 35, .	21.0	4
10	The Impact of Electrostatic Interactions Between Defects on the Characteristics of Random Telegraph Noise. IEEE Transactions on Electron Devices, 2022, 69, 6991-6998.	3.0	4
11	Compact artificial neuron based on anti-ferroelectric transistor. Nature Communications, 2022, 13, .	12.8	31
12	Performance Improvement of an Al/TiO ₂ /Al Electronic Bipolar Resistive Switching Memory Cell via Inserting an Ultrathin ZrO ₂ Layer. ACS Applied Electronic Materials, 2022, 4, 5351-5360.	4.3	3
13	An electronic synaptic memory device based on four-cation mixed halide perovskite. Discover Materials, 2022, 2, .	2.8	5
14	Emerging MXeneâ€Based Memristors for Inâ€Memory, Neuromorphic Computing, and Logic Operation. Advanced Functional Materials, 2023, 33, .	14.9	32
15	Thermal effects on TiN/Ti/HfO ₂ /Pt memristors charge conduction. Journal of Applied Physics, 2022, 132, 194501.	2.5	1
16	Experimental and Modeling Study of Metal–Insulator Interfaces to Control the Electronic Transport in Single Nanowire Memristive Devices. ACS Applied Materials & Interfaces, 2022, 14, 53027-53037.	8.0	7
17	BETTER: Bayesian-Based Training and Lightweight Transfer Architecture for Reliable and High-Speed Memristor Neural Network Deployment. IEEE Transactions on Circuits and Systems II: Express Briefs, 2023, 70, 1846-1850.	3.0	0
18	Pseudo-flexible resistive switching characteristics of nano-bowl-like NiO arrays on mica substrates. Applied Surface Science, 2023, 613, 155994.	6.1	2

#	Article	IF	CITATIONS
19	A High-Speed and High-Efficiency Diverse Error Margin Write-Verify Scheme for an RRAM-Based Neuromorphic Hardware Accelerator. IEEE Transactions on Circuits and Systems II: Express Briefs, 2023, 70, 1366-1370.	3.0	0
20	Parameter Extraction Methods for Assessing Device-to-Device and Cycle-to-Cycle Variability of Memristive Devices at Wafer Scale. IEEE Transactions on Electron Devices, 2023, 70, 360-365.	3.0	3
21	Engineering coexistence between free and trapped carriers via extrinsic polarons. Physical Review Materials, 2022, 6, .	2.4	1
22	Hardware implementation of self-organizing maps using memristors, a simulation study. , 2022, , .		0
23	An enhanced Verilog-A compact model for bipolar RRAMs including transient thermal effects and series resistance. , 2022, , .		0
24	Electrospun Nanofiberâ€Based Synaptic Transistor with Tunable Plasticity for Neuromorphic Computing. Advanced Functional Materials, 2023, 33, .	14.9	8
25	Hardware and Information Security Primitives Based on 2D Materials and Devices. Advanced Materials, 2023, 35, .	21.0	11
26	Two-dimensional materials for bio-realistic neuronal computing networks. Matter, 2022, 5, 4133-4152.	10.0	10
27	Insights into nonvolatile resistive switching in monolayer hexagonal boron nitride. Journal of Applied Physics, 2022, 132, .	2.5	3
28	Electronic Circuits made of 2D Materials. Advanced Materials, 2022, 34, .	21.0	4
29	Understanding the Influence of Metal Oxide Layer Thickness and Defects on Resistive Switching Behavior Through Numerical Modeling. Physica Status Solidi (A) Applications and Materials Science, 2023, 220, .	1.8	1
30	Printed Electronics Based on 2D Material Inks: Preparation, Properties, and Applications toward Memristors. Small Methods, 2023, 7, .	8.6	8
31	A review of memristor: material and structure design, device performance, applications and prospects. Science and Technology of Advanced Materials, 2023, 24, .	6.1	24
32	Investigation of lithium (Li) doping on the resistive switching property of p-Li:NiO/n- β-Ga ₂ O ₃ thin-film based heterojunction devices. Applied Physics Letters, 2023, 122, 023501.	3.3	3
33	Editorial: Neuro-inspired sensing and computing: Novel materials, devices, and systems. Frontiers in Computational Neuroscience, 0, 17, .	2.1	0
34	Tunability of voltage pulse mediated memristive functionality by varying doping concentration in SrTiO3. Applied Physics Letters, 2023, 122, .	3.3	3
35	Performance estimation for the memristor-based computing-in-memory implementation of extremely factorized network for real-time and low-power semantic segmentation. Neural Networks, 2023, 160, 202-215.	5.9	4
36	Gradient descent-based programming of analog in-memory computing cores. , 2022, , .		7

#	Article	IF	CITATIONS
37	Electro-mechano responsive elastomers with self-tunable conductivity and stiffness. Science Advances, 2023, 9, .	10.3	13
38	Evaluating charge-type of polyelectrolyte as dielectric layer in memristor and synapse emulation. Nanoscale Horizons, 2023, 8, 509-515.	8.0	3
39	An approach to non-homogenous phase-type distributions through multiple cut-points. Quality Engineering, 2023, 35, 619-638.	1.1	2
40	Linking the Intrinsic Electrical Response of Ferroelectric Devices to Material Properties by means of Impedance Spectroscopy. IEEE Transactions on Device and Materials Reliability, 2023, , 1-1.	2.0	1
41	The improvement of endurance characteristics in a superlattice-like material-based phase change device. Semiconductor Science and Technology, 2023, 38, 045008.	2.0	1
42	Learning from the Brain: Bioinspired Nanofluidics. Journal of Physical Chemistry Letters, 2023, 14, 2891-2900.	4.6	13
43	Variability and power enhancement of current controlled resistive switching devices. Microelectronic Engineering, 2023, 276, 112008.	2.4	0
44	Enhanced tunneling electroresistance effect in Pt/BiAlO3/Pt ferroelectric tunnel junctions by a graphene interlayer. Applied Surface Science, 2023, 619, 156726.	6.1	4
45	Toward the Speed Limit of Phaseâ \in Change Memory. Advanced Materials, 2023, 35, .	21.0	14
46	Enhance the Properties of Bil ₃ â€Based Resistive Switching Devices via Mixing Ag and Au Electrodes. Advanced Materials Interfaces, 2023, 10, .	3.7	1
47	Impedance Spectroscopy of Ferroelectric Capacitors and Ferroelectric Tunnel Junctions. , 2022, , .		2
48	In-Memory Computing Discussion Group. , 2022, , .		0
49	Status and prospects of MXene-based nanoelectronic devices. Matter, 2023, 6, 800-837.	10.0	19
50	Liquid-Based Memory Devices for Next-Generation Computing. ACS Applied Electronic Materials, 2023, 5, 664-673.	4.3	6
51	Memristive Memory Enhancement by Device Miniaturization for Neuromorphic Computing. Advanced Electronic Materials, 2023, 9, .	5.1	3
52	Multiscale Modeling of Metal-Oxide-Metal Conductive Bridging Random-Access Memory Cells: From <i>Ab Initio</i> to Finite-Element Calculations. Physical Review Applied, 2023, 19, .	3.8	4
53	Implementing hardware primitives based on memristive spatiotemporal variability into cryptography applications. , 2023, 2, 100040.		2
54	LabOSat-01: A Payload for In-Orbit Device Characterization. IEEE Embedded Systems Letters, 2024, 16, 45-48.	1.9	0

#	Article	IF	CITATIONS
55	Laser printed microelectronics. Nature Communications, 2023, 14, .	12.8	14
56	Emerging Iontronic Neural Devices for Neuromorphic Sensory Computing. Advanced Materials, 2023, 35, .	21.0	18
57	Thermal Characterization of Conductive Filaments in Unipolar Resistive Memories. Micromachines, 2023, 14, 630.	2.9	1
58	Emerging memristive neurons for neuromorphic computing and sensing. Science and Technology of Advanced Materials, 2023, 24, .	6.1	9
59	On the switching mechanism and optimisation of ion irradiation enabled 2D MoS ₂ memristors. Nanoscale, 2023, 15, 6408-6416.	5.6	2
60	From memristive devices to neuromorphic systems. Applied Physics Letters, 2023, 122, 110501.	3.3	4
61	Variability in Resistive Memories. Advanced Intelligent Systems, 2023, 5, .	6.1	25
62	Local electric field perturbations due to trapping mechanisms at defects: What random telegraph noise reveals. Journal of Applied Physics, 2023, 133, .	2.5	2
63	Bioâ€Inspired Artificial Perceptual Devices for Neuromorphic Computing and Gesture Recognition. Advanced Functional Materials, 2023, 33, .	14.9	15
64	Polyelectrolyte-confined fluidic memristor for neuromorphic computing in aqueous environment. Science Bulletin, 2023, , .	9.0	1
65	Hybrid 2D–CMOS microchips for memristive applications. Nature, 2023, 618, 57-62.	27.8	54
66	Thousands of conductance levels in memristors integrated on CMOS. Nature, 2023, 615, 823-829.	27.8	66
67	Tuning the conductance topology in solids. Journal of Applied Physics, 2023, 133, .	2.5	3
68	In-memory factorization of holographic perceptual representations. Nature Nanotechnology, 2023, 18, 479-485.	31.5	4
69	Reliability Improvement and Effective Switching Layer Model of Thinâ€Film MoS ₂ Memristors. Advanced Functional Materials, 2024, 34, .	14.9	7
70	Local Activity in a Selfâ€Assembled Quantum Dot System. Advanced Quantum Technologies, 0, , .	3.9	0
71	Static and Small-Signal Modeling of Radiofrequency Hexagonal Boron Nitride Switches. IEEE Journal of the Electron Devices Society, 2023, 11, 658-664.	2.1	1
72	Biologically plausible information propagation in a complementary metal-oxide semiconductor integrate-and-fire artificial neuron circuit with memristive synapses. Nano Futures, 2023, 7, 025003.	2.2	1

#	Article	IF	Citations
73	Resistive switching study on diffusive memristors using electrochemical impedance spectroscopy. Journal Physics D: Applied Physics, 2023, 56, 305102.	2.8	2
74	Highly Reliable Textileâ€Type Memristor by Designing Aligned Nanochannels. Advanced Materials, 2023, 35, .	21.0	3
75	Parallel in-memory wireless computing. Nature Electronics, 2023, 6, 381-389.	26.0	10
76	Effective Current-Driven Memory Operations for Low-Power ReRAM Applications. IEEE Access, 2023, 11, 51260-51269.	4.2	2
77	A Fully Inkjet-Printed Unipolar Metal Oxide Memristor for Nonvolatile Memory in Printed Electronics. IEEE Transactions on Electron Devices, 2023, 70, 3051-3056.	3.0	1
78	Potentiation and depression behaviour in a two-terminal memristor based on nanostructured bilayer ZrO _x /Au films. Journal Physics D: Applied Physics, 2023, 56, 355301.	2.8	2
79	Ferroelectric materials for neuroinspired computing applications. Fundamental Research, 2023, , .	3.3	2
81	The gap between academia and industry in resistive switching research. Nature Electronics, 2023, 6, 260-263.	26.0	11
82	Design and demonstration of Cu/Al ₂ O ₃ /Cu RRAM with complementary resistance switching characteristic. , 2023, , .		0
83	Collective Control of Potential onstrained Oxygen Vacancies in Oxide Heterostructures for Gradual Resistive Switching. Small, 2023, 19, .	10.0	3
84	Tri-level resistive switching characteristics and conductive mechanism of HfO ₂ /NiO _x /HfO ₂ . Wuli Xuebao/Acta Physica Sinica, 2023, .	0.5	0
85	300Âmm integration of a scalable phase change material spacer by inductively coupled plasma etching. Materials Science in Semiconductor Processing, 2023, 164, 107591.	4.0	0
86	Effects of the voltage ramp rate on the conduction characteristics of HfO ₂ -based resistive switching devices. Journal Physics D: Applied Physics, 2023, 56, 365108.	2.8	2
87	A 28-nm RRAM Computing-in-Memory Macro Using Weighted Hybrid 2T1R Cell Array and Reference Subtracting Sense Amplifier for Al Edge Inference. IEEE Journal of Solid-State Circuits, 2023, 58, 2839-2850.	5.4	2
88	IoT Sensor Challenges for Geothermal Energy Installations Monitoring: A Survey. Sensors, 2023, 23, 5577.	3.8	1
89	Flexible, Transparent, and Waferâ€6cale Artificial Synapse Array Based on TiO _{<i>x</i>} /Ti ₃ C ₂ T _{<i>x</i>} Film for Neuromorphic Computing. Advanced Materials, 2023, 35, .	21.0	11
90	Improved ferroelectric properties of CMOS back-end-of-line compatible Hf0.5Zr0.5O2 thin films by introducing dielectric layers. Journal of Materiomics, 2024, 10, 277-284.	5.7	2
91	Recent Advances and Future Prospects for Memristive Materials, Devices, and Systems. ACS Nano, 2023, 17, 11994-12039.	14.6	34

#	ARTICLE	IF	CITATIONS
92	Wurtzite and fluorite ferroelectric materials for electronic memory. Nature Nanotechnology, 2023, 18, 422-441.	31.5	25
93	Large-area multilayer molybdenum disulfide for 2D memristors. Materials Today Nano, 2023, 23, 100353.	4.6	1
94	The Role of Defects and Interface Degradation on Ferroelectric HZO Capacitors Aging. , 2023, , .		2
95	Highly Trustworthy In-Sensor Cryptography for Image Encryption and Authentication. ACS Nano, 2023, 17, 10291-10299.	14.6	15
96	Conductance quantization in h-BN memristors. Applied Physics Letters, 2023, 122, .	3.3	5
97	A Unified Framework to Explain Random Telegraph Noise Complexity in MOSFETs and RRAMs. , 2023, , .		0
98	Inkjet-printed h-BN memristors for hardware security. Nanoscale, 2023, 15, 9985-9992.	5.6	3
99	Three-Level MIS Antifuse Formed by Polarity-Dependent Dielectric Breakdown on 3.5-nm SiO ₂ for One-Time Programmable Application. IEEE Transactions on Electron Devices, 2023, 70, 4133-4138.	3.0	0
100	Inherent Stochasticity of Ovonic Threshold Switch for Neuronal Dropout of Edge-Al Hardware. IEEE Electron Device Letters, 2023, , 1-1.	3.9	0
101	A Highâ€Entropyâ€Oxidesâ€Based Memristor: Outstanding Resistive Switching Performance and Mechanisms in Atomic Structural Evolution. Advanced Materials, 2023, 35, .	21.0	2
102	Inkjetâ€Printed Tungsten Oxide Memristor Displaying Nonâ€Volatile Memory and NeuromorphicÂ Properties. Advanced Functional Materials, 0, , .	14.9	2
103	Engineering Metal–Organic Frameworks with Tunable Colors for High-Performance Wireless Communication. Journal of the American Chemical Society, 2023, 145, 15435-15442.	13.7	12
104	Ultra-low power logic in memory with commercial grade memristors and FPGA-based smart-IMPLY architecture. Microelectronic Engineering, 2023, 280, 112062.	2.4	1
105	Imperfection-enabled memristive switching in van der Waals materials. Nature Electronics, 2023, 6, 491-505.	26.0	12
106	Unravelling the Data Retention Mechanisms under Thermal Stress on 2D Memristors. ACS Omega, 2023, 8, 27543-27552.	3.5	1
107	Non-volatile resistive switching mechanism in single-layer MoS ₂ memristors: insights from <i>ab initio</i> modelling of Au and MoS ₂ interfaces. Nanoscale Advances, 0, , .	4.6	0
108	Non-Volatile Bipolar TiN/LaMnO3/Pt Memristors with Optimized Performance. , 2023, 5, 100054.		0
109	Neural Architecture Search with Inâ€Memory Multiply–Accumulate and Inâ€Memory Rank Based on Coating Layer Optimized Câ€Doped Ge ₂ Sb ₂ Te ₅ Phase Change Memory. Advanced Functional Materials, 2024, 34, .	14.9	1

#	Article	IF	CITATIONS
110	Perspectives on MXene-PZT based ferroelectric memristor in computation in memory applications. Applied Physics Letters, 2023, 123, .	3.3	0
111	A 64-core mixed-signal in-memory compute chip based on phase-change memory for deep neural network inference. Nature Electronics, 2023, 6, 680-693.	26.0	25
112	Plasticity mechanism and memory formation in the chemical synapse. Nonlinear Dynamics, 2023, 111, 19411-19423.	5.2	2
113	Unveiling the structure and electronic characteristics of amorphous GeS for high performance threshold switching. Applied Physics Letters, 2023, 123, .	3.3	0
114	A review on device requirements of resistive random access memory (RRAM)-based neuromorphic computing. APL Materials, 2023, 11, .	5.1	2
115	Waferâ€Scale Memristor Array Based on Aligned Grain Boundaries of 2D Molybdenum Ditelluride for Application to Artificial Synapses. Advanced Functional Materials, 0, , .	14.9	1
116	Pulse-Programmed Short-Term Plasticity and Long-Term Potentiation of MoS2 Memristive Devices. IEEE Nanotechnology Magazine, 2023, 17, 24-29.	1.3	0
117	Wideâ€Bandgap Perovskiteâ€Inspired Materials: Defectâ€Driven Challenges for Highâ€Performance Optoelectronics. Advanced Functional Materials, 0, , .	14.9	5
118	In-memory computing based on phase change memory for high energy efficiency. Science China Information Sciences, 2023, 66, .	4.3	0
119	In-situ electro-responsive through-space coupling enabling foldamers as volatile memory elements. Nature Communications, 2023, 14, .	12.8	2
120	Edge learning using a fully integrated neuro-inspired memristor chip. Science, 2023, 381, 1205-1211.	12.6	22
121	Impact of the W etching process on the resistive switching properties of TiN/Ti/HfO2/W memristors. Solid-State Electronics, 2023, 207, 108718.	1.4	1
122	Controlled Synthesis and Electrical Properties Study of GeAs ₂ Te ₄ Single Crystals. Journal of Metastable and Nanocrystalline Materials, 0, 37, 23-32.	0.1	0
123	A 1S1R Model with the Monte Carlo Function for Subthreshold Sensing Operation. , 2023, , .		0
124	Broadband Optoelectronic Synapse Enables Compact Monolithic Neuromorphic Machine Vision for Information Processing. Advanced Functional Materials, 2023, 33, .	14.9	1
125	Anomalous Behavior of the Tunneling Magnetoresistance in (CoFeB)x(LiNbO3)100 â^' x/Si Nanocomposite Film Structures Below the Percolation Threshold: Manifestations of the Cotunneling and Exchange Effects. JETP Letters, 2023, 118, 58-66.	1.4	1
126	Model of Multifilamentary Resistive Switching for a Memristor with Hopping Conductivity. Nanobiotechnology Reports, 2023, 18, 305-317.	0.6	1
127	Case Study of a Differential Single-Pole Double-Throw RF Switch Using Memristors. , 2023, , .		1

#	Article	IF	CITATIONS
128	Voltage Gated Domain Wall Magnetic Tunnel Junction for Neuromorphic Computing Applications. , 2023, , .		1
129	Effects of BiFeO ₃ Thickness on the Writeâ€Onceâ€Readâ€Manyâ€Times Resistive Switching Behavior of Pt/BiFeO ₃ /LaNiO ₃ Heterostructure. Physica Status Solidi (A) Applications and Materials Science, 2023, 220, .	1.8	1
130	TiN/Ti/HfO2/TiN memristive devices for neuromorphic computing: from synaptic plasticity to stochastic resonance. Frontiers in Neuroscience, 0, 17, .	2.8	1
131	The effect of Cr atoms: From non-stoichiometric Ge-Te to Cr2Ge2Te6. Thin Solid Films, 2023, 783, 140062.	1.8	0
132	Technology and Integration Roadmap for Optoelectronic Memristor. Advanced Materials, 2024, 36, .	21.0	2
133	Mixedâ€Halide Perovskite Memristors with Gateâ€Tunable Functions Operating at Lowâ€Switching Electric Fields. Advanced Electronic Materials, 2023, 9, .	5.1	2
134	Resistive mechanisms and microscopic electrical models of metal oxide resistive memory. Physica Status Solidi (A) Applications and Materials Science, 0, , .	1.8	0
135	Effect of electrode materials on resistive switching behaviour of NbOx-based memristive devices. Scientific Reports, 2023, 13, .	3.3	1
136	Memristive Devices for Neuromorphic and Deep Learning Applications. , 2023, , 680-704.		0
137	Dual-gate Ferroelectric Field-effect Transistors: An Emerging Computational Memory for Advanced Logic Operations. , 2023, , 223-239.		0
138	The influence of interface contact condition on resistive switching of Au/Nb:SrTiO3 heterojunctions. Applied Physics Letters, 2023, 123, .	3.3	0
139	Exploiting the State Dependency of Conductance Variations in Memristive Devices for Accurate In-Memory Computing. IEEE Transactions on Electron Devices, 2023, 70, 6279-6285.	3.0	1
140	Spiking Neurons with Neural Dynamics Implemented Using Stochastic Memristors. Advanced Electronic Materials, 2024, 10, .	5.1	0
141	Neurotransmitterâ€Mediated Plasticity in 2D Perovskite Memristor for Reinforcement Learning. Advanced Functional Materials, 2024, 34, .	14.9	2
143	A thorough investigation of the switching dynamics of TiN/Ti/10Ânm-HfO2/W resistive memories. Materials Science in Semiconductor Processing, 2024, 169, 107878.	4.0	0
144	Resistive switching modulation by incorporating thermally enhanced layer in HfO2-based memristor. Nanotechnology, 0, , .	2.6	0
145	Higher-dimensional processing using a photonic tensor core with continuous-time data. Nature Photonics, 2023, 17, 1080-1088.	31.4	4
146	Memristor crossbar with hafnium oxide nanowires in artificial vision system. AIP Conference Proceedings, 2023, , .	0.4	0

#	Article	IF	Citations
147	Brainâ€Inspired Organic Electronics: Merging Neuromorphic Computing and Bioelectronics Using Conductive Polymers. Advanced Functional Materials, 0, , .	14.9	3
148	Spinel ferrites for resistive random access memory applications. Emergent Materials, 2024, 7, 103-131.	5.7	0
149	Research progress of artificial neural systems based on memristors. Materials Today Nano, 2024, 25, 100439.	4.6	1
150	Programming Weights to Analog In-Memory Computing Cores by Direct Minimization of the Matrix-Vector Multiplication Error. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2023, , 1-1.	3.6	0
151	Ni Singleâ€Atoms Based Memristors with Ultrafast Speed and Ultralong Data Retention. Advanced Materials, 2024, 36, .	21.0	0
153	Photonic Metaâ€Neurons. Laser and Photonics Reviews, 0, , .	8.7	0
154	Observation of Magnon Spin Transport in BiFeO ₃ Thin Films. Advanced Functional Materials, 0, , .	14.9	1
155	Using the IBM analog in-memory hardware acceleration kit for neural network training and inference. , 2023, 1, .		0
156	3D simulation of conductive nanofilaments in multilayer h-BN memristors <i>via</i> a circuit breaker approach. Materials Horizons, 2024, 11, 949-957.	12.2	0
157	Magnetic-ferroelectric synergic control of multilevel conducting states in van der Waals multiferroic tunnel junctions towards in-memory computing. Nanoscale, 2024, 16, 1331-1344.	5.6	1
159	Heterogeneous reservoir computing in second-order Ta ₂ O ₅ /HfO ₂ memristors. Nanoscale Horizons, 2024, 9, 427-437.	8.0	0
160	Ultralow Energy Consumption Angstrom-Fluidic Memristor. Nano Letters, 0, , .	9.1	1
161	Exploring thickness-dependent Cu/TiOx:Cu/Ti memristor and chaotic dynamics in a real fifth-order memristive circuit. Nonlinear Dynamics, 2024, 112, 1377-1394.	5.2	0
162	Recent advances in halide perovskite memristors: From materials to applications. Frontiers of Physics, 2024, 19, .	5.0	0
163	Thermal Dependence of the Resistance of TiN/Ti/HfO ₂ /Pt Memristors. , 2023, , .		0
165	Relaxation Signal Analysis and Optimization of Analog Resistive Random Access Memory for Neuromorphic Computing. IEEE Transactions on Electron Devices, 2024, 71, 560-566.	3.0	0
166	Reconfigurable Physical Reservoir Enabled by Polarization of Ferroelectric Polymer P(VDF–TrFE) and Interface Chargeâ€Trapping/Detrapping in Dualâ€Gate IGZO Transistor. Advanced Functional Materials, 2024, 34, .	14.9	0
167	Voltage-Gated Domain Wall Magnetic Tunnel Junction for Neuromorphic Computing Applications. IEEE Transactions on Electron Devices, 2023, 70, 6293-6300.	3.0	0

#	Article	IF	Citations
168	Characterization and Modeling of Variability in Commercial Self-Directed Channel Memristors. , 2023, , .		0
169	A Comparison of Resistive Switching Parameters for Memristive Devices with HfO ₂ Mono Layers and Al ₂ O ₃ /HfO ₂ Bilayers at the Wafer Scale. , 2023, , .		0
170	Phenol-Assisted Electrochemical Metallization of Peptide-Based Bimodal Memristors. , 0, , 275-280.		0
171	Solution-Processed Robust Multifunctional Memristor of 2D Layered Material Thin Film. ACS Nano, 2024, 18, 1137-1148.	14.6	0
172	Materials for Memristors. Advanced Functional Materials, 0, , .	14.9	0
173	A Novel Fast Video Fragment Matching Algorithm for Copyright Protection. , 2023, , .		0
174	Resource allocation in <scp>5G cloudâ€RAN</scp> using deep reinforcement learning algorithms: A review. Transactions on Emerging Telecommunications Technologies, 2024, 35, .	3.9	0
175	Low Power Volatile and Nonvolatile Memristive Devices from 1D MoO ₂ â€MoS ₂ Core–Shell Heterostructures for Future Bioâ€Inspired Computing. Small, 0, , .	10.0	0
176	Multibit, Leadâ€Free Cs ₂ SnI ₆ Resistive Random Access Memory with Selfâ€Compliance for Improved Accuracy in Binary Neural Network Application. Advanced Functional Materials, 0, , .	14.9	1
177	High Performance and Scalable Hybrid Memristor-CMOS Based Full Adder. IETE Journal of Research, 0, , 1-11.	2.6	0
178	Vertical Van Der Waals Epitaxy of pâ€Mo <i>_x</i> Re _{1â€} _{<i>X</i>} s ₂ on GaN for Ultrahigh Detectivity Uv–vis–NIR Photodetector. Advanced Optical Materials, 2024, 12, .	7.3	0
179	A ferroelectric fin diode for robust non-volatile memory. Nature Communications, 2024, 15, .	12.8	0
180	Multistate structures in a hydrogen-bonded polycatenation non-covalent organic framework with diverse resistive switching behaviors. Nature Communications, 2024, 15, .	12.8	1
181	Optoâ€Electrochemical Synaptic Memory in Supramolecularly Engineered Janus 2D MoS ₂ . Advanced Materials, 2024, 36, .	21.0	2
182	Physically Unclonable Holographic Encryption and Anticounterfeiting Based on the Light Propagation of Complex Medium and Fluorescent Labels. ACS Applied Materials & amp; Interfaces, 2024, 16, 2888-2901.	8.0	0
183	An ultra-low quiescent current power-on reset circuit with DDPG method. AEU - International Journal of Electronics and Communications, 2024, 175, 155097.	2.9	0
184	Electrochemical rewiring through quantum conductance effects in single metallic memristive nanowires. Nanoscale Horizons, 2024, 9, 416-426.	8.0	0
185	Information Transfer in Neuronal Circuits: From Biological Neurons to Neuromorphic Electronics. , 2024, 3, .		0

#	ARTICLE	IF	CITATIONS
186	Resistive Memory Devices at the Thinnest Limit: Progress and Challenges. Advanced Materials, 2024, 36,	21.0	0
187	From fundamentals to frontiers: a review of memristor mechanisms, modeling and emerging applications. Journal of Materials Chemistry C, 2024, 12, 1583-1608.	5.5	0
188	Memristive Response and Capacitive Spiking in Aqueous Ion Transport through Two-Dimensional Nanopore Arrays. Journal of Physical Chemistry Letters, 2024, 15, 665-670.	4.6	0
189	A Star Network of Bipolar Memristive Devices Enables Sensing and Temporal Computing. Sensors, 2024, 24, 512.	3.8	0
190	High-temperature tolerant TaO <i>X</i> /HfO2 self-rectifying memristor array with robust retention and ultra-low switching energy. Applied Physics Letters, 2024, 124, .	3.3	0
191	Tunneling electroresistance effect and low ON-state resistance-area product in monolayer-In2Se3-based van der Waals ferroelectric tunnel junctions. Surfaces and Interfaces, 2024, 46, 103977.	3.0	0
192	Quantum Conductance and Temperature Effects in Titanium Oxide-Based Memristive Devices. IEEE Transactions on Electron Devices, 2024, 71, 1872-1878.	3.0	0
193	Nanoscale memristor devices: materials, fabrication, and artificial intelligence. Journal of Materials Chemistry C, 2024, 12, 3770-3810.	5.5	1
194	Stochastic resonance in 2D materials based memristors. Npj 2D Materials and Applications, 2024, 8, .	7.9	0
195	Linearity Improvement of TiO _{<i>x</i>} â€Based Flexible Memristor Synapses Even Under Bending. Physica Status Solidi (A) Applications and Materials Science, 2024, 221, .	1.8	0
196	Electrical Manipulation of Antiferromagnetic Randomâ€Access Memory Device by the Interplay of Spinâ€Orbit Torque and Spinâ€Transfer Torque. Advanced Electronic Materials, 0, , .	5.1	1
197	Oxovanadium electronics for in-memory, neuromorphic, and quantum computing applications. Materials Horizons, 2024, 11, 1838-1842.	12.2	0
198	Compute-In-Memory Technologies for Deep Learning Acceleration. IEEE Nanotechnology Magazine, 2024, 18, 44-52.	1.3	0
199	Direct observation of conductive filaments from 3D views in memristive devices based on multilayered SiO2: Formation, Dissolution, and vaporization. Applied Surface Science, 2024, 655, 159584.	6.1	0
200	High Temperature Resistant Solarâ€Blind Ultraviolet Photosensor for Neuromorphic Computing and Cryptography. Advanced Functional Materials, 0, , .	14.9	1
201	Back-end-of-line integration of 2D materials on silicon microchips. , 2023, , .		0
202	In-Memory Compute Chips with Carbon-based Projected Phase-Change Memory Devices. , 2023, , .		0
203	Polygon Boolean operations and physical unclonable functions implemented by an Ag-embedded sodium-alginate-based memristor for image encryption/decryption. Applied Physics Letters, 2024, 124, .	3.3	0

#	Article	IF	CITATIONS
204	Towards on-receptor computing: Electronic nociceptor embedded neuromorphic functionalities at nanoscale. Applied Materials Today, 2024, 37, 102103.	4.3	0
205	Thermal Compact Modeling and Resistive Switching Analysis in Titanium Oxide-Based Memristors. ACS Applied Electronic Materials, 2024, 6, 1424-1433.	4.3	1
206	Artificial Optoelectronic Synapses Based on Light ontrollable Ferroelectric Semiconductor Memristor. Advanced Optical Materials, 0, , .	7.3	0
207	Reservoir Computing Using Interfacial Memristors with Native SiO _{<i>x</i>} Nanostructures Modified by Room-Temperature Plasma Oxidation. ACS Applied Nano Materials, 2024, 7, 5030-5039.	5.0	0
208	Toward highly-robust MXene hybrid memristor by synergetic ionotronic modification and two-dimensional heterojunction. Chemical Engineering Journal, 2024, 486, 150100.	12.7	0
209	A roadmap for the development of human body digital twins. , 2024, 1, 199-207.		0
210	One-vs-One, One-vs-Rest, and a novel Outcome-Driven One-vs-One binary classifiers enabled by optoelectronic memristors towards overcoming hardware limitations in multiclass classification. Discover Materials, 2024, 4, .	2.8	0
211	A phase-field simulation of easily switchable vortex structure for multilevel low-power ferroelectric memory. Journal of Materials Research and Technology, 2024, 29, 5241-5251.	5.8	0
212	Neuromorphic Optical Data Storage Enabled by Nanophotonics: A Perspective. ACS Photonics, 2024, 11, 874-891.	6.6	0
214	Ag-doped non–imperfection-enabled uniform memristive neuromorphic device based on van der Waals indium phosphorus sulfide. Science Advances, 2024, 10, .	10.3	0
215	Stochastic neuro-fuzzy system implemented in memristor crossbar arrays. Science Advances, 2024, 10, .	10.3	0
216	lon-confined transport supercapacitors: The encounter with energy electronics. Materials Today, 2024, , .	14.2	0
217	Generation and Storage of Random Voltage Values via Ring Oscillators Comprising Feedback Field-Effect Transistors. Nanomaterials, 2024, 14, 562.	4.1	0
218	Chemical Vapor Deposition Growth of 2D Ferroelectric Materials for Device Applications. Advanced Materials Technologies, 2024, 9, .	5.8	0
219	Ce-doping at Mn site to enhance resistive switching performance of spinel MnCo2O4 resistive random access memory devices. Ceramics International, 2024, 50, 20495-20503.	4.8	0
220	Oxygen tracer diffusion in amorphous hafnia films for resistive memory. Materials Horizons, 0, , .	12.2	0