Carbon Quantum Dots-Based Nanozyme from Coffee In Activate Antitumor Immunity

ACS Nano 16, 9228-9239

DOI: 10.1021/acsnano.2c01619

Citation Report

#	Article	IF	CITATIONS
1	lonizing Radiation-Induced Ferroptosis Based on Nanomaterials. International Journal of Nanomedicine, 0, Volume 17, 3497-3507.	6.7	6
2	Colorimetric assay of phosphate using a multicopper laccase-like nanozyme. Mikrochimica Acta, 2022, 189, .	5.0	7
3	Oxygen-powered flower-like FeMo ₆ @CeO ₂ self-cascade nanozymes: a turn-on enhancement fluorescence sensor. Journal of Materials Chemistry B, 2022, 10, 6425-6432.	5.8	3
4	Surface acidity modulates the peroxidase-like activity of nanoclay. Chemical Communications, 2022, 58, 11135-11138.	4.1	2
5	Carbon dots promoted soybean photosynthesis and amino acid biosynthesis under drought stress: Reactive oxygen species scavenging and nitrogen metabolism. Science of the Total Environment, 2023, 856, 159125.	8.0	27
6	High-Efficiency Utilization of Waste Tobacco Stems to Synthesize Novel Biomass-Based Carbon Dots for Precise Detection of Tetracycline Antibiotic Residues. Nanomaterials, 2022, 12, 3241.	4.1	3
7	Carbon-based nanozymes: Design, catalytic mechanism, and bioapplication. Coordination Chemistry Reviews, 2023, 475, 214896.	18.8	55
8	Enzyme-like nanomaterials-integrated microfluidic technology for bioanalysis. TrAC - Trends in Analytical Chemistry, 2023, 158, 116833.	11.4	4
9	Ferroptosis and its interaction with tumor immune microenvironment in liver cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2023, 1878, 188848.	7.4	3
10	Progress and prospects of nanozymes for enhanced antitumor therapy. Frontiers in Chemistry, 0, 10, .	3.6	6
11	Metalâ€Based Nanozymes with Multienzymeâ€Like Activities as Therapeutic Candidates: Applications, Mechanisms, and Optimization Strategy. Small, 2023, 19, .	10.0	18
13	Design of carbon dots as nanozymes to mediate redox biological processes. Journal of Materials Chemistry B, 2023, 11, 5071-5082.	5.8	6
14	Deciphering the catalytic mechanism of superoxide dismutase activity of carbon dot nanozyme. Nature Communications, 2023, 14, .	12.8	116
15	Copper-Nitrogen-Coordinated Carbon Dots: Transformable Phototheranostics from Precise PTT/PDT to Post-Treatment Imaging-Guided PDT for Residual Tumor Cells. ACS Applied Materials & Emp; Interfaces, 2023, 15, 3253-3265.	8.0	20
16	A pH/ATP-responsive nanomedicine via disrupting multipath homeostasis of ferroptosis for enhanced cancer therapy. Chemical Engineering Journal, 2023, 457, 141313.	12.7	3
17	Carbon quantum dots with high quantum yield prepared by heterogeneous nucleation processes. Journal of Alloys and Compounds, 2023, 938, 168654.	5.5	1
18	Rational design of a minimum nanoplatform for maximizing therapeutic potency: Three birds with one stone. Journal of Colloid and Interface Science, 2023, 635, 441-455.	9.4	5
19	Recent progress in ferroptosis: inducers and inhibitors. Cell Death Discovery, 2022, 8, .	4.7	50

#	Article	IF	CITATIONS
20	Non-cytotoxic lanthanum and nitrogen co-doped lignin-based carbon dots for selective detection of ions in biological imaging. Journal of Environmental Chemical Engineering, 2023, 11, 109881.	6.7	5
21	Coupling doping and localized surface plasmon resonance toward acidic pH-preferential catalase-like nanozyme for oxygen-dominated synergistic cancer therapy. Chemical Engineering Journal, 2023, 465, 142961.	12.7	8
22	Fe-MnO2 nanosheets loading dihydroartemisinin for ferroptosis and immunotherapy. Biomedicine and Pharmacotherapy, 2023, 161, 114431.	5.6	9
23	The application of carbon dots in tumor immunotherapy: Researches and prospects. , 2023, 2, .		3
24	Carbon Quantum Dots: Synthesis, Structure, Properties, and Catalytic Applications for Organic Synthesis. Catalysts, 2023, 13, 422.	3.5	21
25	Targeting GPX4 in human cancer: Implications of ferroptosis induction for tackling cancer resilience. Cancer Letters, 2023, 559, 216119.	7.2	12
26	Carbon dots as potential antioxidants for the scavenging of multi-reactive oxygen and nitrogen species. Chemical Engineering Journal, 2023, 462, 142338.	12.7	20
27	Heterostructural Nanoadjuvant CuSe/CoSe ₂ for Potentiating Ferroptosis and Photoimmunotherapy through Intratumoral Blocked Lactate Efflux. Journal of the American Chemical Society, 2023, 145, 7205-7217.	13.7	29
28	Positively Charged Carbon Dots with Antibacterial and Antioxidant Dual Activities for Promoting Infected Wound Healing. ACS Applied Materials & Samp; Interfaces, 2023, 15, 18608-18619.	8.0	22
29	Multi-enzyme Co-expressed Dual-Atom Nanozymes Induce Cascade Immunogenic Ferroptosis via Activating Interferon-Î ³ and Targeting Arachidonic Acid Metabolism. Journal of the American Chemical Society, 2023, 145, 8965-8978.	13.7	28
30	Tumor Microenvironmentâ€Responsive Nanocarrier Based on VO _x Nanozyme Amplify Oxidative Stress for Tumor Therapy. Advanced Functional Materials, 2023, 33, .	14.9	5
31	Carbon dot-based nanomaterials: a promising future nano-platform for targeting tumor-associated macrophages. Frontiers in Immunology, 0, 14 , .	4.8	3
32	Stimuli-responsive ferroptosis for cancer therapy. Chemical Society Reviews, 2023, 52, 3955-3972.	38.1	32
33	Amplifying oxidative stress utilizing multiband luminescence of lanthanide nanoparticles for eliciting systemic antitumor immunity. Chemical Engineering Journal, 2023, 468, 143827.	12.7	3
34	Three-pronged attacks by hybrid nanoassemblies involving a natural product, carbon dots, and Cu2+ for synergistic HCC therapy. Journal of Colloid and Interface Science, 2023, 650, 526-540.	9.4	2
35	Carbon quantum dots: Preparation, optical properties, and biomedical applications. Materials Today Advances, 2023, 18, 100376.	5.2	21
36	The applications of nanozymes in cancer therapy: based on regulating pyroptosis, ferroptosis and autophagy of tumor cells. Nanoscale, 2023, 15, 12137-12156.	5.6	8
37	The construction of Fe-porphyrin nanozymes with peroxidase-like activity for colorimetric detection of glucose. Analytical Biochemistry, 2023, 675, 115224.	2.4	3

#	Article	IF	Citations
38	Emerging enzyme-based nanocomposites for catalytic biomedicine. Dalton Transactions, 0, , .	3.3	0
39	Nickel-Atom Doping as a Potential Means to Enhance the Photoluminescence Performance of Carbon Dots. Molecules, 2023, 28, 5526.	3.8	1
40	The potential of engineered multifunctional quantum dots forÂmacrophage theranostics. Innovation(China), 2023, 4, 100492.	9.1	0
41	Recent advances in the development and analytical applications of oxidase-like nanozymes. TrAC - Trends in Analytical Chemistry, 2023, 166, 117220.	11.4	10
42	Application of Nanozymes in Biomedical Imaging. Analysis & Sensing, 2024, 4, .	2.0	0
43	NK cell-based tumor immunotherapy. Bioactive Materials, 2024, 31, 63-86.	15.6	0
44	Caffeic acid recarbonization: A green chemistry, sustainable carbon nano material platform to intervene in neurodegeneration induced by emerging contaminants. Environmental Research, 2023, 237, 116932.	7. 5	2
45	Quantum Dots in Imaging, Diagnosis, and Targeted Drug Delivery to Cancer Cells. , 2023, , 107-141.		0
46	NiCoNC nanoenzyme enhances the performance of insecticides against Solenopsis invicta by inhibiting the gene expression of P450. Chemical Engineering Journal, 2023, 474, 145569.	12.7	2
47	Piezoelectric enhanced sulfur doped graphdiyne nanozymes for synergistic ferroptosis–apoptosis anticancer therapy. Journal of Nanobiotechnology, 2023, 21, .	9.1	2
48	Recent advances in carbon dots-based nanoplatforms: Physicochemical properties and biomedical applications. Chemical Engineering Journal, 2023, 476, 146593.	12.7	3
49	Carbon Dots Derived from Traditional Chinese Medicines with Bioactivities: A Rising Star in Clinical Treatment. ACS Applied Bio Materials, 2023, 6, 3984-4001.	4.6	0
50	Advances in polyphenol-based carbon dots for biomedical engineering applications. European Polymer Journal, 2023, 197, 112354.	5 . 4	2
51	Photostable yellow emissive carbon dots for iron-mediated reversible sensing of biothiols and cellular imaging. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2024, 304, 123364.	3.9	0
52	A review on the research progress of traditional Chinese medicine with anti-cancer effect targeting ferroptosis. Chinese Medicine, 2023, 18, .	4.0	2
53	Nanozymes for Prooxidative Therapy. , 2023, , 165-198.		0
54	CeO2@nanogel/Au nanozymes to enhance peroxidase activity for a novel ultrasensitive SERS assay of H2O2 determination. Microchemical Journal, 2023, 195, 109467.	4.5	0
55	A functional carbon dots induce ferroptosis by suppressing PLPP4 activity to inhibit glioblastoma growth. Chemical Engineering Journal, 2023, 475, 146473.	12.7	6

#	ARTICLE	IF	CITATIONS
56	Self-Assembled Lenalidomide/AIE Prodrug Nanobomb for Tumor Imaging and Cancer Therapy. ACS Applied Nano Materials, 2023, 6, 19807-19817.	5.0	0
57	Current Advances of Atomically Dispersed Metal-Centered Nanozymes for Tumor Diagnosis and Therapy. International Journal of Molecular Sciences, 2023, 24, 15712.	4.1	1
58	Targeting ferroptosis in hepatocellular carcinoma. Hepatology International, 2024, 18, 32-49.	4.2	0
59	Nanozymes and carbon-dots based nanoplatforms for cancer imaging, diagnosis and therapeutics: Current trends and challenges. Environmental Research, 2024, 241, 117522.	7.5	0
60	An Overview of the Potential of Food-Based Carbon Dots for Biomedical Applications. International Journal of Molecular Sciences, 2023, 24, 16579.	4.1	0
61	Formation of vesicles between negatively charged carbon quantum dots and cationic surfactant cetylpyridinium chloride (CPC) due to oxidative photo induced electron transfer. Journal of Molecular Liquids, 2024, 393, 123632.	4.9	0
62	Carbon dots and composite materials with excellent performances in cancer-targeted bioimaging and killing: a review. Nanomedicine, 0 , , .	3.3	0
63	Metal-free multifunctional nanozymes mimicking endogenous antioxidant system for acute kidney injury alleviation. Chemical Engineering Journal, 2023, 477, 147048.	12.7	0
64	Biomimetic Nanoarchitectonics with Chitosan Nanogels for Collaborative Induction of Ferroptosis and Anticancer Immunity for Cancer Therapy. Advanced Healthcare Materials, 0, , .	7.6	1
65	Ca & Camp; Mn dual-ion hybrid nanostimulator boosting anti-tumor immunity via ferroptosis and innate immunity awakening. Bioactive Materials, 2024, 33, 483-496.	15.6	0
66	Cell-Derived N/P/S-Codoped Fluorescent Carbon Nanodots with Intrinsic Targeting Ability for Tumor-Specific Phototheranostics. Analytical Chemistry, 2023, 95, 17392-17399.	6.5	0
67	Artificial enzyme innovations in electrochemical devices: advancing wearable and portable sensing technologies. Nanoscale, 2023, 16, 44-60.	5 . 6	3
68	Functionalized Fe-Doped Carbon Dots Exhibiting Dual Glutathione Consumption to Amplify Ferroptosis for Enhanced Cancer Therapy. ACS Applied Materials & Samp; Interfaces, 2023, 15, 53228-53241.	8.0	0
69	In Situ Hg2+ Improved Peroxidase-like Activity and Triggered "on―Oxidase-like Activity of Yolk-shell Co3S4 Microspheres for Detection of Hg2+. Analyst, The, 0, , .	3. 5	0
70	Exposure of quantum dots in the nervous system: Central nervous system risks and the blood–brain barrier interface. Journal of Applied Toxicology, 0, , .	2.8	0
71	Carbon Quantum Dots in Healthcare: A Promising Solution for Sustainable Healthcare and Biomedical Practices. E3S Web of Conferences, 2023, 453, 01017.	0.5	1
72	A novel fluorescent traceable carbon quantum dots with selective antibacterial activity against <i>Porphyromonas gingivalis</i> . Experimental Biology and Medicine, 0, , .	2.4	0
74	Graphene quantum dots as metal-free nanozymes for chemodynamic therapy of cancer. Matter, 2024, 7, 977-990.	10.0	0

#	Article	IF	CITATIONS
75	Copper-Based Single-Atom Nanozyme System Mimicking Platelet Cells for Enhancing the Outcome of Radioimmunotherapy. International Journal of Nanomedicine, 0, Volume 19, 403-414.	6.7	0
76	Nanozyme-enhanced ferroptosis for cancer treatment. Materials Chemistry Frontiers, 2024, 8, 1685-1702.	5.9	O
77	A natural product-derived nanozyme regulator induced chemo-ferroptosis dual therapy in remodeling of the tumor immune microenvironment of hepatocellular carcinoma. Chemical Engineering Journal, 2024, 482, 148976.	12.7	0
78	Recent progress of metal–organic framework-based nanozymes with oxidoreductase-like activity. Analyst, The, 2024, 149, 1416-1435.	3.5	0
79	Novel ligand decoratedÂtheranostic zein nanoparticles coloaded with paclitaxel and carbon quantum dots: formulation and optimization. Nanomedicine, 2024, 19, 367-382.	3.3	0
80	Cu- and Fe-Containing Phosphotungstate Nanoparticles with POD-like and GSH-like Activities to Target Inhibition of Gram-Negative Bacteria. ACS Applied Nano Materials, 2024, 7, 3950-3959.	5.0	0
81	Cascade Co8FeS8@Co1-xS nano-enzymes trigger efficiently apoptosis-ferroptosis combination tumor therapy. Journal of Colloid and Interface Science, 2024, 662, 962-975.	9.4	0
82	Ferroptosis and ferroptosis-inducing nanomedicine as a promising weapon in combination therapy of prostate cancer. Biomaterials Science, 2024, 12, 1617-1629.	5.4	0
83	Prospecting Carbon-Based Nanomaterials for Harnessing Multienzyme-Like Activities. Topics in Catalysis, 0 , , .	2.8	0
84	Biocompatible Folic-Acid-Strengthened Ag–Ir Quantum Dot Nanozyme for Cell and Plant Root Imaging of Cysteine/Stress and Multichannel Monitoring of Hg ²⁺ and Dopamine. Analytical Chemistry, 2024, 96, 4299-4307.	6.5	0
85	Ferroptosis in hepatocellular carcinoma, from mechanism to effect. Frontiers in Oncology, 0, 14, .	2.8	0
86	Ce6-modified Fe ions-doped carbon dots as multifunctional nanoplatform for ferroptosis and photodynamic synergistic therapy of melanoma. Journal of Nanobiotechnology, 2024, 22, .	9.1	0
87	Borophene Quantum Dots as Novel Peroxidase-Mimicking Nanozyme: A Dual-Mode Assay for the Detection of Oxytetracycline and Tetracycline Antibiotics. ACS Applied Materials & Samp; Interfaces, 2024, 16, 14645-14660.	8.0	0
88	Polymer mediated light responsive therapeutics delivery system to treat cancer. European Polymer Journal, 2024, 210, 112923.	5.4	0
89	Application and progress of nanozymes in antitumor therapy. International Journal of Biological Macromolecules, 2024, 265, 130960.	7.5	0