A dual algorithm for the constrained shortest path prob

Networks
10, 293-309
DOI: 10.1002/net. 3230100403

Citation Report

\#	Article	IF	Citations
1	Some reliability routing problems in an acyclic directed network with stochastic terminal node. Microelectronics Reliability, 1982, 22, 31-41.	0.9	0
2	An Integer Programming Procedure for Assembly System Design Problems. Operations Research, 1983, 31, 522-545.	1.2	112
3	Plus court chemin avec contraintes d'horaires. RAIRO - Operations Research, 1983, 17, 357-377.	1.0	49
4	Operation Sequence Planning Using Optimization Concepts and Logic Programming. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 1984, 17, 2517-2520.	0.4	1
5	â \AA^{\sim} Multidimensionalâ $€^{T M}$ extensions and a nested dual approach for the m-median problem. European Journal of Operational Research, 1985, 21, 121-137.	3.5	68
6	A heuristic approach to hard constrained shortest path problems. Discrete Applied Mathematics, 1985, 10, 125-137.	0.5	25
7	The shortest path problem with two objective functions. European Journal of Operational Research, 1986, 25, 281-291.	3.5	149
8	Approximation of Pareto Optima in Multiple-Objective, Shortest-Path Problems. Operations Research, 1987, 35, 70-79.	1.2	257
9	Lagrangean decomposition: A model yielding stronger lagrangean bounds. Mathematical Programming, 1987, 39, 215-228.	1.6	335
10	The Minimum-Covering/Shortest-Path Problem. Decision Sciences, 1988, 19, 490-503.	3.2	37
11	Optimal Obnoxious Paths on a Network: Transportation of Hazardous Materials. Operations Research, 1988, 36, 84-92.	1.2	209
12	A Generalized Permanent Labelling Algorithm For The Shortest Path Problem With Time Windows. Infor, 1988, 26, 191-212.	0.5	221
13	Solvingk-shortest and constrained shortest path problems efficiently. Annals of Operations Research, 1989, 20, 249-282.	2.6	39
14	An application-oriented guide for designing Lagrangean dual ascent algorithms. European Journal of Operational Research, 1989, 43, 197-205.	3.5	39

\#	Article	IF	Citations
19	A network model for the rotating workforce scheduling problem. Networks, 1990, 20, 25-42.	1.6	64
20	An application of lagrangean decomposition to the resource-constrained minimum weighted arborescence problem. Networks, 1990, 20, 345-359.	1.6	20
21	Matching problems with generalized upper bound side constraints. Networks, 1990, 20, 703-721.	1.6	16
22	The equity constrained shortest path problem. Computers and Operations Research, 1990, 17, 297-307.	2.4	39
23	Modeling Equity of Risk in the Transportation of Hazardous Materials. Operations Research, 1990, 38, 961-973.	1.2	100
24	Risk Criteria in a Stochastic Knapsack Problem. Operations Research, 1990, 38, 820-825.	1.2	81

25 Resource-constrained search. , 0, , 1
26 Minimum fragmentation internetwork routing. , 1991, , 1Optimal Simplification of Cartographic Lines Using Shortest-Path Formulations. Journal of theOperational Research Society, 1991, 42, 793.
Optimal Simplification of Cartographic Lines Using Shortest-path Formulations. Journal of the
Operational Research Society, 1991, 42, 793-802.2.14
An improved bounding procedure for the constrained assignment problem. Computers and OperationsResearch, 1991, 18, 531-535.
2.43
30 Applications of the parametric programming procedure. European Journal of Operational Research, 1991, 54, 66-73.
3.53Parametric programming and Lagrangian relaxation: The case of the network problem with a singleside-constraint. Computers and Operations Research, 1991, 18, 129-140.
1992, 29, 25-30. 0.8 17
32

The knapsack problem with disjoint multiple-choice constraints. Naval Research Logistics, 1992, 39,

A Bibliographical Survey On Some Well-Known Non-Standard Knapsack Problems. Infor, 1998, 36,

\#	Article	IF	Citations
56	Path problems in networks with vector-valued edge weights. Networks, 1999, 34, 19-35.	1.6	6
57	An orthogonal genetic algorithm for multimedia multicast routing. IEEE Transactions on Evolutionary Computation, 1999, 3, 53-62.	7.5	224
58	A Maritime Global Route Planning Model for Hazardous Materials Transportation. Transportation Science, 1999, 33, 34-48.	2.6	45
59	Spatial decision support system for hazardous material truck routing. Transportation Research Part C: Emerging Technologies, 2000, 8, 337-359.	3.9	66
60	Design and development of interactive trip planning for web-based transit information systems. Transportation Research Part C: Emerging Technologies, 2000, 8, 409-425.	3.9	74
61	Nonadditive Shortest Paths: Subproblems in Multi-Agent Competitive Network Models. Computational and Mathematical Organization Theory, 2000, 6, 29-45.	1.5	16
62	Geometric Shortest Paths and Network Optimization. , 2000, , 633-701.		211
63	Resource Constrained Shortest Paths. Lecture Notes in Computer Science, 2000, , 326-337.	1.0	63
64	An efficient algorithm for finding a path subject to two additive constraints. Performance Evaluation Review, 2000, 28, 318-327.	0.4	7
65	An efficient algorithm for finding a path subject to two additive constraints. , 2000, , .		39

$0.3 \quad 5$
Multi-constrained optimal path selection. , 0, , .242
69 The freight routing problem of time-definite freight delivery common carriers. Transportation
Research Part B: Methodological, 2001, 35, 525-547. 51A randomized algorithm for finding a path subject to multiple QoS requirements. Computer Networks,2001, 36, 251-268.

\#	Article	IF	Citations
75	Identifying Multiple Reasonable Alternative Routes: Efficient Vector Labeling Approach. Transportation Research Record, 2002, 1783, 111-118.	1.0	9
76	The Quickest Multicommodity Flow Problem. Lecture Notes in Computer Science, 2002, , 36-53.	1.0	41
77	Approximation algorithms for multi-parameter graph optimization problems. Discrete Applied Mathematics, 2002, 119, 129-138.	0.5	1
78	Using logical surrogate information in Lagrangean relaxation: An application to symmetric traveling salesman problems. European Journal of Operational Research, 2002, 138, 473-483.	3.5	7
79	A penalty function heuristic for the resource constrained shortest path problem. European Journal of Operational Research, 2002, 142, 221-230.	3.5	16
80	Improved preprocessing, labeling and scaling algorithms for the Weight-Constrained Shortest Path Problem. Networks, 2003, 42, 135-153.	1.6	155
81	Search space reduction in QoS routing. Computer Networks, 2003, 41, 73-88.	3.2	33
82	Routing multimedia traffic with qos guarantees. IEEE Transactions on Multimedia, 2003, 5, 429-443.	5.2	38
83	A Multicommodity Network-Flow Problem with Side Constraints on Paths Solved by Column Generation. INFORMS Journal on Computing, 2003, 15, 42-57.	1.0	69
84	Resource Constrained Shortest Path Problems in Path Planning for Fleet Management. Mathematical Modelling and Algorithms, 2004, 3, 1-17.	0.5	17
85	An exact algorithm for the elementary shortest path problem with resource constraints: Application to some vehicle routing problems. Networks, 2004, 44, 216-229.	1.6	473
86	Dynamic programming algorithms for the elementary shortest path problem with resource constraints. Electronic Notes in Discrete Mathematics, 2004, 17, 247-249.	0.4	5

87 The primal simplex approach to the QoS routing problem. , 0, , 4
88 Finding the K shortest hyperpaths. Computers and Operations Research, 2005, 32, 1477-1497. 2.4 47
Shorter Path Constraints for the Resource Constrained Shortest Path Problem. Lecture Notes in

\#	Article	IF	Citations
94	Recent Advances in Multiobjective Optimization. Lecture Notes in Computer Science, 2005, , 45-47.	1.0	2
95	Advances in QoS Path(s) Selection Problem. , 0,		0
96	Path enumeration by finding the constrained K-shortest paths. Transportation Research Part B: Methodological, 2005, 39, 545-563.	2.8	91
97	Optimizing picking operations on dual-head placement machines. IEEE Transactions on Automation Science and Engineering, 2006, 3, 1-15.	3.4	17
98	Constrained shortest link-disjoint paths selection: a network programming based approach. IEEE Transactions on Circuits and Systems Part 1: Regular Papers, 2006, 53, 1174-1187.	0.1	19
99	Aircraft routing under the risk of detection. Naval Research Logistics, 2006, 53, 728-747.	1.4	67
100	QoS routing in communication networks: approximation algorithms based on the primal simplex method of linear programming. IEEE Transactions on Computers, 2006, 55, 815-829.	2.4	13
101	Nodal aggregation of resource constraints in a shortest path problem. European Journal of Operational Research, 2006, 172, 500-514.	3.5	10
102	A branch-and-price approach for operational aircraft maintenance routing. European Journal of Operational Research, 2006, 175, 1850-1869.	3.5	101
103	Global Optimality Conditions for Discrete and Nonconvex Optimizationâ€"With Applications to Lagrangian Heuristics and Column Generation. Operations Research, 2006, 54, 436-453.	1.2	18

104 AND THE STEPWISE DISPATCHING HEURISTIC. Asia-Pacific Journal of Operational Research, 2007, 24, 0.9 16 499-533.
105 Energy-efficient routing for signal detection under the Neyman-Pearson criterion in wireless sensor networks. , 2007, , .Integrated Routing and Scheduling of Hazmat Trucks with Stops En Route. Transportation Science,2007, 41, 107-122.

\#	Article	IF	Citations
112	A model to optimize placement operations on dual-head placement machines. Discrete Optimization, 2007, 4, 232-256.	0.6	13
113	Three-stage approaches for optimizing some variations of the resource constrained shortest-path sub-problem in a column generation context. European Journal of Operational Research, 2007, 183, 564-577.	3.5	13
114	Cost-based Filtering for Shorter Path Constraints. Constraints, 2007, 12, 207-238.	0.4	12
115	An FPTAS for Quickest Multicommodity Flows with Inflow-Dependent Transit Times. Algorithmica, 2007, 47, 299-321.	1.0	7
116	New dynamic programming algorithms for the resource constrained elementary shortest path problem. Networks, 2008, 51, 155-170.	1.6	203
117	Lagrangian relaxation and enumeration for solving constrained shortestâ€path problems. Networks, 2008, 52, 256-270.	1.6	79
118	An integrated multiâ€objective model to determine the optimal rescue path and traffic controlled arcs for disaster relief operations under uncertainty environments. Journal of Advanced Transportation, 2008, 42, 493-519.	0.9	16
120	Mathematical Programming Algorithms for Two-Path Routing Problems with Reliability Considerations. INFORMS Journal on Computing, 2008, 20, 553-564.	1.0	19
121	Cooperative Particle Swarm Optimization for the Delay Constrained Least Cost Path Problem. Lecture Notes in Computer Science, 2008, , 25-35.	1.0	3
122	Multicast Routing Algorithm on the High Performance Computer Network., 2009, , .		0

123 Technology and business practice adoption as a constrained shortest path problem. , 2009, , .
$\left.\begin{array}{lll}\text { Simultaneous solution of Lagrangean dual problems interleaved with preprocessing for the weight } \\ \text { constrained shortest path problem. Networks, 2009, 53, 358-381. }\end{array}\right)$

\#	Article	Citations
131	A Methodology for Constraint-Driven Synthesis of On-Chip Communications. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2009, 28, 364-377.	1.9
132	Energy-Efficient Routing for Signal Detection in Wireless Sensor Networks. IEEE Transactions on Signal Processing, 2009, 57, 2050-2063.	4.2

133 Multi-Constrained Shortest Path Model and Solution with Improved Ant Colony Algorithm. , 2010, , .
0
Mathematical models and solution methods for optimal container terminal yard layouts. OR
Spectrum, 2010, 32, 427-452.

Solving the constrained shortest path problem using random search strategy. Science China 135 Technological Sciences, 2010, 53, 3258-3263.
$2.0 \quad 4$

Hybrid co-evolutionary particle swarm optimization and noising metaheuristics for the delay
constrained least cost path problem. Journal of Heuristics, 2010, 16, 593-616.
$1.1 \quad 6$

137 Path optimization for the resourceâ€constrained searcher. Naval Research Logistics, 2010, 57, 422-440.
1.426

138 | Two- and three-index formulations of the minimum cost multicommodity k-splittable flow problem |
| :--- |
| European Journal of Operational Research, 2010, 202, 82-89. |

139 | The pyramidal capacitated vehicle routing problem. European Journal of Operational Research, 20 |
| :--- |
| 205,59-64. |

140 Flexible solutions in disjunctive scheduling: Ceneral formulation and study of the flow-shop case.
Computers and Operations Research, 2010, 37, 890-898.

Algorithmic expedients for the Prize Collecting Steiner Tree Problem. Discrete Optimization, 2010, 7,
141 32-47.
0.6

11

\#	Article	IF	Citations
149	A computational study of solution approaches for the resource constrained elementary shortest path problem. Annals of Operations Research, 2012, 201, 131-157.	2.6	6
150	Resilience: An Indicator of Recovery Capability in Intermodal Freight Transport. Transportation Science, 2012, 46, 109-123.	2.6	302
151	Parametric search and problem decomposition for approximating Pareto-optimal paths. Transportation Research Part B: Methodological, 2012, 46, 1043-1067.	2.8	12
152	Path-Constrained Traffic Assignment. Transportation Research Record, 2012, 2283, 25-33.	1.0	92
153	Near Linear Time (1 + â^Š)-Approximation for Restricted Shortest Paths in Undirected Graphs. , 2012, , .		7
154	A three-stage approach for the resource-constrained shortest path as a sub-problem in column generation. Computers and Operations Research, 2012, 39, 164-178.	2.4	28
155	Multicriteria path and tree problems: discussion on exact algorithms and applications. International Transactions in Operational Research, 2012, 19, 63-98.	1.8	37
156	Optimal Routing with Multiple Objectives: Efficient Algorithm and Application to the Hazardous Materials Transportation Problem. Computer-Aided Civil and Infrastructure Engineering, 2012, 27, 77-94.	6.3	25
157	An oriented spanning tree based genetic algorithm for multi-criteria shortest path problems. Applied Soft Computing Journal, 2012, 12, 506-515.	4.1	28
158	Robust scheduling on a single machine to minimize total flow time. Computers and Operations Research, 2012, 39, 1682-1691.	2.4	67
159	Some heuristic methods for solving p-median problems with a coverage constraint. European Journal of Operational Research, 2012, 220, 320-327.	3.5	13
160	Computing a Most Probable Delay Constrained Path: NP-Hardness and Approximation Schemes. IEEE Transactions on Computers, 2012, 61, 738-744.	2.4	24
161	Complexity analysis and optimization of the shortest path tour problem. Optimization Letters, 2012, 6, 163-175.	0.9	20
162	A global optimization algorithm for solving the minimum multiple ratio spanning tree problem. Journal of Clobal Optimization, 2013, 56, 1029-1043.	1.1	7

BER-based Power Scheduling in Wireless Sensor Networks. Journal of Signal Processing Systems, 2013,

\#	Article	IF	Citations
167	Modern Accelerator Technologies for Geographic Information Science., 2013, , .		7
168	Fuzzy constrained shortest path algorithm using circumcenter of centroids. , 2013, ,.		0
169	Dynamic programming approaches to solve the shortest path problem with forbidden paths. Optimization Methods and Software, 2013, 28, 221-255.	1.6	16
170	Fourth party logistics routing problem with fuzzy duration time. International Journal of Production Economics, 2013, 145, 107-116.	5.1	42
171	A Reference Point Approach for the Resource Constrained Shortest Path Problems. Transportation Science, 2013, 47, 247-265.	2.6	19
172	Implementation of a three-stage approach for the dynamic resource-constrained shortest-path sub-problem in branch-and-price. Computers and Operations Research, 2013, 40, 385-394.	2.4	9
173	On an exact method for the constrained shortest path problem. Computers and Operations Research, 2013, 40, 378-384.	2.4	101
174	Technology adoption and training practices as a constrained shortest path problem. Omega, 2013, 41, 459-472.	3.6	6
175	A survey of resource constrained shortest path problems: Exact solution approaches. Networks, 2013, 62, 183-200.	1.6	100
176	Network protection with guaranteed recovery times using recovery domains. , 2013, ,		3
177	A Bio-Inspired Method for the Constrained Shortest Path Problem. Scientific World Journal, The, 2014, 2014, 1-11.	0.8	12
178	Bicriteria data compression. , 2014, ,		6
179	A Dantzigấ"Wolfe decomposition algorithm for the constrained minimum cost flow problem. Journal of the Chinese Institute of Engineers, Transactions of the Chinese Institute of Engineers,Series A/Chung-kuo Kung Ch'eng Hsuch K'an, 2014, 37, 659-669.	0.6	3
180	Passenger trip planning in urban rail transit based on time geography., 2014, ..		0

A fast Lagrangian relaxation algorithm for finding multi-constrained multiple shortest paths. , 2014, ,

A note on extending the generic crew scheduling model of Beasley and Cao by deadheads and layovers. Journal of the Operational Research Society, 2014, 65, 633-644.

\#	Article	IF	Citations
185	Air Traffic Control Area Configuration Advisories from Near-Optimal Distinct Paths. Journal of Aerospace Information Systems, 2014, 11, 764-784.	1.0	3
186	An A* Label-setting Algorithm for Multimodal Resource Constrained Shortest Path Problem. Procedia, Social and Behavioral Sciences, 2014, 111, 330-339.	0.5	6
187	Energy-aware routing for delay-sensitive underwater wireless sensor networks. Science China Information Sciences, 2014, 57, 1-14.	2.7	11
188	Acceleration strategies for the weight constrained shortest path problem with replenishment. Optimization Letters, 2014, 8, 2155-2172.	0.9	17
190	The Steiner Tree Problem with Delays: A compact formulation and reduction procedures. Discrete Applied Mathematics, 2014, 164, 178-190.	0.5	16
191	Network Route Choice Model for Battery Electric Vehicle Drivers with Different Risk Attitudes. Transportation Research Record, 2015, 2498, 75-83.	1.0	11
192	Shortest feasible paths with charging stops for battery electric vehicles. , 2015, , .		20
193	Stochastic Optimal Path Problem with Relays. Transportation Research Procedia, 2015, 7, 129-148.	0.8	4
194	A study of situationally aware routing for emergency responders. Journal of the Operational Research Society, 2015, 66, 570-578.	2.1	4
195	Computational complexity of convoy movement planning problems. Mathematical Methods of Operations Research, 2015, 82, 31-60.	0.4	4
196	Stochastic optimal path problem with relays. Transportation Research Part C: Emerging Technologies, 2015, 59, 48-65.	3.9	4
197	Finding a risk-constrained shortest path for an unmanned combat vehicle. Computers and Industrial Engineering, 2015, 80, 245-253.	3.4	14
198	A penalty search algorithm for the obstacle neutralization problem. Computers and Operations Research, 2015, 53, 165-175.	2.4	4
199	Constrained shortest path with uncertain transit times. Journal of Global Optimization, 2015, 63, 149-163.	1.1	6
200	Application of Lagrangian relaxation approach to $\hat{I}_{ \pm}-$reliable path finding in stochastic networks with correlated link travel times. Transportation Research Part C: Emerging Technologies, 2015, 56, 309-334.	3.9	63
201	Cost-constrained low-carbon product design. International Journal of Advanced Manufacturing Technology, 2015, 79, 1821-1828.	1.5	23
202	Best upgrade plans for single and multiple source-destination pairs. Geolnformatica, 2015, 19, 365-404.	2.0	9
203	Finding Multi-Constrained Multiple Shortest Paths. IEEE Transactions on Computers, 2015, 64, 2559-2572.	2.4	12

A Mobile Application for Real-Time Multimodal Routing Under a Set of Usersấ $€^{\text {TM }}$ Preferences. Journal ofIntelligent Transportation Systems: Technology, Planning, and Operations, 2015, 19, 149-166.
207 Maximum probability shortest path problem. Discrete Applied Mathematics, 2015, 192, 40-48.
208 Metaheuristic based solution approaches for the obstacle neutralization problem. Expert Systems
209 The Electric Vehicle Shortest-Walk Problem With Battery Exchanges. Networks and Spatial Economics,0.768
210 The Shortest Path Problems in Battery-Electric Vehicle Dispatching with Battery Renewal.Sustainability, 2016, 8, 607.
Effective indexing for approximate constrained shortest
Proceedings of the VLDB Endowment, 2016, 10, 61-72. 2.1 46
212 Pareto-optimal search over configuration space beliefs for anytime motion planning. , 2016, , .11
213 Integration of risk in hierarchical path planning of underwater vehicles. IFAC-PapersOnLine, 2016, 49, 226-231.
2.4 17
Solving resource constrained shortest path problems with LP-based methods. Computers and 214 Operations Research, 2016, 73, 150-164.
1.6 7

4.0 33215 Model and algorithm for 4PLRP with uncertain delivery time. Information Sciences, 2016, 330, 211-225.The constrained shortest path problem with stochastic correlated link travel times. European
Journal of Operational Research, 2016, 255, 43-57. 216
1.2 0
217 Intelligent emission-sensitive routing for plugin hybrid electric vehicles. SpringerPlus, 2016, 5, 239.3.939
Research Part C: Emerging Technologies, 2016, 69, 150-172. 218
A dynamic programming approach to integrated assembly planning and supplier assignment with lead time constraints. International Journal of Production Research, 2016, 54, 2691-2708.4.97
219Multicriteria Analysis in Telecommunication Network Planning and Design: A Survey. Profiles inOperations Research, 2016, , 1167-1233.

[^0]3.227

\#	Article	IF	Citations
223	QoS Routing Under Multiple Additive Constraints: A Generalization of the LARAC Algorithm. IEEE Transactions on Emerging Topics in Computing, 2016, 4, 242-251.	3.2	6
224	Models and column generation approach for the resource-constrained minimum cost path problem with relays. Omega, 2017, 66, 79-90.	3.6	3
225	A capacitated vehicle routing problem with order available time in e-commerce industry. Engineering Optimization, 2017, 49, 449-465.	1.5	33
226	The multi-criteria constrained shortest path problem. Transportation Research, Part E: Logistics and Transportation Review, 2017, 101, 13-29.	3.7	22
227	Lagrangian relaxation for the reliable shortest path problem with correlated link travel times. Transportation Research Part B: Methodological, 2017, 104, 501-521.	2.8	47
228	A time-delay neural network for solving time-dependent shortest path problem. Neural Networks, 2017, 90, 21-28.	3.3	31
229	Optimal Network Design with End-to-End Service Requirements. Operations Research, 2017, 65, 729-750.	1.2	13
230	Energy-efficient shortest routes for electric and hybrid vehicles. Transportation Research Part B: Methodological, 2017, 103, 111-135.	2.8	55
231	A hybrid Particle Swarm Optimization â€" Variable Neighborhood Search algorithm for Constrained Shortest Path problems. European Journal of Operational Research, 2017, 261, 819-834.	3.5	111
232	A linear programming based heuristic framework for min-max regret combinatorial optimization problems with interval costs. Computers and Operations Research, 2017, 81, 51-66.	2.4	9

233 Pin Accessibility-Driven Cell Layout Redesign and Placement Optimization. , 2017, , .
A complementarity equilibrium model for electric vehicles with charging. International Journal of
234 Transportation Science and Technology, 2017, 6, 255-271.
$2.0 \quad 8$

Maximizing the overall end-user satisfaction of data broadcast in wireless mesh networks. Journal of Discrete Algorithms, 2017, 45, 14-25.
0.7

7

BDD-Constrained A<sup>* $\rangle^{*} /$ sup> Search: A Fast Method for Solving Constrained Shortest-Path
$0.4 \quad 1$
$236 \begin{aligned} & \text { BDD-Constrained } A\langle\text { sup }\rangle^{*}\langle/ \text { sup> Search: A Fast Method for Solving Constrained Shorter } \\ & \text { Problems. IEICE Transactions on Information and Systems, 2017, E100.D, 2945-2952. }\end{aligned}$

On time dependent routing algorithms for open marketplaces of path services with support for
3.2 in-advance path reservation. Computer Networks, 2018, 138, 201-212.

1

\#	Article	IF	Citations
241	Reliable Shortest Path Routing with Applications to Wireless Software-Defined Networking. , 2018, , .		2
242	Hybrid Vehicle Control and Optimization with a New Mathematical Method. IFAC-PapersOnLine, 2018, 51, 201-206.	0.5	0
243	Routing Metrics Depending on Previous Edges: The Mn Taxonomy and Its Corresponding Solutions. , 2018, , .		2
244	A robust optimization approach to multi-interval location-inventory and recharging planning for electric vehicles. Omega, 2019, 86, 59-75.	3.6	28
245	Shortest Feasible Paths with Charging Stops for Battery Electric Vehicles. Transportation Science, 2019, 53, 1627-1655.	2.6	31
246	Lagrangian Relaxation for the Multiple Constrained Robust Shortest Path Problem. Mathematical Problems in Engineering, 2019, 2019, 1-13.	0.6	6
247	Fast Exact Computation of Isocontours in Road Networks. Journal of Experimental Algorithmics, 2019, 24, 1-26.	0.7	1
248	Bicriteria Data Compression. SIAM Journal on Computing, 2019, 48, 1603-1642.	0.8	2

249 Sequential and Parallel Algorithms and Data Structures. , 2019, , 17
250 Graph Theory and Environmental Algorithmic Solutions to Assign Vehicles: Application to Garbage
Collection in Vietnam. SSRN Electronic Journal, 0, , .
1.14
Targeted optimal-path problem for electric vehicles with connected charging stations. PLoS ONE, 2019, 14, e0220361.1.1
252 Personalized public transport mobility service: a journey ranking approach for route guidance. Transportation Research Procedia, 2019, 38, 935-955.0.85
253 Weight-Constrained Route Planning Over Time-Dependent Graphs. , 2019, , 9
254 Optimal Risk-Based Group Testing. Management Science, 2019, 65, 4365-4384. 2.4 44Range-Constrained Traffic Assignment with Multi-Modal Recharge for Electric Vehicles. Networks0.7and Spatial Economics, 2019, 19, 633-668.
$4.4 \quad 3$
256 Canadian Traveler Problem with Neutralizations. Expert Systems With Applications, 2019, 132, 151-165.

\#	Article	IF	Citations
259	Joint Caching and Trajectory Design for Cache-Enabled UAV in Vehicular Networks. , 2019, , .		9
260	Multicast routing under quality of service constraints for vehicular ad hoc networks: mathematical formulation and a relaxâ€andấfix heuristic. International Transactions in Operational Research, 2019, 26, 1339-1364.	1.8	5
261	Algorithms for non-linear and stochastic resource constrained shortest path. Mathematical Methods of Operations Research, 2019, 89, 281-317.	0.4	7
262	An integer optimality condition for column generation on zeroâ€"one linear programs. Discrete Optimization, 2019, 31, 79-92.	0.6	2
263	Optimizing resource recharging location-routing plans: A resource-space-time network modeling framework for railway locomotive refueling applications. Computers and Industrial Engineering, 2019, 127, 1241-1258.	3.4	21
264	Metaheuristics for solving the biobjective singleâ€path multicommodity communication flow problem. International Transactions in Operational Research, 2019, 26, 589-614.	1.8	10
265	Efficient lower and upper bounds for the weight-constrained minimum spanning tree problem using simple Lagrangian based algorithms. Operational Research, 2020, 20, 2467-2495.	1.3	1
266	An efficient exact approach for the constrained shortest path tour problem. Optimization Methods and Software, 2020, 35, 1-20.	1.6	19
268	Finding the nucleolus of the vehicle routing game with time windows. Applied Mathematical Modelling, 2020, 80, 334-344.	2.2	3
269	Route guidance ranking procedures with human perception consideration for personalized public transport service. Transportation Research Part C: Emerging Technologies, 2020, 118, 102667.	3.9	35
270	A Primal Adjacency-Based Algorithm for the Shortest Path Problem with Resource Constraints. Transportation Science, 2020, 54, 1153-1169.	2.6	7
271	Modeling and Engineering Constrained Shortest Path Algorithms for Battery Electric Vehicles. Transportation Science, 2020, 54, 1571-1600.	2.6	18
272	An exact bidirectional pulse algorithm for the constrained shortest path. Networks, 2020, 76, 128-146.	1.6	23
273	Bisection and Exact Algorithms Based on the Lagrangian Dual for a Single-Constrained Shortest Path Problem. IEEE/ACM Transactions on Networking, 2020, 28, 224-233.	2.6	7

281 Efficient Constrained Shortest Path Query Answering with Forest Hop Labeling. , 2021, , 10282 Towards Large-Scale Deterministic IP Networks. , 2021, , .15
283 Ecological Security Pattern Construction in Karst Area Based on Ant Algorithm. International 1.2 14
284 BiS4EV: A fast routing algorithm considering charging stations and preferences for electric vehicles.Engineering Applications of Artificial Intelligence, 2021, 104, 104378.$4.3 \quad 7$
285 Heuristics for the Canadian traveler problem with neutralizations. Computers and Industrial Engineering, 2021, 159, 107488.A solution method for the shared resource-constrained multi-shortest path problem. Expert Systems
286 With Applications, 2021, 182, 115193.
287 An Experimental Study on Exact Multi-constraint Shortest Path Finding. Lecture Notes in Computer Science, 2021, , 166-179.
289 CNOP - A Package for Constrained Network Optimization. Lecture Notes in Computer Science, 2001, , 289 17-31.17-31.1.08
291 Shortest path problems with time constraints. Lecture Notes in Computer Science, 1996, , 255-266. 1.0 3
292 Optimal Path Planning in a Threat Environment. Cooperative Systems, 2004, , 349-406. 0.3 10
293 A Parallel Algorithm to Solve Near-Shortest Path Problems on Raster Graphs. , 2013, , 83-94.2
295 Designing a Backbone Trunk for the Public Transportation Network in Montevideo, Uruguay. 0.4 4

\qquad
290 On Shortest Path Problems with â€œNon-Markovianâ€•Link Contribution to Path Lengths. Lecture Notes in Computer Science, 2000, , 859-870.
1.0 2

\#	ARTICLE		
298	Cost-Based Filtering for Shorter Path Constraints. Lecture Notes in Computer Science, 2003, , 694-708.		An FPTAS for Quickest Multicommodity Flows with Inflow-Dependent Transit Times. Lecture Notes in
:---			
Computer Science, 2003, , 71-82.			

309 Towards bridging theory and practice. Proceedings of the VLDB Endowment, 2019, 13, 463-476. 2.1 34
310 IntegraÃ§Ã£o de modelos de localizaÃ§Ã£o a sistemas de informaÃ§Ãभes geogrÃ;ficas. GestÃ£o \& ProduÃ§Ã£o, 2001, 8, 180-195. 0.5 15Deterministic Oversubscription Planning as Heuristic Search: Abstractions and Reformulations.

GEN-LARAC: A Generalized Approach to the Constrained Shortest Path Problem Under Multiple Additive

On the Construction of the Set of K-best Matchings and Their Use in Solving Constrained Matching
Problems. , 1992, , 209-223.
330 Un estudio sobre algoritmos basados en restricciones: objetivos ingenierÃa de trÃ;fico y calidad deservicio. Entre Ciencia E IngenierÃa, 2017, 11, 103.
0.20

On Polynomial-Time Combinatorial Algorithms for Maximum L-Bounded Flow. Lecture Notes in
331 Computer Science, 2019, , 14-27.
1.0

1

> 332 An Index Method for the Shortest Path Query on Vertex Subset for the Large Graphs. Lecture Notes in
> Computer Science, 2020, ,69-85.
1.0

0

Mixed-Integer Linear Optimization: Primalâ€"Dual Relations and Dual Subgradient and Cutting-Plane Methods. , 2020, , 499-547.

Feeder routing for air-to-air refueling operations. European Journal of Operational Research, 2023,

\#	Article	IF	Citations
339	Trajectory Optimization for Cellular-Connected UAV Under Outage Duration Constraint. Journal of Communications and Information Networks, 2019, 4, 55-71.	3.5	17
340	A generalized Benders decomposition approach for the mean-standard deviation shortest path problem. Transportation Letters, 2023, 15, 823-833.	1.8	4
341	Network Design with Routing Requirements. , 2021, , 209-253.		1
342	Shortest path with acceleration constraints: complexity and approximation algorithms. Computational Optimization and Applications, 0, , .	0.9	0
343	Multi-constraint shortest path using forest hop labeling. VLDB Journal, 0, , .	2.7	1
344	On Performance of a Simple Multi-objective Evolutionary Algorithm on the Constrained Minimum Spanning Tree Problem. International Journal of Computational Intelligence Systems, 2022, 15, .	1.6	0
345	The structural complexity landscape of finding balance-fair shortest paths. Theoretical Computer Science, 2022, 933, 149-162.	0.5	0
346	A Fast Exact Algorithm for the Resource Constrained Shortest Path Problem. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35, 12217-12224.	3.6	2
347	FHL-cube. Proceedings of the VLDB Endowment, 2022, 15, 3112-3125.	2.1	4
348	The resource constrained clustered shortest path tree problem: Mathematical formulation and Branch\& Price solution algorithm. Networks, 0, , .	1.6	0
349	An anytime algorithm for constrained stochastic shortest path problems with deterministic policies. Artificial Intelligence, 2023, 316, 103846.	3.9	0
351	Shortest Path Finding in Quantum Networks With Quasi-Linear Complexity. IEEE Access, 2023, 11, 7180-7194.	2.6	3
353	Efficient Navigation for Constrained Shortest Path with Adaptive Expansion Control. , 2022, , .		1
354	Constrained Shortest Path andÂHierarchical Structures. Lecture Notes in Computer Science, 2022, 394-410.	1.0	0

358 Hop-Constrained s-t Simple Path Enumeration on Large Dynamic Graphs. , 2023, , .
1

359 OSCO: An Efficient Segment Routing Scheme for Backup Path. , 2022, , .
0

362 Selective vehicle routing problem with reserved requests and time windows. , 2023, , .

[^0]: To save money or to save time: Intelligent routing design for plug-in hybrid electric vehicle.
 Transportation Research, Part D: Transport and Environment, 2016, 43, 238-250.

