Granitic rocks of Yosemite Valley and an ideal granite n

Journal of the International Association for Mathematical Geol 12, 1-24

DOI: $10.1007 / b f 01039900$

Citation Report

1 A stochastic approach to optimum decomposition of cyclic patterns in sedimentary processes. Mathematical Geosciences, 1987, 19, 503-521.

Ideal granites and models of their metasomatic transformations: Theory, experience, and current problems. Mathematical Geosciences, 1987, 19, 589-612.

Western dome of the Arga-Ynnykh-Khaya granitic intrusion and its white granites. Mathematical Geosciences, 1987, 19, 613-653.

Transbaikal Mesozoic granites: Mode of crystallization and subsequent metasomatic transformations.
Mathematical Geosciences, 1987, 19, 667-695.

A method for determining the reversibility of a Markov sequence. Mathematical Geosciences, 1990, 22, 749-761.

Reversible Markov grain sequences in granite. Mathematical Geosciences, 1991, 23, 305-324.
0.9

3

Fundamental issues in quantitative estimation of mineral resources. Nonrenewable Resources, 1992, 1, 281-292.

Quantitative analysis of detrital modes: statistically rigorous confidence regions in ternary diagrams and their use in sedimentary petrology. Earth-Science Reviews, 2002, 57, 211-253.

Morphometry of Quartz Aggregates in Granites: Fractal Images Referring to Nucleation and Growth
Processes. Mathematical Geosciences, 2003, 35, 819-833.

Quantitative analysis of crystal-interface frequencies in granitoids: Implications for modelling of
10 parent-rock texture and its influence on the properties of plutoniclastic sands. Sedimentary Geology,
2.1 2018, 375, 72-85.

John W. Harbaughâ $\epsilon^{T M}$ s Contributions to the Evolution of Stochastic Analysis and Modeling in Geology.

