Leveraging machine learning methods to quantify 50 years.

Science of the Total Environment 835, 155474

DOI: 10.1016/j.scitotenv.2022.155474

Citation Report

#	Article	IF	CITATIONS
1	A Multivariate Drought Index for Seasonal Agriculture Drought Classification in Semiarid Regions. Remote Sensing, 2022, 14, 3891.	4.0	8
2	Spatial and temporal dynamics of water resources in typical ecosystems of the Dongjiang River Basin, China. Journal of Hydrology, 2022, 614, 128617.	5.4	12
3	Global evaluation of the "dry gets drier, and wet gets wetter―paradigm from a terrestrial water storage change perspective. Hydrology and Earth System Sciences, 2022, 26, 6457-6476.	4.9	8
4	Geophysical and Remote Sensing Assessment of Chad's Groundwater Resources. Remote Sensing, 2023, 15, 560.	4.0	18
5	Hydrogeophysical modeling of the groundwater aquifer units under climate variability in parts of Peninsular Malaysia: A case study of the climate-water nexus approach to sustainability. Heliyon, 2023, 9, e13710.	3. 2	1
6	Error-correction-based data-driven models for multiple-hour-ahead river stage predictions: A case study of the upstream region of the Cho-Shui River, Taiwan. Journal of Hydrology: Regional Studies, 2023, 47, 101378.	2.4	O
7	Predicting Groundwater Level Based on Machine Learning: A Case Study of the Hebei Plain. Water (Switzerland), 2023, 15, 823.	2.7	7
8	Going Back to Grassland? Assessing the Impact of Groundwater Decline on Irrigated Agriculture Using Remote Sensing Data. Remote Sensing, 2023, 15, 1698.	4.0	1
9	Converting Seasonal Measurements to Monthly Groundwater Levels through GRACE Data Fusion. Sustainability, 2023, 15, 8295.	3.2	0
10	Quantitative evaluation of drought risk related to vegetation productivity in China. Journal of Hydrology, 2023, 623, 129877.	5 . 4	6
11	Changes of terrestrial water storage during 1981–2020 over China based on dynamic-machine learning model. Journal of Hydrology, 2023, 621, 129576.	5 . 4	2
12	Spatiotemporal responses of net primary productivity of alpine ecosystems to flash drought: The Qilian Mountains. Journal of Hydrology, 2023, 624, 129865.	5 . 4	4
13	Multi-source satellite reveals the heterogeneity in water storage change over northwestern China in recent decades. Journal of Hydrology, 2023, 624, 129953.	5 . 4	1
14	Hysteresis response of groundwater depth on the influencing factors using an explainable learning model framework with Shapley values. Science of the Total Environment, 2023, 904, 166662.	8.0	5
15	ET-WB: water-balance-based estimations of terrestrial evaporation over global land and major global basins. Earth System Science Data, 2023, 15, 4571-4597.	9.9	0
16	Identifying private pumping wells in a land subsidence area in Taiwan using deep learning technology and street view images. Journal of Hydrology: Regional Studies, 2024, 51, 101636.	2.4	O
17	Emerging trends and spatial shifts of drought potential across global river basins. Journal of Environmental Management, 2024, 352, 120093.	7.8	0
18	Application of the machine learning methods for GRACE data based groundwater modeling, a systematic review. Groundwater for Sustainable Development, 2024, 25, 101113.	4.6	O

Article IF Citations

Quantifying the long-term changes of terrestrial water storage and their driving factors. Journal of Hydrology, 2024, 635, 131096.