Super Mg²⁺ Conductivity around 10<sup>8 Observed in a Porous Metal–Organic Framework

Journal of the American Chemical Society 144, 8669-8675

DOI: 10.1021/jacs.2c01612

Citation Report

#	Article	IF	CITATIONS
1	Preparation of a Mg ²⁺ -containing MOF through ion exchange and its high ionic conductivity. Dalton Transactions, 2022, 51, 12037-12040.	3.3	0
2	Decavanadate-Type Polyoxometalate Anions Encapsulated in a MIL-100 Framework with Enhanced Mixed Ion–Electron Conduction and Potential Application as Cathode Materials for a Lithium Ion Battery. , 2023, 1, 350-358.		1
3	A novel C2H2-selective microporous Cd-MOF for C2H2/C2H4 and C2H2/CO2 separation. Separation and Purification Technology, 2023, 306, 122678.	7.9	13
4	Ultraâ€Stable Zn Anode Enabled by Fiberâ€Directed Ion Migration Using Massâ€Producible Separator. Advanced Functional Materials, 2023, 33, .	14.9	30
5	A zinc-conducting chalcogenide electrolyte. Science Advances, 2023, 9, .	10.3	14
6	Ionic liquid incorporated metal–organic framework as high conductivity solid conductor. Journal of Industrial and Engineering Chemistry, 2023, 121, 393-400.	5.8	2
7	On the bramble way to Mg metal anodes in secondary Mg ion batteries. Journal of Materials Science and Technology, 2023, 150, 175-189.	10.7	1
8	High Mg ²⁺ Conduction in Three Dimensional Pores of a Metal–Organic Framework under Organic Vapors. Dalton Transactions, 0, , .	3.3	0
9	Advances in functional organic material-based interfacial engineering on metal anodes for rechargeable secondary batteries. Nanoscale, 2023, 15, 9256-9289.	5.6	5
10	Water Vapor Induced Superionic Conductivity in ZnPS ₃ . Journal of the American Chemical Society, 2023, 145, 13312-13325.	13.7	1
11	Approach to the Ion Diffusion of Magnesium Batteries for Practical Use. Materia Japan, 2023, 62, 481-482.	0.1	0
13	Aminoâ€Enabled Desolvation Sieving Effect Realizes Dendriteâ€Inhibiting Thin Separator for Durable Aqueous Zincâ€Ion Batteries. Advanced Functional Materials, 2023, 33, .	14.9	11
14	In Situ Observation of Roomâ€Temperature Magnesium Metal Deposition on a NASICON/IL Hybrid Solid Electrolyte. Advanced Energy Materials, 2023, 13, .	19.5	0
15	Recent Research Progress on All-Solid-State Mg Batteries. Batteries, 2023, 9, 570.	4.5	0
16	Frameworked electrolytes: Ionic transport behavior and high mobility for solid state batteries. InformaÄnÃ-Materiály, 2024, 6, .	17.3	0
17	lons and electron conductive porous coordination polymers for energy applications. , 2024, , 237-272.		o