Single-junction organic solar cells with over 19% efficient double-fibril network morphology

Nature Materials 21, 656-663 DOI: 10.1038/s41563-022-01244-y

Citation Report

#	Article	IF	CITATIONS
1	Identifying structure–absorption relationships and predicting absorption strength of non-fullerene acceptors for organic photovoltaics. Energy and Environmental Science, 2022, 15, 2958-2973.	15.6	22
2	High efficiency and more functions bring a bright future for organic photovoltaic cells. Science Bulletin, 2022, 67, 1300-1303.	4.3	8
3	Single-junction organic solar cell smashes performance record. Science China Materials, 2022, 65, 2609-2610.	3.5	2
4	High-efficiency single-junction organic solar cells enabled by double-fibril network morphology. Science Bulletin, 2022, 67, 1310-1312.	4.3	5
5	Highly efficient ternary solar cells with reduced non-radiative energy loss and enhanced stability <i>via</i> two compatible non-fullerene acceptors. Journal of Materials Chemistry A, 2022, 10, 15605-15613.	5.2	19
6	Realizing the efficiency-stability balance for all-polymer photovoltaic blends. Journal of Materials Chemistry C, 2022, 10, 9723-9729.	2.7	12
7	Polystyreneâ€sulfonateâ€doped polypyrrole: Lowâ€cost hole transport material for developing highly efficient organic solar cells. International Journal of Energy Research, 2022, 46, 15396-15406.	2.2	2
8	Binary Organic Solar Cells Breaking 19% via Manipulating the Vertical Component Distribution. Advanced Materials, 2022, 34, .	11.1	384
9	Binary Blend Allâ€Polymer Solar Cells with a Record Efficiency of 17.41% Enabled by Programmed Fluorination Both on Donor and Acceptor Blocks. Advanced Science, 2022, 9, .	5.6	45
10	Recent Progress in 2D Inorganic/Organic Charge Transfer Heterojunction Photodetectors. Advanced Functional Materials, 2022, 32, .	7.8	23
11	Hammer throw-liked hybrid cyclic and alkyl chains: A new side chain engineering for over 18 % efficiency organic solar cells. Nano Energy, 2022, 101, 107538.	8.2	27
12	Comparative study on thermally evaporated and solution processed cathode modifying layers in organic solar cells. EPJ Applied Physics, 0, , .	0.3	2
13	Modulating the nanoscale morphology on carboxylate-pyrazine containing terpolymer toward 17.8% efficiency organic solar cells with enhanced thermal stability. Chemical Engineering Journal, 2022, 446, 137424.	6.6	14
14	Peripheral halogenation engineering controls molecular stacking to enable highly efficient organic solar cells. Energy and Environmental Science, 2022, 15, 3519-3533.	15.6	66
15	Multi-site functional cathode interlayers for high-performance binary organic solar cells. Journal of Materials Chemistry A, 2022, 10, 16163-16170.	5.2	15
16	A novel A–DA′D–A bifunctional small molecule for organic solar cell applications with impressive photovoltaic performance. Journal of Materials Chemistry A, 2022, 10, 16497-16505.	5.2	2
17	An electron acceptor featuring a B–N covalent bond and small singlet–triplet gap for organic solar cells. Chemical Communications, 2022, 58, 8686-8689.	2.2	18
18	Spontaneous carrier generation and low recombination in high-efficiency non-fullerene solar cells. Energy and Environmental Science, 2022, 15, 3483-3493.	15.6	23

#	Article	IF	CITATIONS
19	The structure-performance correlation of bulk-heterojunction organic solar cells with multi-length-scale morphology. Science China Chemistry, 2022, 65, 1634-1641.	4.2	5
20	High-Efficiency Ternary Organic Solar Cells with a Good Figure-of-Merit Enabled by Two Low-Cost Donor Polymers. ACS Energy Letters, 2022, 7, 2547-2556.	8.8	109
21	Achieving over 18 % Efficiency Organic Solar Cell Enabled by a ZnOâ€Based Hybrid Electron Transport Layer with an Operational Lifetime up to 5â€Years. Angewandte Chemie - International Edition, 2022, 61, .	7.2	36
22	Molecular Insights of Nonâ€fused Ring Acceptors for Highâ€Performance Nonâ€fullerene Organic Solar Cells. Chemistry - A European Journal, 2022, 28, .	1.7	22
23	Fineâ€Tuned Morphology Based on Two Wellâ€Miscible Polymer Donors Enables Higher Openâ€Circuit Voltage and Enhanced Stability for Highly Efficient Ternary Allâ€Polymer Solar Cells. Macromolecular Rapid Communications, 2022, 43, .	2.0	2
24	Achieving over 18 % Efficiency Organic Solar Cell Enabled by a ZnOâ€Based Hybrid Electron Transport Layer with an Operational Lifetime up to 5â€Years. Angewandte Chemie, 2022, 134, .	1.6	10
25	Versatile Sequential Casting Processing for Highly Efficient and Stable Binary Organic Photovoltaics. Advanced Materials, 2022, 34, .	11.1	52
26	A New Polymer Donor Enables Binary Allâ€Polymer Organic Photovoltaic Cells with 18% Efficiency and Excellent Mechanical Robustness. Advanced Materials, 2022, 34, .	11.1	150
27	Highâ€Performance Ternary Polymer Solar Cells by Blending Two "Yâ€5eries―Acceptors with Complementary Absorption Bands from Nearâ€Infrared Wavelengths to Medium Wavelengths and Enhancing Crystallinity. Solar Rrl, 0, , 2200495.	3.1	3
28	Multiple chlorinations to improve the performance of unfused electron-acceptor based organic photovoltaic cells. Surfaces and Interfaces, 2022, 32, 102185.	1.5	5
29	Recent Advances in Singleâ€Junction Organic Solar Cells. Angewandte Chemie - International Edition, 2022, 61, .	7.2	103
30	Central Unit Fluorination of Nonâ€Fullerene Acceptors Enables Highly Efficient Organic Solar Cells with Over 18 % Efficiency. Angewandte Chemie, 2022, 134, .	1.6	7
31	Tuning the Crystallinity and Phase Separation by Two‣tep Annealing Enables Block Copolymerâ€Based Organic Solar Cells with 15% Efficiency. Solar Rrl, 2022, 6, .	3.1	11
32	Qualified interlayer modifier for organic solar cells with optimized interfacial topography and boosted efficiency based on biomass-derived acid. Chemical Engineering Journal, 2022, 450, 138169.	6.6	11
33	Organic–inorganic hybrid cathode interlayer materials for efficient organic solar cells. Sustainable Energy and Fuels, 2022, 6, 4115-4129.	2.5	4
34	Exciton Dissociation in a Model Organic Interface: Excitonic State-Based Surface Hopping versus Multiconfigurational Time-Dependent Hartree. Journal of Physical Chemistry Letters, 2022, 13, 7105-7112.	2.1	12
35	Central Unit Fluorination of Nonâ€Fullerene Acceptors Enables Highly Efficient Organic Solar Cells with Over 18 % Efficiency. Angewandte Chemie - International Edition, 2022, 61, .	7.2	85
36	Design Rules of the Mixing Phase and Impacts on Device Performance in High-Efficiency Organic Photovoltaics. Research, 2022, 2022, .	2.8	2

#	Article	IF	CITATIONS
37	Highly Efficient Organic Solar Cells Enabled by the Incorporation of a Sulfonated Graphene Doped PEDOT:PSS Interlayer. ACS Applied Materials & Interfaces, 2022, 14, 34814-34821.	4.0	20
38	Synergistically Improving the Absorption, Energy Level, and Crystallization of PM6 by a Dicyanobenzothiadiazole Block-Based Terpolymer Strategy. Chemistry of Materials, 2022, 34, 7971-7981.	3.2	6
39	Renewed Prospects for Organic Photovoltaics. Chemical Reviews, 2022, 122, 14180-14274.	23.0	323
40	Achieving and Understanding of Highly Efficient Ternary Organic Photovoltaics: From Morphology and Energy Loss to Working Mechanism. Small Methods, 2022, 6, .	4.6	16
41	Identifying the Signatures of Intermolecular Interactions in Blends of PM6 with Y6 and N4 Using Absorption Spectroscopy. Advanced Functional Materials, 2022, 32, .	7.8	19
42	Ethanolâ€Processable Polyfuran Derivative for Ecoâ€Friendly Fabrication of Organic Solar Cells Featuring Selfâ€Healing Function. Solar Rrl, 2022, 6, .	3.1	9
43	High-Performance Ternary Organic Solar Cells Enabled by Introducing a New A-DAâ€2D-A Guest Acceptor with Higher-Lying LUMO Level. ACS Applied Materials & Interfaces, 2022, 14, 36582-36591.	4.0	21
44	Engineering the spin-exchange interaction in organic semiconductors. Nature Materials, 2022, 21, 976-978.	13.3	7
45	Highâ€Performance Nonfused Ring Electron Acceptors with Vâ€Shaped Side Chains. Small, 2022, 18, .	5.2	8
46	Over 19.2% Efficiency of Organic Solar Cells Enabled by Precisely Tuning the Charge Transfer State Via Donor Alloy Strategy. Advanced Science, 2022, 9, .	5.6	93
47	Simultaneously Enhancing Exciton/Charge Transport in Organic Solar Cells by an Organoboron Additive. Advanced Materials, 2022, 34, .	11.1	37
48	A Random Terpolymer Donor with Similar Monomers Enables 18.28% Efficiency Binary Organic Solar Cells with Well Polymer Batch Reproducibility. ACS Energy Letters, 2022, 7, 3045-3057.	8.8	46
49	Wide Bandgap Conjugated Polymers Based on Difluorobenzoxadiazole for Efficient Nonâ€Fullerene Organic Solar Cells. Macromolecular Rapid Communications, 0, , 2200591.	2.0	2
50	Balancing the Selective Absorption and Photonâ€toâ€Electron Conversion for Semitransparent Organic Photovoltaics with 5.0% Lightâ€Utilization Efficiency. Advanced Materials, 2022, 34, .	11.1	54
51	Mechanically and Ultraviolet Light Stable Ultrathin Organic Solar Cell via Semiâ€Embedding Silver Nanowires in a Hydrogen Bondsâ€Based Polyimide. Macromolecular Rapid Communications, 2022, 43, .	2.0	4
52	Boosts charge utilization and enables high performance organic solar cells by marco- and micro- synergistic method. Nano Energy, 2022, 102, 107742.	8.2	18
53	A computational investigation about the effect of metal substitutions on the electronic spectra of porphyrin donors in the visible and near infrared regions. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 282, 121676.	2.0	1
54	Efficient ternary organic photovoltaic using polymers donor with two absorption peaks and similar HOMO levels as third component materials. Materials Today Chemistry, 2022, 26, 101094.	1.7	1

CITATION	DEDODT
CHAHON	REPORT

#	Article	IF	CITATIONS
55	Polyimide/ZnO composite cooperatively crosslinked by Zn2+ Salt-Bondings and hydrogen bondings for ultraflexible organic solar cells. Chemical Engineering Journal, 2023, 451, 138612.	6.6	8
56	Modification on the Quinoxaline Unit to Achieve High Open-Circuit Voltage and Morphology Optimization for Organic Solar Cells. ACS Energy Letters, 2022, 7, 3432-3438.	8.8	25
57	Simulation of Light-Trapping Characteristics of Self-Assembled Nano-Ridges in Ternary Organic Film. Coatings, 2022, 12, 1340.	1.2	1
58	Investigating the morphology of bulk heterojunctions by laser photoemission electron microscopy. Polymer Testing, 2022, 116, 107791.	2.3	0
59	Recent advances of nonfullerene acceptors in organic solar cells. Nano Energy, 2022, 103, 107802.	8.2	28
60	Semitransparent polymer solar cell/triboelectric nanogenerator hybrid systems: Synergistic solar and raindrop energy conversion for window-integrated applications. Nano Energy, 2022, 103, 107776.	8.2	13
61	Robust carbon–carbon singly bonded electron acceptors for efficient organic photovoltaics. Chemical Engineering Journal, 2023, 452, 139312.	6.6	5
62	Improving the performance of PM6 donor polymer by random ternary copolymerization of BDD and DTBT segments. Chemical Engineering Journal, 2023, 451, 139046.	6.6	19
63	An acceptor with an asymmetric and extended conjugated backbone for high-efficiency organic solar cells with low nonradiative energy loss. Journal of Materials Chemistry A, 2022, 10, 16714-16721.	5.2	17
64	Computational chemistry-assisted design of a non-fullerene acceptor enables 17.4% efficiency in high-boiling-point solvent processed binary organic solar cells. Journal of Materials Chemistry A, 2022, 10, 21061-21071.	5.2	6
65	Terpolymerization strategy to achieve high-efficiency organic solar cells <i>via</i> construction of D1–A–D1–D2-type polymer donors. Chemical Communications, 2022, 58, 11823-11826.	2.2	2
66	Asymmetric side-chain substitution enables a 3D network acceptor with hydrogen bond assisted crystal packing and enhanced electronic coupling for efficient organic solar cells. Energy and Environmental Science, 2022, 15, 4601-4611.	15.6	67
67	Isomeric non-fullerene acceptors for high-efficiency organic solar cells. Journal of Materials Chemistry C, 2022, 10, 14525-14531.	2.7	2
68	Over 17% efficiency all-small-molecule organic solar cells based on an organic molecular donor employing a 2D side chain symmetry breaking strategy. Energy and Environmental Science, 2022, 15, 4338-4348.	15.6	63
69	Doping-induced decomposition of organic semiconductors: a caveat to the use of Lewis acid p-dopants. Journal of Materials Chemistry C, 2022, 10, 12751-12764.	2.7	3
70	Accelerated exploration of efficient ternary solar cells with PTB7:PC ₇₁ BM:SMPV1 using machine-learning methods. Physical Chemistry Chemical Physics, 2022, 24, 22538-22545.	1.3	8
71	A structurally simple linear conjugated polymer toward practical application of organic solar cells. Energy and Environmental Science, 2022, 15, 4789-4797.	15.6	27
72	Branched alkyl-chain engineering of chlorinated asymmetrical acceptors for improved organic photovoltaic performance. Journal of Materials Chemistry A, 2022, 10, 21633-21641.	5.2	1

ARTICLE IF CITATIONS # Random copolymerization strategy for non-halogenated solvent-processed all-polymer solar cells 73 15.6 24 with a high efficiency of over 17%. Energy and Environmental Science, 2022, 15, 4561-4571. Template molecular weight-dependent PEDOT surface energy: Impact on the photovoltaic performance 74 5.2 of bulk-heterojunctions. Journal of Materials Chemistry A, 0, , . Quantifying triplet formation in conjugated polymer/non-fullerene acceptor blends. Journal of 75 5.23 Materials Chemistry A, 2022, 10, 20874-20885. Rationally regulating the π-bridge of small molecule acceptors for efficient organic solar cells. Journal of Materials Chemistry A, 2022, 10, 17808-17816. Charge transfer regulated by domain differences between host and guest donors in ternary organic 77 5.2 4 solar cells. Journal of Materials Chemistry A, 2022, 10, 22477-22487. Binary alloy of functionalized small-molecule acceptors with the A–DAâ€2D–A structure for ternary-blend photovoltaics displaying high open-circuit voltages and efficiencies. Journal of Materials Chemistry A, 2022, 10, 23037-23046. 5.2 Efficient Ternary Polymer Solar Cells with Two Structurally Similar Fullerene-Free Acceptors to 79 Redshift Absorption Peaks and Improve Exciton Dissociation. ACS Applied Energy Materials, 2022, 5, 2.5 1 11553-11560. All-polymer solar cells: materials and devices. Scientia Sinica Chimica, 2022, 52, 1948-2000. 0.2 Ternary Polymer Solar Cells with Low-Cost P3HT as the Second Donor by the Complementary 81 Absorption Region from Long-Wavelength to Medium-Wavelength Regions Forming Cascaded HOMO 2.5 0 and LUMO Energy Levels. ACS Applied Energy Materials, 2022, 5, 11780-11788. Recent Advances in Singleâ€Junction Organic Solar Cells. Angewandte Chemie, 2022, 134, . 1.6 28 A New Dibenzoquinoxalineimide-Based Wide-Bandgap Polymer Donor for Polymer Solar Cells. 83 2.0 5 Polymers, 2022, 14, 3590. <scp>Hostâ€Guest</scp> Active Layer Enabling <scp>Annealingâ€Free</scp>, Nonhalogenated Green Solvent Processing for <scp>Highâ€Performance</scp> Organic Solar Cells^{â€}. Chinese Journal of Chemistry, 2022, 40, 2963-2972. 84 2.6 High-Efficiency As-Cast Organic Solar Cells Based on an Asymmetric Acceptor. Chemistry of Materials, 85 3.2 6 2022, 34, 8840-8848. An Alcoholâ€Soluble Nâ€Annulated Perylene Diimide Cathode Interlayer for Airâ€Processed, Slotâ€Die Coated 3.1 Organic Photovoltaic Devices and Largéâ€Area Modules. Solar Rrl, 2022, 6, . Integration of body-mounted ultrasoft organic solar cell on cyborg insects with intact mobility. Npj 87 5.116 Flexible Electronics, 2022, 6, . Organic Solar Cells at Stratospheric Condition for High Altitude Platform Station Application. Chinese Journal of Chemistry, 0, , . Chlorinated Effects of Double-Cable Conjugated Polymers on the Photovoltaic Performance in 89 2.0 6 Single-Component Organic Solar Cells. Chinese Journal of Polymer Science (English Edition), 0, , . Low-Temperature UVO-Sintered ZnO/SnO2 as Robust Cathode Buffer Layer for Ternary Organic Solar 90 Cells. Nanomaterials, 2022, 12, 3149.

#	Article	IF	CITATIONS
91	Performance Improvement of npn Solar Cell Microstructure by TCAD Simulation: Role of Emitter Contact and ARC. Energies, 2022, 15, 7179.	1.6	1
92	Unraveling the Effect of Solvent Additive and Fullerene Component on Morphological Control in Organic Solar Cells. Chinese Journal of Polymer Science (English Edition), 0, , .	2.0	0
93	Solid-liquid convertible fluorinated terthiophene as additives in mediating morphology and performance of organic solar cells. Chemical Engineering Journal, 2023, 453, 139489.	6.6	9
94	Side Chain Length and Interaction Mediated Charge Transport Networks of Non-Fullerene Acceptors for Efficient Organic Solar Cells. , 2022, 4, 2009-2018.		11
95	Enhancing Photovoltaic Performance of Asymmetric <scp>Fusedâ€Ring</scp> Electron Acceptor by Expanding Pyrrole to Pyrrolo[3,2â€ <i>b</i>]pyrrole ^{â€} . Chinese Journal of Chemistry, 2022, 40, 2861-2866.	2.6	9
96	Controlling the Treatment Time for Ideal Morphology towards Efficient Organic Solar Cells. Molecules, 2022, 27, 5713.	1.7	1
97	Tuning the Molecular Packing of Low-Cost Non-Fullerene Acceptors via Asymmetric Terminal Groups. ACS Applied Energy Materials, 2022, 5, 11283-11291.	2.5	2
98	Asymmetric Non-Fullerene Small Molecule Acceptor with Unidirectional Non-Fused π-Bridge and Extended Terminal Group for High-Efficiency Organic Solar Cells. International Journal of Molecular Sciences, 2022, 23, 10079.	1.8	0
99	Efficient D ₁ :D ₂ :A Ternary Polymer Solar Cells with Low Voltage Loss and Unblocked Hole Transport Channel Characterized by Kelvin Probe Force Microscopy. ACS Applied Energy Materials, 2022, 5, 11853-11865.	2.5	4
100	The Key Role of Subtle Substitution for a <scp>Highâ€Performance Esterâ€Modified Oligothiopheneâ€Based</scp> Polymer Used in Photovoltaic Cells. Chinese Journal of Chemistry, 2022, 40, 2867-2874.	2.6	9
101	Molecular engineering of Yâ€series acceptors for nonfullerene organic solar cells. SusMat, 2022, 2, 591-606.	7.8	21
102	PBDB-T Accessed via Direct C–H Arylation Polymerization for Organic Photovoltaic Application. ACS Applied Polymer Materials, 2022, 4, 7282-7289.	2.0	5
103	Multiphase Morphology with Enhanced Carrier Lifetime via Quaternary Strategy Enables Highâ€Efficiency, Thickâ€Film, and Largeâ€Area Organic Photovoltaics. Advanced Materials, 2022, 34, .	11.1	84
104	Improving the Molecular Packing Order and Vertical Phase Separation of the P3HT:O-IDTBR Blend by Extending the Crystallization Period of O-IDTBR. ACS Applied Materials & Interfaces, 2022, 14, 44685-44696.	4.0	5
105	Effect of Terminal Electron-Withdrawing Group on the Photovoltaic Performance of Asymmetric Fused-Ring Electron Acceptors. ACS Applied Materials & Interfaces, 2022, 14, 43207-43214.	4.0	10
106	Designing of symmetrical A-D-A type non-fullerene acceptors by side-chain engineering of an indacenodithienothiophene (IDTT) core based molecule: A computational approach. Computational and Theoretical Chemistry, 2022, 1217, 113904.	1.1	28
107	Status and prospects of ternary all-polymer organic solar cells. Materials Today Energy, 2022, , 101166.	2.5	7
108	Vertical-Phase-Locking Effect in Efficient and Stable All-Polymer-Hosted Solar Cells. ACS Energy Letters, 2022, 7, 3709-3717.	8.8	9

#	Article	IF	CITATIONS
109	18.9% Efficient Organic Solar Cells Based on nâ€Doped Bulkâ€Heterojunction and Halogenâ€5ubstituted Selfâ€Assembled Monolayers as Hole Extracting Interlayers. Advanced Energy Materials, 2022, 12, .	10.2	42
110	Impact of isomers on the photovoltaic properties of polymerized small-molecule acceptors. , 2022, 1, 100008.		8
111	Simultaneous Optimization of Efficiency, Stretchability, and Stability in <scp>Allâ€Polymer</scp> Solar Cells via Aggregation Control ^{â€} . Chinese Journal of Chemistry, 2023, 41, 159-166.	2.6	29
112	Influence of twisted or planar linkers on the performance of quasi-two-dimensional fused perylene diimide acceptors for organic solar cells. Dyes and Pigments, 2022, 207, 110787.	2.0	1
113	The principles of selecting green solvent additives for optimizing the phase separation structure of polymer solar cells based on PTB7:PC71BM. European Polymer Journal, 2022, 180, 111603.	2.6	2
114	Ternary organic photovoltaic using long wavelength light absorption polymer as guest donor with enhance photovoltaic performance. Materials Today Chemistry, 2022, 26, 101190.	1.7	1
115	Enhancing exciton diffusion by reducing energy disorder in organic solar cells. Journal of Materials Chemistry A, 2022, 10, 24073-24083.	5.2	1
116	Simultaneous improvement of efficiency and stability of inverted organic solar cell <i>via</i> composite hole transport layer. Journal of Materials Chemistry A, 2022, 10, 23973-23981.	5.2	13
117	Opportunities and challenges for machine learning to select combination of donor and acceptor materials for efficient organic solar cells. Journal of Materials Chemistry C, 2022, 10, 17781-17811.	2.7	8
118	Visualization of sub-nanometer scale multi-orientational ordering in thin films of polymer/non-fullerene acceptor blends. Journal of Materials Chemistry A, 2022, 10, 24662-24675.	5.2	1
119	Organic photovoltaic performance and structural relationship of non-fullerene small molecule acceptors based on a tetraarylphenazine core and perylene diimide. Sustainable Energy and Fuels, 2022, 7, 294-299.	2.5	2
120	An alloy small molecule acceptor for green printing organic solar cells overcoming the scaling lag of efficiency. Energy and Environmental Science, 2022, 15, 5192-5201.	15.6	36
121	Estimating donor:acceptor compatibility for polymer solar cells through nonfused-ring acceptors with benzoxadiazole core and different halogenated terminal groups. New Journal of Chemistry, 2022, 46, 21324-21334.	1.4	3
122	Balancing the performance and stability of organic photodiodes with all-polymer active layers. Journal of Materials Chemistry C, 2022, 10, 17502-17511.	2.7	7
123	Noncovalent molecular interactions, charge transport and photovoltaic performance of asymmetric M-series acceptors with dichlorinated end groups. Journal of Materials Chemistry A, 2022, 10, 23915-23926.	5.2	5
124	N-Annulated Perylene Bisimide-Based Double-Cable Polymers with Open-Circuit Voltage Approaching 1.20 V in Single-Component Organic Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 47952-47960.	4.0	2
125	Y-Series-Based Polymer Acceptors for High-Performance All-Polymer Solar Cells in Binary and Non-binary Systems. ACS Energy Letters, 2022, 7, 3835-3854.	8.8	25
126	Wide Bandâ€Gap Polymer Donors Functionalized with Unconventional Carbamate Side Chains for Polymer Solar Cells. Angewandte Chemie, 2022, 134, .	1.6	3

-			_	
C	ITATI	ON	DED	ODT
\sim	пап		NLP	ORI

#	ARTICLE	IF	CITATIONS
127	Recent progress in low ost noncovalently fusedâ€ring electron acceptors for organic solar cells. Aggregate, 2022, 3, .	5.2	60
128	Wide Bandâ€Gap Polymer Donors Functionalized with Unconventional Carbamate Side Chains for Polymer Solar Cells. Angewandte Chemie - International Edition, 2022, 61, .	7.2	19
129	Charge generation in organic solar cells: Journey toward 20% power conversion efficiency. Aggregate, 2022, 3, .	5.2	15
130	An Organic Small Molecule as a Solid Additive in Non-Fullerene Organic Solar Cells with Improved Efficiency and Operational Stability. Chinese Journal of Polymer Science (English Edition), 2023, 41, 194-201.	2.0	6
131	Waterâ^'Processed Organic Solar Cell with Efficiency Exceeding 11%. Polymers, 2022, 14, 4229.	2.0	8
132	Recent progress in solution-processed flexible organic photovoltaics. Npj Flexible Electronics, 2022, 6, .	5.1	11
133	Photovoltaic Materials and Their Path toward Cleaner Energy. Global Challenges, 2023, 7, .	1.8	2
134	Intersystem Crossing in Acceptor–Donor–Acceptor Type Organic Photovoltaic Molecules Promoted by Symmetry Breaking in Polar Environments. Journal of Physical Chemistry Letters, 2022, 13, 10305-10311.	2.1	1
135	Deciphering the Role of Sideâ€Chain Engineering and Solvent Vapor Annealing for Binary Allâ€Smallâ€Molecule Organic Solar Cells. Advanced Functional Materials, 2023, 33, .	7.8	14
136	Highâ€Performance Organic Solar Cells by Adding Twoâ€Dimensional GeSe. Advanced Functional Materials, 2022, 32, .	7.8	10
137	26.75 cm ² organic solar modules demonstrate a certified efficiency of 14.34%. Journal of Semiconductors, 2022, 43, 100501.	2.0	5
138	Passivating the Defects and Modulating the Surface Energy of ZnO Cathode Interlayer for Efficient Nonfullerene Organic Solar Cells. Solar Rrl, 2022, 6, .	3.1	3
139	Carbazolebis(thiadiazole)-core based non-fused ring electron acceptors for efficient organic solar cells. Chinese Chemical Letters, 2023, 34, 107902.	4.8	10
140	Sidechainâ€Engineered Nâ€PDIs Processed from Ethyl Acetate as Effective Cathode Interlayers for Organic Solar Cells. Advanced Engineering Materials, 2023, 25, .	1.6	5
141	Reducing Trap Density in Organic Solar Cells via Extending the Fused Ring Donor Unit of an A–D–Aâ€Type Nonfullerene Acceptor for Over 17% Efficiency. Advanced Materials, 2023, 35, .	11.1	51
142	Achieving Highâ€Performance Organic Photovoltaics by Morphology Optimization of Active Layers Using Fluoreneâ€Based Solid Additives. Solar Rrl, 2022, 6, .	3.1	7
143	Designing High-Performance Wide Bandgap Polymer Donors by the Synergistic Effect of Introducing Carboxylate and Fluoro Substituents. ACS Energy Letters, 2022, 7, 3927-3935.	8.8	25
144	Nanoimprint Lithographyâ€Dependent Vertical Composition Gradient in Pseudoâ€Planar Heterojunction Organic Solar Cells Combined with Sequential Deposition. Advanced Functional Materials, 2023, 33, .	7.8	12

#	Article	IF	CITATIONS
145	Boosting the Fill Factor through Sequential Deposition and Homo Hydrocarbon Solvent toward Efficient and Stable Allâ€Polymer Solar Cells. Advanced Energy Materials, 2022, 12, .	10.2	26
146	Over 13% Efficient Singleâ€Component Organic Solar Cells Enabled by Adjusting the Conjugated‣ength of Intermediate PBDBâ€T Block. Advanced Functional Materials, 2023, 33, .	7.8	9
147	A ZnO:POMs composite electron transport layer for efficient PTB7:PC71BM polymer solar cells. Journal of Materials Science: Materials in Electronics, 0, , .	1.1	0
148	Simple Solvent Treatment Enabled Improved PEDOT:PSS Performance toward Highly Efficient Binary Organic Solar Cells. ACS Omega, 2022, 7, 41789-41795.	1.6	5
149	Rational control of sequential morphology evolution and vertical distribution toward 17.18% efficiency all-small-molecule organic solar cells. Joule, 2022, 6, 2835-2848.	11.7	87
150	Latest progress on fully nonâ€fused electron acceptors for highâ€performance organic solar cells. Chinese Chemical Letters, 2023, 34, 107968.	4.8	13
151	Synergistic effects of dual-optical-nanocavity resonance and localized surface plasmons to enhance light absorption in organic solar cells. Organic Electronics, 2022, 111, 106669.	1.4	0
152	The modification of ZnO surface with natural antioxidants to fabricate highly efficient and stable inverted organic solar cells. Chemical Engineering Journal, 2023, 452, 139658.	6.6	27
153	Asymmetric chlorination of A ₂ –A ₁ –D–A ₁ –A ₂ type non-fullerene acceptors for high-voltage organic photovoltaics. Chemical Communications, 2022, 58, 13373-13376.	2.2	9
154	Highly efficient and stable binary all-polymer solar cells enabled by sequential deposition processing tuned microstructures. Journal of Materials Chemistry C, 2022, 10, 17899-17906.	2.7	5
155	Over 31% efficient indoor organic photovoltaics enabled by simultaneously reduced trap-assisted recombination and non-radiative recombination voltage loss. Materials Horizons, 2023, 10, 566-575.	6.4	13
156	"A-π-A―type naphthalimide-based cathode interlayers for efficient organic solar cells. Dyes and Pigments, 2023, 209, 110911.	2.0	2
157	Surface tailored Ti-oxo clusters enabling highly efficient organic solar cells. Chemical Engineering Journal, 2023, 454, 140002.	6.6	3
158	End-group modification of terminal acceptors on benzothiadiazole-based BT2F-IC4F molecule to establish efficient organic solar cells. Journal of Molecular Liquids, 2022, 368, 120770.	2.3	31
159	Linear Regulating of Polymer Acceptor Aggregation with Short Alkyl Chain Units Enhances Allâ€Polymer Solar Cells' Efficiency. Macromolecular Rapid Communications, 2023, 44, .	2.0	2
160	Weak Electron-Deficient Building Block Containing O–B ↕N Bonds for Polymer Donors. Macromolecules, 2022, 55, 9934-9942.	2.2	4
161	Sodium Alginate as a Natural Substrate for Efficient and Sustainable Organic Solar Cells. ACS Sustainable Chemistry and Engineering, 2022, 10, 15608-15617.	3.2	3
162	Solventâ€Induced Antiâ€Aggregation Evolution on Small Molecule Electronâ€Transporting Layer for Efficient, Scalable, and Robust Organic Solar Cells. Advanced Energy Materials, 2023, 13, .	10.2	27

#	Article	IF	CITATIONS
163	What's Next for Organic Solar Cells? The Frontiers and Challenges. Advanced Energy and Sustainability Research, 2023, 4, .	2.8	9
164	18.66% Efficiency of Polymer Solar Cells Employing Two Nonfullerene Acceptors with Fluorine or Chlorine Substitution. Solar Rrl, 2023, 7, .	3.1	24
165	Organic solar cells using oligomer acceptors for improved stability and efficiency. Nature Energy, 2022, 7, 1180-1190.	19.8	132
166	Insights into Magneto-Photocurrent and Coherent Spin Mixing for Binary and Ternary Nonfullerene Bulk Heterojunction Organic Solar Cells. Chemistry of Materials, 2022, 34, 10113-10122.	3.2	3
167	Asymmetric Non-Fullerene Acceptors with Branched Alkyl-Chains for Efficient Organic Solar Cells with High Open-Circuit Voltage. Chemistry of Materials, 2022, 34, 10144-10152.	3.2	13
168	Benzothiadiazole-based polymer donors. Nano Energy, 2023, 105, 108017.	8.2	43
169	A <scp>Twoâ€inâ€One</scp> Annealing Enables Dopant Free Block Copolymer Based Organic Solar Cells with over 16% Efficiency. Chinese Journal of Chemistry, 2023, 41, 672-678.	2.6	31
170	A generic approach yields organic solar cells with enhanced efficiency and thermal stability. Aggregate, 2023, 4, .	5.2	19
171	Benzotriazoleâ€Based Polymer Acceptor for Highâ€Efficiency Allâ€Polymer Solar Cells with High Photocurrent and Low Voltage Loss. Advanced Energy Materials, 2023, 13, .	10.2	17
172	Atomic Optimization on Pyranâ€Fused Nonfullerene Acceptor Enables Organic Solar Cells With an Efficiency Approaching 16% and Reduced Energy Loss. Advanced Functional Materials, 2023, 33, .	7.8	10
173	Recent progress in flexible organic solar cells. EScience, 2023, 3, 100085.	25.0	26
174	Printing of Lowâ€Meltingâ€Point Alloy as Top Electrode for Organic Solar Cells. Advanced Optical Materials, 0, , 2201977.	3.6	3
175	Tethered Smallâ€Molecule Acceptors Simultaneously Enhance the Efficiency and Stability of Polymer Solar Cells. Advanced Materials, 2023, 35, .	11.1	36
176	Recent progress in non-fused ring electron acceptors for high performance organic solar cells. , 2023, 1, 60-78.		30
177	Ï€-Extended chlorinated non-fullerene acceptors for achieving high performance organic solar cells. Journal of Materials Chemistry C, 2023, 11, 1155-1164.	2.7	6
178	Achieving 31% efficiency in organic photovoltaic cells under indoor light using a low energetic disorder polymer donor. Journal of Materials Chemistry A, 2023, 11, 983-991.	5.2	13
179	Advances in the device design and printing technology for eco-friendly organic photovoltaics. Energy and Environmental Science, 2023, 16, 76-88.	15.6	24
180	High-efficiency organic solar cells processed from a real green solvent. Materials Horizons, 2023, 10, 473-482.	6.4	22

ARTICLE Realizing 18.03% efficiency and good junction characteristics in organic solar cells <i>via</i>	IF	CITATIONS
hydrogen-bonding interaction between glucose and ZnO electron transport layers. Journal of Materials Chemistry A, 2023, 11, 1810-1816.	5.2	5
Wide-bandgap polymer donors for non-fullerene organic solar cells. Journal of Materials Chemistry A, 2022, 11, 17-30.	5.2	14
Oligothiophene electron donor and electron acceptor for all small molecule organic solar cells with efficiency over 9%. Chemical Engineering Journal, 2023, 456, 141006.	6.6	6
Crystal structures in state-of-the-art non-fullerene electron acceptors. Journal of Materials Chemistry A, 2023, 11, 481-494.	5.2	13
Side chain isomerization enables high efficiency and thickness tolerant organic solar cells. Journal of Materials Chemistry A, 2023, 11, 700-707.	5.2	6
A case study on the thermal-stability of polymerized small molecular acceptor-based polymer solar cells. Journal of Materials Chemistry C, 0, , .	2.7	1
Third component with a high LUMO energy level enables 17.69% efficiency in ternary organic solar cells. Optical Materials, 2023, 135, 113382.	1.7	0
Asymmetric non-fullerene acceptors enable high photovoltaic performance <i>via</i> the synergistic effect of carbazole-terminated alkyl spacer and halogen substitution. New Journal of Chemistry, 0, , .	1.4	1
Optimal morphology, H-aggregation, and ternary blend excited state disruption in equilibrated squaraine-based all small molecule solar-cells. Thin Solid Films, 2023, 765, 139623.	0.8	2
Enhance the performance of organic solar cells by nonfused ring electron acceptors bearing a pendent perylenediimide group. Dyes and Pigments, 2023, 210, 111033.	2.0	2
High-level periodic conjugated terpolymers through AA/BB monomer pair-type terpolymerization improve performance of polymer solar cells. Nano Energy, 2023, 106, 108059.	8.2	11
Two non-halogen additives significantly improve the efficiency of PTB7-Th:PC71BM-based polymer solar cells in non-halogen solvent. Organic Electronics, 2023, 113, 106722.	1.4	0
An over 16% efficiency organic solar cell enabled by a low-cost pyrazine-based polymer donor. Journal of Materials Chemistry A, 2022, 10, 25595-25601.	5.2	7
Challenging PM6-like donor polymers for pairing with a Y-type state-of-the-art acceptor in binary blends for bulk heterojunction solar cells. Physical Chemistry Chemical Physics, 2023, 25, 2916-2925.	1.3	2
Calixarenes enabling well-adjusted organic-inorganic interface for inverted organic solar cells with 18.25% efficiency and multifold improved photostability under max power point tracking. Science China Chemistry, 2023, 66, 195-201.	4.2	9
End Group Effect of Asymmetric Benzodithiopheneâ€Based Donor with Liquidâ€Crystal State for Smallâ€Molecule Binary Solar Cell. Small, 2023, 19, .	5.2	6
Small-Molecule Electron Transport Layer with Siloxane-Functionalized Side Chains for Nonfullerene Organic Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 54063-54072.	4.0	7

199A Simple Nonfused Ring Electron Acceptor with a Power Conversion Efficiency Over 16%^{â€}.2.626199Chinese Journal of Chemistry, 2023, 41, 665-671.2.626

#

#	Article	IF	CITATIONS
200	Highâ€Performance Green Thickâ€Film Ternary Organic Solar Cells Enabled by Crystallinity Regulation. Advanced Functional Materials, 2023, 33, .	7.8	15
201	Composition-Tolerant Terpolymers for Efficient, Nonhalogenated Solvent-Processed Polymer Solar Cells. Macromolecules, 2022, 55, 10395-10404.	2.2	2
202	Solution-processed Molybdenum Oxide Hole Transport Layer Stabilizes Organic Solar Cells. Chinese Journal of Polymer Science (English Edition), 0, , .	2.0	3
203	Charge Photogeneration and Recombination Dynamics in PTQ10:Y6 Solar Cells. Photonics, 2022, 9, 892.	0.9	4
204	High-Performance Ternary Organic Photovoltaics Incorporating Small-Molecule Acceptors with an Unfused-Ring Core. ACS Applied Energy Materials, 2022, 5, 15423-15433.	2.5	7
205	<i>In situ</i> performance and stability tests of large-area flexible polymer solar cells in the 35-km stratospheric environment. National Science Review, 2023, 10, .	4.6	4
206	Ï€-Extension and chlorination of non-fullerene acceptors enable more readily processable and sustainable high-performance organic solar cells. Journal of Energy Chemistry, 2023, 79, 321-329.	7.1	2
207	Biomimetic Approaches to "Transparent―Photovoltaics: Current and Future Applications. Molecules, 2023, 28, 180.	1.7	1
208	Phase behavior of π-conjugated polymer and non-fullerene acceptor (PTB7-Th:ITIC) solutions and blends. Scientific Reports, 2022, 12, .	1.6	4
209	Enhanced Photodynamic of Carriers and Suppressed Charge Recombination Enable Approaching 18% Efficiency in Nonfullerene Organic Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 54885-54894.	4.0	2
210	Coâ€Laâ€Based Holeâ€Transporting Layers for Binary Organic Solar Cells with 18.82 % Efficiency. Angewandte Chemie, 2023, 135, .	1.6	4
211	Co‣aâ€Based Holeâ€Transporting Layers for Binary Organic Solar Cells with 18.82 % Efficiency. Angewandte Chemie - International Edition, 2023, 62, .	7.2	12
212	Over 19% Efficiency Organic Solar Cells by Regulating Multidimensional Intermolecular Interactions. Advanced Materials, 2023, 35, .	11.1	114
213	Design of a Fully Nonâ€Fused Bulk Heterojunction toward Efficient and Low ost Organic Photovoltaics. Angewandte Chemie, 2023, 135, .	1.6	3
214	A Volatile Solid Additive Enables Oligothiophene All‧mallâ€Molecule Organic Solar Cells with Excellent Commercial Viability. Advanced Functional Materials, 2023, 33, .	7.8	23
215	Organic Photovoltaics Utilizing Smallâ€Molecule Donors and Yâ€Series Nonfullerene Acceptors. Advanced Materials, 2023, 35, .	11.1	14
216	Nonhalogenated Solutionâ€Processed Donorâ€Dispersed Planar Heterojunction Organic Solar Cells with Enhanced Homogeneity in Vertical Phase Separation. Solar Rrl, 2023, 7, .	3.1	6
217	Regulating Charge Carrier Recombination in the Interconnecting Layer to Boost the Efficiency and Stability of Monolithic Perovskite/Organic Tandem Solar Cells. Advanced Materials, 2023, 35, .	11.1	15

#	Article	IF	CITATIONS
218	Study of the Dynamic Process of Enhancing the Stability of Conjugated Polymer Solutions and Films Induced by an External Electric Field. Macromolecules, 2023, 56, 69-80.	2.2	5
219	Improving the Thermal Stability of Organic Solar Cells via Crystallinity Control. ACS Applied Energy Materials, 2022, 5, 15656-15665.	2.5	7
220	Nonâ€Fused Ring Acceptors Achieving over 15.6% Efficiency Organic Solar Cell by Long Exciton Diffusion Length of Alloyâ€Like Phase and Vertical Phase Separation Induced by Hole Transport Layer. Advanced Energy Materials, 2023, 13, .	10.2	23
221	Ternary Allâ€Polymer Solar Cells with Efficiency up to 18.14% Employing a Twoâ€&tep Sequential Deposition. Advanced Materials, 2023, 35, .	11.1	33
222	In Situ Optical Spectroscopy Demonstrates the Effect of Solvent Additive in the Formation of All-Polymer Solar Cells. Journal of Physical Chemistry Letters, 2022, 13, 11696-11702.	2.1	4
223	Optimized Morphology Enables High-Efficiency Nonfullerene Ternary Organic Solar Cells. Langmuir, 2023, 39, 75-82.	1.6	1
224	An n-doped organic layer assists the anode modification of inverted organic solar cell for the efficiency improvement. Applied Physics A: Materials Science and Processing, 2023, 129, .	1.1	0
225	Ternary Organic Solar Cells: Recent Insight on Structure–Processing–Property–Performance Relationships. Energy Technology, 2023, 11, .	1.8	8
226	Unsymmetrically Chlorinated Nonâ€Fused Electron Acceptor Leads to Highâ€Efficiency and Stable Organic Solar Cells. Angewandte Chemie - International Edition, 2023, 62, .	7.2	40
227	Investigating the Role of Cathode Buffer Layers Based on Zinc Oxide with Surfaceâ€Rich Graded Fullerene Isomers in Tuning the Interfacial Properties of Organic Solar Cells. Solar Rrl, 0, , 2200797.	3.1	0
228	Multifunctional allâ€polymer photovoltaic blend with simultaneously improved efficiency (18.04%), stability and mechanical durability. Aggregate, 2023, 4, .	5.2	28
229	Device Performance of Emerging Photovoltaic Materials (Version 3). Advanced Energy Materials, 2023, 13, .	10.2	63
230	Reducing Voltage Losses of Organic Solar Cells against Energetics Modifications by Thermal Stress. Journal of Physical Chemistry Letters, 2022, 13, 11974-11981.	2.1	0
231	Fibrillization of Nonâ€Fullerene Acceptors Enables 19% Efficiency Pseudoâ€Bulk Heterojunction Organic Solar Cells. Advanced Materials, 2023, 35, .	11.1	103
232	19.10% Efficiency and 80.5% Fill Factor Layerâ€byâ€Layer Organic Solar Cells Realized by 4â€Bis(2â€Thienyl)Pyrroleâ€2,5â€Dione Based Polymer Additives for Inducing Vertical Segregation Morphology. Advanced Materials, 2023, 35, .	11.1	88
233	Design of a Fully Nonâ€Fused Bulk Heterojunction toward Efficient and Low ost Organic Photovoltaics. Angewandte Chemie - International Edition, 2023, 62, .	7.2	41
234	Device engineering of organic solar cells based on a boron subphthalocyanine electron donor molecule. JPhys Materials, 2023, 6, 014008.	1.8	1
235	Simplified Y6â€Based Nonfullerene Acceptors: Inâ€Depth Study on Molecular Structure–Property Relation, Molecular Dynamics Simulation, and Charge Dynamics. Small, 2023, 19, .	5.2	7

ARTICLE IF CITATIONS # Printable high-efficiency organic ionic photovoltaic materials discovered by high-throughput 236 1.9 0 first-principle calculations. IScience, 2022, 25, 105639. High-performing organic electronics using terpene green solvents from renewable feedstocks. Nature 19.8 Energy, 2023, 8, 62-73. Printed Organic Photovoltaic Modules on Transferable Ultraâ€thin Substrates as Additive Power 238 4.6 10 Sources. Small Methods, 2023, 7, . Unsymmetrically Chlorinated Nonâ€Fused Electron Acceptor Leads to Highâ€Efficiency and Stable Organic Solar Cells. Angewandte Chemie, 2023, 135, . An Asymmetric Nonâ€fullerene Acceptor with Low Energy Loss and High Photovoltaic Efficiency. 240 2.6 6 Chinese Journal of Chemistry, 2023, 41, 1045-1050. Nano TiO2 and Molybdenum/Tungsten Iodide Octahedral Clusters: Synergism in UV/Visible-Light Driven Degradation of Organic Pollutants. Nanomaterials, 2022, 12, 4282. Guidedâ€Growth Ultrathin Metal Film Enabled Efficient Semiâ€Transparent Organic Solar Cells. Advanced 243 10.2 13 Energy Materials, 2023, 13, . Film Formation Kinetics of Polymer Donor and Nonfullerene Acceptor Active Layers During Printing 244 3.1Out of 1,2,4â€Trimethylbenzene in Ambient Conditions. Solar Rrĺ, 2023, 7, . A Multifluorination Strategy Toward Wide Bandgap Polymers for Highly Efficient Organic Solar 245 7.2 9 Cells. Angewandte Chemie - International Edition, 2023, 62, . Double Asymmetric Core Optimizes Crystal Packing to Enable Selenopheneâ€based Acceptor with Over 246 7.2 18 % Efficiency in Binary Organic Solar Cells. Angewandte Chemie - International Edition, 2023, 62, . All-fused-ring small molecule acceptors with near-infrared absorption. Journal of Materials 247 2.7 1 Chemistry C, 2023, 11, 2144-2152. Versatile Processability by Breaking the Symmetrical Chemical Structure of Nonfullerene Acceptors. 3.1 Solar Rrl, 0, , 2201012 Asymmetric fluorine and chlorine side-chain engineered quinoxaline-based Dâ& A copolymer for both 249 1.9 2 fullerene and nonfullerene polymer solar cells. Polymer Chemistry, 2023, 14, 728-736. Effects of alkyl chains of benzothiadiazole-based conjugated polymers on the photovoltaic performance of non-fullerene organic solar cells. Polymer Chemistry, 2023, 14, 616-622. 1.9 1,8,9â€Trihydroxyanthracene as a Green Solid Additive for Operational Stability in Organic Solar Cells. 251 3.15 Solar Rrl, 2023, 7, . Preparation of Efficient Organic Solar Cells Based on Terpolymer Donors via a Monomerâ€Ratio Insensitive Sideâ€Chain Hybridization Strategy. ChemSusChem, 2023, 16, . 19.28% Efficiency and Stable Polymer Solar Cells Enabled by Introducing an NIRâ€Absorbing Guest 253 7.8 54 Acceptor. Advanced Functional Materials, 2023, 33, . Efficient ternary organic photovoltaic device with a non-halogenated solvent <i>via</i> synergistic 254 inhibiting charge recombination and regulating morphology. Journal of Materials Chemistry C, 2023, 24 11, 2871-2879

#	Article	IF	CITATIONS
255	Area Dependent Performance Variation of Ultrasonic Spray Coated Organic Solar Cells . Journal of Renewable and Sustainable Energy, 0, , .	0.8	0
256	Smartly Optimizing Crystallinity, Compatibility, and Morphology for Polymer Solar Cells by Small Molecule Acceptor with Unique 2Dâ€EDOT Side Chain. Advanced Functional Materials, 2023, 33, .	7.8	8
257	Non-Embedded Silver Nanowires/Antimony-Doped Tin Oxide/Polyethylenimine Transparent Electrode for Non-Fullerene Acceptor ITO-Free Inverted Organic Photovoltaics. ACS Applied Electronic Materials, 2023, 5, 181-188.	2.0	3
258	Double Asymmetric Core Optimizes Crystal Packing to Enable Selenopheneâ€based Acceptor with Over 18 % Efficiency in Binary Organic Solar Cells. Angewandte Chemie, 2023, 135, .	1.6	1
259	Regioselective acylation attaching aromatic substituents in simple nonfullerene acceptors for efficient organic solar cells. Journal of Materials Chemistry A, 2023, 11, 3437-3445.	5.2	1
260	Overcoming Disordered Preaggregation in Liquid State for Highly Efficient Organic Solar Cells Printed from Nonhalogenated Solvents. Advanced Energy Materials, 2023, 13, .	10.2	10
261	Realâ€Time Probing and Unraveling the Morphology Formation of Bladeâ€Coated Ternary Nonfullerene Organic Photovoltaics with InÂSitu Xâ€Ray Scattering. Advanced Functional Materials, 2023, 33, .	7.8	15
262	Effect of Steric Hindrance at the Anthracene Core on the Photovoltaic Performance of Simple Nonfused Ring Electron Acceptors. ACS Applied Materials & Interfaces, 2023, 15, 4275-4283.	4.0	5
263	Hybrid Cycloalkylâ€Alkyl Chainâ€Based Symmetric/Asymmetric Acceptors with Optimized Crystal Packing and Interfacial Exciton Properties for Efficient Organic Solar Cells. Advanced Science, 2023, 10, .	5.6	39
264	Stable block copolymer single-material organic solar cells: progress and perspective. Energy and Environmental Science, 2023, 16, 723-744.	15.6	18
265	Inner alkyl chain modulation of small molecular acceptors enables molecular packing optimization and efficient organic solar cells. Science China Chemistry, 2023, 66, 500-507.	4.2	5
266	Wall Insulation Materials in Different Climate Zones: A Review on Challenges and Opportunities of Available Alternatives. Thermo, 2023, 3, 38-65.	0.6	9
267	CO2 Snow Jet Cleaning as a Roll-to-Roll Compatible Method for Deburring IMI Substrates After Laser Patterning. Flexible and Printed Electronics, 0, , .	1.5	0
268	Effects of the diphenyl ether additive in halogen-free processed non-fullerene acceptor organic solar cells. Journal of Materials Chemistry A, 2023, 11, 2419-2430.	5.2	14
269	Alkyl Branching Sites on π-Spacers for Dipyran-Based High-Efficiency Organic Solar Cells. ACS Applied Energy Materials, 2023, 6, 1066-1075.	2.5	7
270	18.2%-efficient ternary all-polymer organic solar cells with improved stability enabled by a chlorinated guest polymer acceptor. Joule, 2023, 7, 221-237.	11.7	72
271	Benzodithiophene with multiple side-chains for efficient wide-bandgap D–A copolymers. Journal of Materials Chemistry A, 2023, 11, 5127-5134.	5.2	3
272	Effect of terminal fluorine substitution of nonfullerene small molecular acceptor on the thermal stability of organic solar cells. New Journal of Chemistry, 0, , .	1.4	0

#	Article	IF	CITATIONS
273	Role of Exciton Lifetime, Energetic Offsets, and Disorder in Voltage Loss of Bulk Heterojunction Organic Solar Cells. ACS Applied Materials & Interfaces, 2023, 15, 3214-3223.	4.0	5
274	Efficient Hole Transfer from a Twisted Perylenediimide Acceptor to a Conjugated Polymer in Organic Bulk-Heterojunction Solar Cells. Materials, 2023, 16, 737.	1.3	0
275	Terminal Groups of Nonfullerene Acceptors: Design and Application. Chemistry of Materials, 2023, 35, 807-821.	3.2	11
276	N-dopants optimize the utilization of spontaneously formed photocharges in organic solar cells. Energy and Environmental Science, 2023, 16, 653-662.	15.6	9
277	Realizing compact three-dimensional charge transport networks of asymmetric electron acceptors for efficient organic solar cells. Science China Chemistry, 2023, 66, 508-517.	4.2	3
278	All-small-molecule efficient ternary organic solar cells employing a coumarin donor and two fullerene-free acceptors. Journal of Materials Chemistry C, 2023, 11, 1919-1926.	2.7	6
279	A Multifluorination Strategy Toward Wide Bandgap Polymers for Highly Efficient Organic Solar Cells. Angewandte Chemie, 2023, 135, .	1.6	2
280	Yâ€Type Nonâ€Fullerene Acceptors with Outer Branched Side Chains and Inner Cyclohexane Side Chains for 19.36% Efficiency Polymer Solar Cells. Advanced Materials, 2023, 35, .	11.1	69
281	Investigation of isomerization effects on the photovoltaic performance of fused-ring electron acceptors <i>via</i> side-chain position manipulation. Journal of Materials Chemistry C, 2023, 11, 2063-2068.	2.7	1
282	Insights into the application of carbon materials in heterojunction solar cells. Materials Science and Engineering Reports, 2023, 152, 100711.	14.8	6
283	Applying l-cystine as an electron transport layer toward efficient organic solar cells. Optical Materials, 2023, 136, 113404.	1.7	10
284	Nonfullerene acceptor isomer with mono-fluorine end-substitution enables oligothiophene-based terpolymer donor with 17.82% efficiency. Chemical Engineering Journal, 2023, 457, 141281.	6.6	4
285	Facilely full-end-capping engineering promotes high-performance organic solar cells with simultaneously improved efficiency and stability. Chemical Engineering Journal, 2023, 457, 141343.	6.6	7
286	Asymmetric non-fullerene acceptor based on a cyclohexane side chain for efficient organic solar cell. Organic Electronics, 2023, 114, 106737.	1.4	2
287	Photovoltaic performances of two alternating polymers having meta-octyloxy-phenyl modified dithieno[3,2-f:2′,3′-h]quinoxaline unit. Dyes and Pigments, 2023, 211, 111049.	2.0	1
288	Core/shell AgNWs@SnOx electrodes for high performance flexible indoor organic solar cells with >25% efficiency. Nano Energy, 2023, 107, 108153.	8.2	17
289	Efficient carrier-filtering performance probing of oxide buffer-layers in organic solar cell at nanoscale. Organic Electronics, 2023, 114, 106728.	1.4	1
290	Two nonlinear π-conjugated polymerized small molecular acceptors containing thiophene or 3,4-Difluorothiophene linkage unit for all-polymer solar cells. Organic Electronics, 2023, 114, 106735.	1.4	2

#	Article	IF	CITATIONS
291	17% efficiency for linear-shaped ADA-type nonfullerene acceptors enabled by 3D reticulated molecular packing. Nano Energy, 2023, 107, 108116.	8.2	11
292	Fused phthalimide-based A–DA′D–A small molecule: New protocol for n-type organic semiconductors. Synthetic Metals, 2023, 293, 117278.	2.1	2
293	Efficient <scp>Smallâ€Molecule</scp> Organic Solar Cells by Modulating Fluorine Substitution Position of Donor Material. Chinese Journal of Chemistry, 2023, 41, 755-762.	2.6	3
294	Low-Cost Silicon Phthalocyanine as a Non-Fullerene Acceptor for Flexible Large Area Organic Photovoltaics. ACS Omega, 2023, 8, 1588-1596.	1.6	4
295	Recent Advances of Solid Additives Used in Organic Solar Cells: Toward Efficient and Stable Solar Cells. ACS Applied Energy Materials, 2023, 6, 31-50.	2.5	12
296	Graphitic Carbon Nitride Nanosheets: Dual Functional Charge Selective Cathode/Anode Interface Layer for Polymer Solar Cells. ACS Applied Energy Materials, 2023, 6, 554-563.	2.5	3
297	A review of nonfullerene solar cells: Insight into the correlation among molecular structure, morphology, and device performance. , 2023, 2, .		9
298	4-Terminal Inorganic Perovskite/Organic Tandem Solar Cells Offer 22% Efficiency. Nano-Micro Letters, 2023, 15, .	14.4	17
299	Recent Developments of Polymer Solar Cells with Photovoltaic Performance over 17%. Advanced Functional Materials, 2023, 33, .	7.8	38
300	Manipulating Polymer Backbone Configuration via Halogenated Asymmetric Endâ€Groups Enables Over 18% Efficiency Allâ€Polymer Solar Cells. Advanced Materials, 2023, 35, .	11.1	24
301	Nonfullerene Organic Solar Cells with 18.17% Efficiency Obtained Using a V ₂ C/PEDOT:PSS Composite Hole-Transport Layer. ACS Applied Energy Materials, 2023, 6, 1982-1988.	2.5	6
302	Quantitative relationships between film morphology, charge carrier dynamics, and photovoltaic performance in bulk-heterojunction binary <i>vs.</i> ternary acceptor blends. Energy and Environmental Science, 2023, 16, 1234-1250.	15.6	6
303	A double-cable Y-series-based polymer acceptor for efficient all-polymer solar cells: a new strategy of polymerizing small molecule acceptors. Journal of Materials Chemistry C, 2023, 11, 3533-3541.	2.7	4
304	An efficient polymer acceptor with fluorinated linkers enables all polymer solar cells with an efficiency of 15.7%. Journal of Materials Chemistry A, 2023, 11, 5584-5592.	5.2	4
305	Natural Materials for Sustainable Organic Solar Cells: Status and Challenge. Advanced Functional Materials, 2023, 33, .	7.8	8
306	Intrinsically stretchable, semi-transparent organic photovoltaics with high efficiency and mechanical robustness <i>via</i> a full-solution process. Energy and Environmental Science, 2023, 16, 1251-1263.	15.6	19
307	Mitigating Detrimental Effect of Selfâ€Doping Near the Anode in Highly Efficient Organic Solar Cells. Advanced Functional Materials, 2023, 33, .	7.8	7
308	Tandem organic solar cells with efficiency over 19% via the careful subcell design and optimization. Science China Chemistry, 0, , .	4.2	3

#	Article	IF	CITATIONS
	Machine learning assisted identification of the matched energy level of materials for high open		_
309	circuit voltage in binary organic solar cells. Molecular Systems Design and Engineering, 2023, 8, 799-809.	1.7	4
310	Controlling Morphology and Voltage Loss with Ternary Strategy Triggers Efficient All-Small-Molecule Organic Solar Cells. ACS Energy Letters, 2023, 8, 1058-1067.	8.8	43
311	Over 18.1% Efficiency of Layer-by-Layer Polymer Solar Cells by Enhancing Exciton Utilization near the ITO Electrode. ACS Applied Materials & amp; Interfaces, 2023, 15, 7247-7254.	4.0	22
312	Asymmetric molecular engineering in recent nonfullerene acceptors for efficient organic solar cells. Chinese Chemical Letters, 2023, 34, 108163.	4.8	16
313	Sequential Deposition of Multicomponent Bulk Heterojunctions Increases Efficiency of Organic Solar Cells. Advanced Materials, 2023, 35, .	11.1	76
314	A 19% efficient and stable organic photovoltaic device enabled by a guest nonfullerene acceptor with fibril-like morphology. Energy and Environmental Science, 2023, 16, 1062-1070.	15.6	50
315	Efficient and Thermally Stable Organic Solar Cells via a Fully Halogen-Free Active Blend and Solvent. ACS Applied Energy Materials, 2023, 6, 1595-1604.	2.5	2
316	Application of neutron scattering in organic photovoltaic materials. , 2023, 42, 100023.		1
317	Phosphotungstate-Based Anode Interfacial Material for Constructing High-Performance Polymer Solar Cells with a Fill Factor over 80%. ACS Applied Materials & Interfaces, 2023, 15, 5566-5576.	4.0	4
318	Mechanically Stable Flexible Organic Photovoltaics with Silver Nanomesh for Indoor Applications. ACS Applied Materials & Interfaces, 2023, 15, 5378-5386.	4.0	3
319	Building-up an interrelationship between isomeric benzyl inner side chains within nonfullerene acceptors and isomeric xylene solvents for non-chlorinated solvent-processed organic solar cells. Journal of Materials Chemistry A, 2023, 11, 4703-4716.	5.2	11
320	Chlorination effects of a non-fullerene acceptor based on a selenium heterocyclic core for high-efficiency organic solar cells. Journal of Materials Chemistry C, 2023, 11, 3020-3029.	2.7	2
321	Understanding the Thickness and Light-Intensity Dependent Performance of Green-Solvent Processed Organic Solar Cells. ACS Materials Au, 2023, 3, 215-230.	2.6	9
322	Desirable Uniformity and Reproducibility of Electron Transport in Singleâ€Component Organic Solar Cells. Advanced Science, 2023, 10, .	5.6	7
323	Manipulating the Macroscopic and Microscopic Morphology of Largeâ€Area Gravureâ€Printed ZnO Films for Highâ€Performance Flexible Organic Solar Cells. Energy and Environmental Materials, 2024, 7, .	7.3	7
324	Tailoring Selfâ€Assembled Monolayers for Highâ€Performance Polymer Solar Cells with Improved Stability. Solar Rrl, 2023, 7, .	3.1	4
325	Perovskite and organic bulk heterojunction integrated solar cells: a mini review. Journal of the Korean Physical Society, 2023, 82, 229-235.	0.3	0
326	A Two-Step Heating Strategy for Nonhalogen Solvent-Processed Organic Solar Cells Based on a Low-Cost Polymer Donor. Macromolecules, 2023, 56, 867-875.	2.2	5

#	Article	IF	CITATIONS
327	Sulfone-Modified Perylene Acceptors with Improved Permittivity for Bilayer Organic Solar Cells Processed from Non-halogenated Solvents. ACS Applied Energy Materials, 2023, 6, 1544-1554.	2.5	2
328	Double-Cable Conjugated Polymers Based on Simple Non-Fused Electron Acceptors for Single-Component Organic Solar Cells. Macromolecules, 2023, 56, 1154-1164.	2.2	7
329	In Situ Study the Dynamics of Bladeâ€Coated Allâ€Polymer Bulk Heterojunction Formation and Impact on Photovoltaic Performance of Solar Cells. Solar Rrl, 2023, 7, .	3.1	3
330	Enhancing Photon Utilization Efficiency for Highâ€Performance Organic Photovoltaic Cells via Regulating Phaseâ€Transition Kinetics. Advanced Materials, 2023, 35, .	11.1	74
331	18.73% efficient and stable inverted organic photovoltaics featuring a hybrid hole-extraction layer. Materials Horizons, 2023, 10, 1292-1300.	6.4	7
332	Enhancing Efficiency of Organic Solar Cells with Alkyl Diamines Doped PEDOT: PSS. , 2023, 5, 656-663.		9
333	Efficient organic solar cells by modulating photoactive layer morphology with halogen-free additives. Optical Materials, 2023, 137, 113503.	1.7	13
334	Organic Solar Cells. , 2023, , 118-138.		0
335	A newly designed benzodithiophene building block: tuning of the torsional barrier for non-halogenated and non-aromatic solvent-processible photovoltaic polymers. Journal of Materials Chemistry A, 2023, 11, 7053-7065.	5.2	3
336	Triphenylamine side chain enabled polybenzodithiophene wide-bandgap donors for efficient organic solar cells. Polymer Chemistry, 2023, 14, 2080-2087.	1.9	2
337	High-speed printing of a bulk-heterojunction architecture in organic solar cells films. Energy and Environmental Science, 2023, 16, 1711-1720.	15.6	11
338	Near 0 eV HOMO offset enable high-performance nonfullerene organic solar cells with large open circuit voltage and fill factor. Journal of Materials Chemistry C, 2023, 11, 6971-6980.	2.7	1
339	Unraveling the device performance differences between bulk-heterojunction and single-component polymer solar cells. Journal of Materials Chemistry A, 2023, 11, 8961-8971.	5.2	1
340	Symmetry breaking: an efficient structure design of nonfullerene acceptors to reduce the energy loss in organic solar cells. Journal of Materials Chemistry C, 2023, 11, 5257-5270.	2.7	1
341	Achieving 17.94% efficiency all-polymer solar cells by independently induced D/A orderly stacking. Energy and Environmental Science, 2023, 16, 2327-2337.	15.6	24
342	Photostable organic solar cells based on non-fullerene acceptors with an aminated bathocuproine electron transport layer. Journal of Materials Chemistry A, 2023, 11, 4510-4518.	5.2	2
343	Fluorine functionalised phosphine based solid additive for morphology control and achieving efficient organic solar cells. Materials Advances, 0, , .	2.6	1
344	Modulating intermolecular interactions by collaborative material design to realize THF-processed organic photovoltaic with 1.3 V open-circuit voltage. Energy and Environmental Science, 2023, 16, 2199-2211.	15.6	20

#	Article	IF	Citations
	Non-fused Polymerized Small-Molecule Acceptors with a Benzothiadiazole Core for All-Polymer Solar		
345	Cells. ACS Applied Materials & amp; Interfaces, 2023, 15, 13363-13370.	4.0	5
346	Comparing Methods of Characterizing Energetic Disorder in Organic Solar Cells. Advanced Energy Materials, 2023, 13, .	10.2	3
347	Highâ€Efficiency Allâ€Smallâ€Molecule Organic Solar Cells Based on New Molecule Donors with Conjugated Symmetric/Asymmetric Hybrid Cyclopentylâ€Hexyl Side Chains. Advanced Functional Materials, 2023, 33, .	7.8	14
348	Structure of the Charge-Transfer State in PM6/Y6 and PM6/Y6:YT Composites Studied by Electron Spin Echo Technique. Nanomanufacturing, 2023, 3, 123-134.	1.8	0
349	Saddleâ€Shaped Third Component with Outâ€ofâ€Plane Electrostatic Dipole for Realizing Highâ€Performance Photovoltaic Donor Terpolymers. Advanced Materials, 2023, 35, .	11.1	11
350	Structurally Complementary Starâ€&haped Unfused Ring Electron Acceptors with Simultaneously Enhanced Device Parameters for Ternary Organic Solar Cells. Solar Rrl, 2023, 7, .	3.1	55
351	Low-cost material combination based on PTQ10 and completely non-fused nonfullerene acceptor for high VOC organic photovoltaics. Chemical Engineering Journal, 2023, 464, 142743.	6.6	10
352	Polythiophenes with alkylthiophene side chains for efficient polymer solar cells. Polymer, 2023, 274, 125890.	1.8	3
353	Efficient ternary organic solar cells enabled by asymmetric nonfullerene electron acceptor with suppressed nonradiative recombination. Chemical Engineering Journal, 2023, 464, 142507.	6.6	4
354	Enhanced performance of inverted polymer solar cells by adding benzyl viologen dichloride into ZnO electron transport layer. Optical Materials, 2023, 139, 113782.	1.7	21
355	D-A non-equivalent random strategy to achieve donor polymers for stable organic solar cells with efficiency over 17%. Chemical Engineering Journal, 2023, 464, 142634.	6.6	3
356	Impact of side-chain engineering on quantum efficiency and voltage losses in organic solar cells. Chemical Engineering Journal, 2023, 465, 142909.	6.6	1
357	Understanding Causalities in Organic Photovoltaics Device Degradation in a Machine‣earningâ€Đriven Highâ€Throughput Platform. Advanced Materials, 0, , .	11.1	10
358	Exploring Electronic Characteristics of Acceptor–Donor–Acceptorâ€Type Molecules by Singleâ€Molecule Charge Transport. Advanced Materials, 2023, 35, .	11.1	1
359	Dimer Acceptor Adopting a Flexible Linker for Efficient and Durable Organic Solar Cells. Angewandte Chemie, 2023, 135, .	1.6	0
360	Flexible side-chain optimization in polymer donor enables improved photovoltaic performance. Organic Electronics, 2023, 116, 106765.	1.4	2
361	A new BODIPY dimer containing carbazole group as a small molecule donor for ternary organic solar cells with the PCE up to 14.97%. Dyes and Pigments, 2023, 215, 111297.	2.0	5
362	Structural Fusion Yields Guest Acceptors that Enable Ternary Organic Solar Cells with 18.77 % Efficiency. Angewandte Chemie, 2023, 135, .	1.6	0

#	Article	IF	CITATIONS
363	Structural Fusion Yields Guest Acceptors that Enable Ternary Organic Solar Cells with 18.77 % Efficiency. Angewandte Chemie - International Edition, 2023, 62, .	7.2	19
364	Organic Photovoltaic Catalyst with Ïfâ€Ï€ Anchor for Highâ€Performance Solar Hydrogen Evolution. Angewandte Chemie - International Edition, 2023, 62, .	7.2	15
365	Organic Photovoltaic Catalyst with σâ€Ï€ Anchor for Highâ€Performance Solar Hydrogen Evolution. Angewandte Chemie, 2023, 135, .	1.6	1
366	A Large Area Organic Solar Module with Nonâ€Halogen Solvent Treatment, High Efficiency, and Decent Stability. Solar Rrl, 2023, 7, .	3.1	10
367	Enhanced charge separation by interchain hole delocalization in nonfullerene acceptorâ€based bulk heterojunction materials. , 2023, 5, .		2
368	Non-fused polymerized small-molecular acceptors containing thieno[3,4-c]pyrrole-4,6-dione core for all-polymer solar cells. Chemical Engineering Journal, 2023, 459, 141659.	6.6	2
369	BNâ€Bondâ€Embedded Triplet Terpolymers with Small Singlet–Triplet Energy Gaps for Suppressing Nonâ€Radiative Recombination and Improving Blend Morphology in Organic Solar Cells. Advanced Materials, 2023, 35, .	11.1	23
370	Suppressing the energetic disorder of all-polymer solar cells enables over 18% efficiency. Energy and Environmental Science, 2023, 16, 1581-1589.	15.6	44
371	Full Optoelectronic Simulation of Lead-Free Perovskite/Organic Tandem Solar Cells. Polymers, 2023, 15, 784.	2.0	9
372	Efficient and Stable Flexible Organic Solar Cells via the Enhanced Opticalâ€Thermal Radiative Transfer. Advanced Functional Materials, 0, , 2212260.	7.8	1
373	Unveiling the Morphological and Physical Mechanism of Burnâ€in Loss Alleviation by Ternary Matrix Toward Stable and Efficient Allâ€Polymer Solar Cells. Advanced Materials, 2023, 35, .	11.1	52
374	Controlling Kinetic Quenching Depth Toward Highâ€Performance and Photoâ€Stable Organic Solar Cells Printed from a Nonâ€Halogenated Solvent. Advanced Functional Materials, 2023, 33, .	7.8	4
375	Synergistic optimization of mechanical and photovoltaic properties in ternary organic solar cells from a two-donor polymer blend. Journal of Materials Chemistry A, 2023, 11, 5606-5614.	5.2	7
376	Modulation of Alkyl Chain Length on the Thiazole Side Group Enables Over 17% Efficiency in Allâ€&mallâ€Molecule Organic Solar Cells. Advanced Functional Materials, 2023, 33, .	7.8	18
377	Modulating the Mixing Gibbs Free Energy to Enhance Solid–Liquid Phase Separation for Highâ€Performance Organic Solar Cells. Advanced Energy Materials, 2023, 13, .	10.2	6
378	Highâ€Efficiency Organic Solar Cells Enabled by Chalcogen Containing Branched Chain Engineering: Balancing Shortâ€Circuit Current and Openâ€Circuit Voltage, Enhancing Fill Factor. Advanced Functional Materials, 2023, 33, .	7.8	13
379	Air-stable ternary organic solar cells achieved by using fullerene additives in non-fullerene acceptor-polymer donor blends. Journal of Materials Chemistry C, 2023, 11, 8074-8083.	2.7	5
380	Spatiotemporal Mapping Uncouples Exciton Diffusion from Singlet–Singlet Annihilation in the Electron Acceptor Y6. Journal of Physical Chemistry Letters, 2023, 14, 1999-2005.	2.1	5

#	Article	IF	CITATIONS
381	Impact of donor halogenation on reorganization energies and voltage losses in bulk-heterojunction solar cells. Energy and Environmental Science, 2023, 16, 1277-1290.	15.6	8
382	Harnessing the Structureâ€Performance Relationships in Designing Nonâ€Fused Ring Acceptors for Organic Solar Cells. Angewandte Chemie - International Edition, 2023, 62, .	7.2	29
383	Harnessing the Structureâ€Performance Relationships in Designing Nonâ€Fused Ring Acceptors for Organic Solar Cells. Angewandte Chemie, 2023, 135, .	1.6	2
384	Modulation of Molecular Stacking via Tuning 2-Ethylhexyl Alkyl Chain Enables Improved Efficiency for All-Small-Molecule Organic Solar Cells. ACS Applied Materials & Interfaces, 2023, 15, 10803-10811.	4.0	5
385	Carbon Electrodes: The Rising Star for PSC Commercialization. Electronics (Switzerland), 2023, 12, 992.	1.8	2
386	Diffusionâ€Limited Accepter Alloy Enables Highly Efficient and Stable Organic Solar Cells. Advanced Functional Materials, 2023, 33, .	7.8	20
387	Ultrafast Charge Transfer 2D MoS ₂ /Organic Heterojunction for Sensitive Photodetector. Advanced Science, 2023, 10, .	5.6	14
388	Stable radical based conjugated electrolytes as a cathode interlayer for organic solar cells with thickness-insensitive fill factors. Journal of Materials Chemistry A, 2023, 11, 6574-6580.	5.2	9
389	Efficient and stable organic solar cells enabled by multicomponent photoactive layer based on one-pot polymerization. Nature Communications, 2023, 14, .	5.8	35
390	Heteroatom conjugated-shoulder side-chains-based non-fullerene acceptors for organic solar cells. Cell Reports Physical Science, 2023, 4, 101303.	2.8	2
391	A nonfullerene acceptor with π-conjugation extended end groups to achieve enhanced photovoltaic performance. New Journal of Chemistry, 2023, 47, 6577-6582.	1.4	0
392	Optical interference on the measurement of film-depth-dependent light absorption spectroscopy and a correction approach. Review of Scientific Instruments, 2023, 94, 023907.	0.6	0
393	New Type of Polymerized Small A-D-A Acceptors Constructed by Conjugation Extension in the Branched Direction. , 2023, 5, 884-892.		6
394	Near-Infrared Acceptors with Imide-Containing End Groups for Organic Solar Cells. ACS Applied Materials & Interfaces, 2023, 15, 12119-12126.	4.0	6
395	Interplay Between π onjugated Polymer Donors and Acceptors Determines Crystalline Order of Their Blends and Photovoltaic Performance. Advanced Energy Materials, 2023, 13, .	10.2	3
396	SCAPS-based simulation analysis of device parameters of ZnO-inverted polymer solar cells. Optical and Quantum Electronics, 2023, 55, .	1.5	1
397	Indacenodithiophene Bridged Dimeric Porphyrin Donor and Absorption Complementary Indacenodithiophene Acceptor for Nonfullerene Organic Photovoltaics. ACS Applied Energy Materials, 2023, 6, 3032-3041.	2,5	1
398	Effects of Halogenation of Smallâ€Molecule and Polymeric Acceptors for Efficient Organic Solar Cells. Advanced Functional Materials, 2023, 33, .	7.8	24

#	Article	IF	CITATIONS
399	Enhancing the reproducibility of large-area organic solar cells via double-cable conjugated polymers. Chemical Engineering Journal, 2023, 461, 142124.	6.6	10
400	The Multiplicity of ï€â€"ï€ Interactions of Fused-Ring Electron Acceptor Polymorphs on the Exciton Migration and Charge Transport. Journal of Physical Chemistry Letters, 2023, 14, 2331-2338.	2.1	4
401	In Situ Measurement of Evolving Excited-State Dynamics During Deposition and Processing of Organic Films by Single-Shot Transient Absorption. Annual Review of Physical Chemistry, 2023, 74, .	4.8	0
402	Simple and Efficient Acceptor–Donor–Acceptor-Type Non-fullerene Acceptors for a BODIPY–Thiophene-Backboned Polymer Donor for High-Performance Indoor Photovoltaics. ACS Applied Materials & Interfaces, 2023, 15, 13405-13414.	4.0	5
403	What is special about Y6; the working mechanism of neat Y6 organic solar cells. Materials Horizons, 2023, 10, 1825-1834.	6.4	13
404	High Efficiency Transparent and Semiâ€Transparent Photovoltaics Based on a Layerâ€Byâ€Layer Deposition. Solar Rrl, 2023, 7, .	3.1	7
405	Role of Nonfullerene Acceptor Impurities and Purification on the Efficiency and Stability of Organic Photovoltaics. Solar Rrl, 2023, 7, .	3.1	0
406	Oligo(ethylene glycol) Side Chain Architecture Enables Alcohol-Processable Conjugated Polymers for Organic Solar Cells. Macromolecules, 2023, 56, 2092-2103.	2.2	6
407	Facile Approach for Efficient Non-Fullerene-Based Binary and Ternary Organic Solar Cells Using Hydrated Vanadium Pentoxide as a Hole Transport Layer. ACS Applied Energy Materials, 2023, 6, 3442-3451.	2.5	3
408	Aggregation state tuning <i>via</i> controlling molecular weights of D–A ₁ –A ₂ type polymer donors for efficient organic photovoltaics. Journal of Materials Chemistry A, 2023, 11, 6997-7005.	5.2	4
409	Compromising Charge Generation and Recombination of Organic Photovoltaics with Mixed Diluent Strategy for Certified 19.4% Efficiency. Advanced Materials, 2023, 35, .	11.1	116
410	Research Progress of Thermal Failure Mechanism and Ternary Blending to Improve Thermal Stability of Organic Solar Cells. Acta Chimica Sinica, 2023, 81, 131.	0.5	0
411	Seleniumâ€Based Nonfused Electron Acceptors for Efficient Organic Photovoltaic Cells. Solar Rrl, 2023, 7, .	3.1	4
412	Interface Engineering for Highly Efficient Organic Solar Cells. Advanced Materials, 0, , .	11.1	40
413	Lifetime over 10000 hours for organic solar cells with Ir/IrOx electron-transporting layer. Nature Communications, 2023, 14, .	5.8	32
414	New Polymerized Small Molecular Acceptors with Nonâ€Aromatic π onjugated Linkers for Efficient Allâ€Polymer Solar Cells. Advanced Functional Materials, 2023, 33, .	7.8	11
415	Benzo[d]thiazole Based Wide Bandgap Donor Polymers Enable 19.54% Efficiency Organic Solar Cells Along with Desirable Batchâ€ŧoâ€Batch Reproducibility and General Applicability. Advanced Materials, 2023, 35, .	11.1	82
416	Benzo[1,2â€b:4,5â€b′]Difuranâ€Based Polymer for Organic Solar Cells with 17.5% Efficiency via Halogenationâ€Mediated Aggregation Control. Advanced Energy Materials, 2023, 13, .	10.2	15

#	Article	IF	CITATIONS
417	Alkyl-thiophene-alkyl linkers to construct double-cable conjugated polymers for single-component organic solar cells. Chinese Chemical Letters, 2024, 35, 108287.	4.8	3
418	Highâ€Efficiency Binary Organic Solar Cells Enabled by Pseudoâ€Bilayer Configuration in Dilute Solution. Solar Rrl, 2023, 7, .	3.1	6
419	Combination of S···N and S··Cl Noncovalently Conformational Locks for Constructing <scp>Highâ€Planarity</scp> and <scp>Lowâ€Cost Nonfusedâ€Ring</scp> Electron Acceptors ^{â€} . Chinese Journal of Chemistry, 2023, 41, 1797-1802.	2.6	5
420	Correlation of Local Isomerization Induced Lateral and Terminal Torsions with Performance and Stability of Organic Photovoltaics. Journal of the American Chemical Society, 2023, 145, 5909-5919.	6.6	25
421	Highlights of mainstream solar cell efficiencies in 2022. Frontiers in Energy, 2023, 17, 9-15.	1.2	9
422	Prospects and challenges for perovskite-organic tandem solar cells. Joule, 2023, 7, 484-502.	11.7	20
423	Rationalizing the Influence of Tunable Energy Levels on Quantum Efficiency to Design Optimal Nonâ€Fullerene Acceptorâ€Based Ternary Organic Solar Cells. Advanced Energy Materials, 2023, 13, .	10.2	8
424	Efficient Polymer Solar Cells Enabled by A-DA′D-A Type Acceptors with Alkoxypheny-Substituted Quinoxaline as the Fused-Ring Core. ACS Applied Materials & Interfaces, 0, , .	4.0	2
425	Analysis and Evaluation of Photovoltaic Cell Defects and Their Impact on Electricity Generation. Energies, 2023, 16, 2576.	1.6	7
426	3D acceptors with multiple A–D–A architectures for highly efficient organic solar cells. Energy and Environmental Science, 2023, 16, 1773-1782.	15.6	46
427	Blade Coating of Alloy as Top Electrodes for Efficient Allâ€Printed Organic Photovoltaics. Advanced Functional Materials, 2023, 33, .	7.8	2
428	A paradigm study of polymer donor diluted bulk heterojunction films for application in semitransparent organic photovoltaics. Journal of Materials Chemistry A, 2023, 11, 6901-6908.	5.2	2
429	Single-component organic solar cells. Journal of Semiconductors, 2023, 44, 030201.	2.0	4
430	Stable Radical TEMPO Terminated Perylene Bisimide(PBI) Based Small Molecule as Cathode Interlayer for Efficient Organic Solar Cells. Chemical Research in Chinese Universities, 2023, 39, 213-218.	1.3	1
431	Cyclization of Inner Linear Alkyl Chains in Fusedâ€Ring Electron Acceptors Toward Efficient Organic Solar Cells. Solar Rrl, 2023, 7, .	3.1	2
432	Linking Phase Behavior to Performance Parameters in Nonâ€Fullerene Acceptor Solar Cells. Advanced Energy Materials, 2023, 13, .	10.2	5
433	Organic photovoltaics: The current challenges. Journal of Chemical Physics, 2023, 158, .	1.2	3
434	Intrinsic Advantage of Fusedâ€Ring Nonfullerene Acceptorâ€Based Organic Solar Cells to Reduce Voltage Loss. Physica Status Solidi (A) Applications and Materials Science, 2023, 220, .	0.8	1

#	Article	lF	CITATIONS
435	Nickel(II) Nitrate Holeâ€Transporting Layers for Singleâ€Junction Bulk Heterojunction Organic Solar Cells with a Record 19.02 % Efficiency. Angewandte Chemie - International Edition, 2023, 62, .	7.2	17
436	Nickel(II) Nitrate Holeâ€Transporting Layers for Singleâ€Junction Bulk Heterojunction Organic Solar Cells with a Record 19.02 % Efficiency. Angewandte Chemie, 2023, 135, .	1.6	3
437	Poly(dimethylsiloxane)â€∢i>blockâ€PM6 Polymer Donors for Highâ€Performance and Mechanically Robust Polymer Solar Cells. Advanced Materials, 2023, 35, .	11.1	25
438	Isomeric Small Molecule Donor with Terminal Branching Position Directly Attached to the Backbone Enables Efficient All‧mallâ€Molecule Organic Solar Cells with Excellent Stability. Advanced Functional Materials, 2023, 33, .	7.8	11
439	Tuning the Intermolecular Electrostatic Interaction toward Highâ€Efficiency and Low ost Organic Solar Cells. Advanced Functional Materials, 2023, 33, .	7.8	10
440	Efficient Fully‧prayed Organic Solar Cells with Coffeeâ€Ringâ€Free Photoactive Layer and Alloy Topâ€Electrode. Advanced Materials Technologies, 2023, 8, .	3.0	1
441	Porphyrin Acceptors Improve the Crystallization of Y6 and the Exciton Dissociation in Ternary Organic Solar Cells. ACS Applied Energy Materials, 2023, 6, 3844-3853.	2.5	0
442	Combining ZnO and Organosilica Nanodots as a Thick Cathode Interlayer for Highly Efficient and Stable Inverted Polymer Solar Cells. ACS Applied Energy Materials, 2023, 6, 3915-3923.	2.5	4
443	N-Annulated Perylene Diimide Non-Fullerene Acceptors for Organic Photovoltaics. Colorants, 2023, 2, 151-178.	0.9	7
444	Exciton dynamics of a fused ring π-conjugated nonfullerene molecule based on dithienonaphthobisthiadiazole. Japanese Journal of Applied Physics, 2023, 62, SK1012.	0.8	0
445	Dimer Acceptor Adopting a Flexible Linker for Efficient and Durable Organic Solar Cells. Angewandte Chemie - International Edition, 2023, 62, .	7.2	30
446	The Dynamics of Delocalized Excitations in Organic Solar Cells with Nonfullerene Acceptors. Journal of Physical Chemistry Letters, 2023, 14, 3031-3038.	2.1	5
447	Boosting the photovoltaic performance of doctor-bladed organic solar cells using a low-boiling solvent additive. Organic Electronics, 2023, 118, 106794.	1.4	2
448	Binary Organic Solar Cells with 19.2% Efficiency Enabled by Solid Additive. Advanced Materials, 2023, 35, .	11.1	116
449	Large Steric Hindrance Enhanced Molecular Planarity for Low-Cost Non-Fused Electron Acceptors. ACS Applied Materials & Interfaces, 2023, 15, 16801-16808.	4.0	5
450	Enhancing photostability and power conversion efficiency of organic solar cells by a "sunscreen― ternary strategy. Science China Chemistry, 2023, 66, 1179-1189.	4.2	11
451	Selective fluorination on donor and acceptor for management of efficiency and energy loss in non-fullerene organic photovoltaics. Science China Chemistry, 2023, 66, 1190-1200.	4.2	6
452	Application of Bis-Adducts of Phenyl-C61 Butyric Acid Methyl Ester in Promoting the Open-Circuit Voltage of Indoor Organic Photovoltaics. Materials, 2023, 16, 2613.	1.3	0

#	Article	IF	CITATIONS
453	Improved Crystallization of High-Solubility Non-Fullerene Electron Acceptors for Enhanced Photoelectric Conversion Efficiency: Effect of the Terminal Group. Journal of Physical Chemistry C, 2023, 127, 6226-6232.	1.5	1
454	Layerâ€byâ€Layerâ€Processed Organic Solar Cells with 18.02% Efficiency Enabled by Regulating the Aggregation of Bottom Polymers. Solar Rrl, 2023, 7, .	3.1	1
455	Development and application of blade-coating technique in organic solar cells. Nano Research, 2023, 16, 11571-11588.	5.8	7
456	Low-cost organic photovoltaic materials with great application potentials enabled by developing isomerized non-fused ring acceptors. Science China Chemistry, 2023, 66, 1101-1110.	4.2	20
457	Achieving high performance organic solar cells with a closer ï€â€"ï€ distance in branched alkyl-chain acceptors. Journal of Materials Chemistry A, 2023, 11, 9538-9545.	5.2	2
458	Highâ€Performance Small Molecule Organic Solar Cells Enabled by a Symmetricâ€Asymmetric Alloy Acceptor with a Broad Composition Tolerance. Advanced Materials, 2023, 35, .	11.1	31
459	Dynamical Behavior of Pure Spin Current in Organic Materials. Advanced Science, 2023, 10, .	5.6	4
460	Layerâ€byâ€Layerâ€Processed Ternary Allâ€Polymer Organic Solar Cells with 17.74% Efficiency Enabled by Introducing a Designed Narrowâ€Bandgap Guest Polymer Acceptor. Solar Rrl, 2023, 7, .	3.1	3
461	Diazabicyclic Electroactive Ionenes for Efficient and Stable Organic Solar Cells. Angewandte Chemie - International Edition, 2023, 62, .	7.2	18
462	Tandem organic solar cells with 20.6% efficiency enabled by reduced voltage losses. National Science Review, 2023, 10, .	4.6	50
463	Outstanding Fill Factor in Inverted Organic Solar Cells with SnO ₂ by Atomic Layer Deposition. Advanced Materials, 0, , .	11.1	11
464	Revealing and Eliminating the Lightâ€Soaking Issue in Metal Oxideâ€Based Inverted Organic Solar Cells. Advanced Functional Materials, 2023, 33, .	7.8	3
465	Rational strategy to enhance the thermal stability of solar cell performance using a photocrosslinkable conjugated polymer. Journal of Materials Chemistry A, 2023, 11, 8719-8729.	5.2	1
466	Heterostructure Engineering of Solution-Processable Semiconductors for Wearable Optoelectronics. ACS Applied Electronic Materials, 2023, 5, 5278-5290.	2.0	1
467	Refined molecular microstructure and optimized carrier management of multicomponent organic photovoltaics toward 19.3% certified efficiency. Energy and Environmental Science, 2023, 16, 2262-2273.	15.6	34
468	Balancing the Energy levels and Charge Mobility of the Conjugated Polymer PM6 by a Third Component to Enable Efficient Organic Solar Cells. ChemistrySelect, 2023, 8, .	0.7	0
469	Versatile organic photovoltaics with a power density of nearly 40 W g ^{â^'1} . Energy and Environmental Science, 2023, 16, 2284-2294.	15.6	21
470	Molecular orientation-dependent energetic shifts in solution-processed non-fullerene acceptors and their impact on organic photovoltaic performance. Nature Communications, 2023, 14, .	5.8	25

#	Article	IF	CITATIONS
471	Coherent Vibronic Wavepackets Show Structure-Directed Charge Flow in Host–Guest Donor–Acceptor Complexes. Journal of the American Chemical Society, 0, , .	6.6	0
472	Simultaneous Improvements in Efficiency and Stability of Organic Solar Cells via a Symmetricâ€Asymmetric Dualâ€Acceptor Strategy. Advanced Energy Materials, 2023, 13, .	10.2	17
473	Over 18% Efficiency of Allâ€Polymer Solar Cells with Longâ€Term Stability Enabled by Y6 as a Solid Additive. Advanced Materials, 2023, 35, .	11.1	26
474	Oligomeric Acceptor Enables Highâ€Performance and Robust Allâ€Polymer Solar Cells with 17.4% Efficiency. Advanced Energy Materials, 2023, 13, .	10.2	21
475	Isomeric acceptors incorporation enables 18.1% efficiency ternary organic solar cells with reduced trap-assisted charge recombination. Chemical Engineering Journal, 2023, 465, 142822.	6.6	8
476	Revealing the underlying solvent effect on film morphology in high-efficiency organic solar cells through combined <i>ex situ</i> and <i>in situ</i> observations. Energy and Environmental Science, 2023, 16, 2316-2326.	15.6	33
477	Half-Planar-Half-Twisted Small Molecule Acceptors for Efficient Polymer Solar Cells. ACS Applied Energy Materials, 0, , .	2.5	0
478	In Situ Solutionâ€Processed Submicron Thick SiO _x C _y /a‣iN _x (O):H Composite Barrier Film for Polymer:Nonâ€Fullerene Photovoltaics. Small Methods, 0, , .	4.6	1
479	A <scp>Nonâ€Halogenated</scp> Polymer Donor Based on Imide Unit for Organic Solar Cells with Efficiency Nearly 16%. Chinese Journal of Chemistry, 2023, 41, 2095-2102.	2.6	4
480	Regulating Intramolecular Charge Transfer and Resonance Effects to Realize Ultrawide Bandgap Conjugated Polymer for Highâ€Performance Allâ€Polymer Solar Cells. Advanced Functional Materials, 2023, 33, .	7.8	17
481	Solid Additive-Assisted Layer-by-Layer Processing for 19% Efficiency Binary Organic Solar Cells. Nano-Micro Letters, 2023, 15, .	14.4	42
482	Enhanced Efficiency and Stability of Novel Pseudo-ternary Polymer Solar Cells Enabled by a Conjugated Donor Block Copolymer. ACS Applied Materials & Interfaces, 2023, 15, 20266-20277.	4.0	1
483	An Isomeric Solid Additive Enables Highâ€Efficiency Polymer Solar Cells Developed Using a Benzoâ€Đifuranâ€Based Donor Polymer. Advanced Materials, 2023, 35, .	11.1	26
484	Recent Progress in Largeâ€Area Organic Solar Cells. Small Science, 2023, 3, .	5.8	11
485	Impact of regio-isomeric monochlorinated end groups on packing mode, miscibility, and photovoltaic performance of asymmetric selenophene-fused M-series acceptors. Chinese Chemical Letters, 2023, 34, 108448.	4.8	2
486	Improving the Efficiency of Organic Solar Cells via the Molecular Engineering of Simple Fused Non-Fullerene Acceptors. Energies, 2023, 16, 3443.	1.6	0
487	Extended-Charge-Transfer Excitations in Crystalline Non-fullerene Acceptors. Electronic Structure, 0, , .	1.0	0
488	Efficient non-fullerene organic solar cells employing aqueous solution-processed MoO3 as a hole-transporting layer. Nanotechnology, 0, , .	1.3	0

#	Article	IF	CITATIONS
489	Comprehensive Understanding of Fluorination-Performance Relationship: The Best-Performed A-D-A-Type Acceptors. Fundamental Research, 2023, , .	1.6	3
490	High-performance inverted ternary organic solar cells using solution-processed tin oxide as the electron transport layer. Organic Electronics, 2023, 120, 106828.	1.4	2
491	Configuration-dependent photovoltaic properties of diketopyrrolopyrrole (DPP) based Ir complexes for organic solar cells. Journal of Organometallic Chemistry, 2023, 993, 122714.	0.8	3
492	Easily Available Highâ€Performance Organic Solar Cells by Regulating Phenylalkyl Side Groups of Nonâ€Fused Ring Electron Acceptors. Advanced Functional Materials, 2023, 33, .	7.8	8
493	Direct Arylation Synthesis of Small Molecular Acceptors for Organic Solar Cells. Molecules, 2023, 28, 3515.	1.7	3
494	18.9% Efficiency Ternary Organic Solar Cells Enabled by Isomerization Engineering of Chlorine ubstitution on Small Molecule Donors. Advanced Functional Materials, 2023, 33, .	7.8	9
495	Molecular Packing and Dielectric Property Optimization through Peripheral Halogen Swapping Enables Binary Organic Solar Cells with an Efficiency of 18.77%. Advanced Functional Materials, 2023, 33, .	7.8	24
496	Carbonâ€based electrodes for organic solar cells. ChemPlusChem, 0, , .	1.3	1
497	Supercooled Water Induced Hysteretic Transition in H ₂ SO ₄ -treated PEDOT:PSS. Journal of Materials Chemistry C, 0, , .	2.7	0
498	The critical role of the donor polymer in the stability of high-performance non-fullerene acceptor organic solar cells. Joule, 2023, 7, 810-829.	11.7	17
499	Detrimental Effects of "Universal―Singlet Photocrosslinkers in Organic Photovoltaics. ACS Applied Energy Materials, 0, , .	2.5	0
500	2D MXene-Based Electron Transport Layers for Nonhalogenated Solvent-Processed Stable Organic Solar Cells. ACS Applied Energy Materials, 2023, 6, 4549-4558.	2.5	5
501	Effects of Halogenation on Cyclopentadithiophenevinylene-Based Acceptors with Excellent Responses in Binary Organic Solar Cells. ACS Applied Materials & Interfaces, 0, , .	4.0	0
502	Effect of Fluorinated End-Groups on the Exciton Dynamics and Charge Transfer of Non-fused Ring Acceptors. Journal of Physical Chemistry C, 2023, 127, 8119-8125.	1.5	3
503	Fused polycyclic lactam-based π-conjugated polymers for efficient nonfullerene organic solar cells. Journal of Materials Chemistry A, 2023, 11, 9840-9845.	5.2	3
504	Star-shaped benzotriindole-based donor compounds for all–small–molecule non-fullerene organic solar cells. Dyes and Pigments, 2023, 216, 111343.	2.0	3
505	Improved photovoltaic performance and robustness of all-polymer solar cells enabled by a polyfullerene guest acceptor. Nature Communications, 2023, 14, .	5.8	41
506	Approaching 19% efficiency and stable binary polymer solar cells enabled by a solidification strategy of solvent additive. Science China Chemistry, 2023, 66, 1500-1510.	4.2	20

#	Article	IF	CITATIONS
517	A-DA′D-A Type Acceptor with a Benzoselenadiazole A′-Unit Enables Efficient Organic Solar Cells. ACS Energy Letters, 2023, 8, 2488-2495.	8.8	16
536	Side-chain engineering of nonfullerene small-molecule acceptors for organic solar cells. Energy and Environmental Science, 2023, 16, 2732-2758.	15.6	26
542	Versatile π-bridges in nonfullerene electron acceptors of organic solar cells. Materials Chemistry Frontiers, 2023, 7, 3855-3878.	3.2	2
558	From Solution to Thin Film: Molecular Assembly of ĩ€-Conjugated Systems and Impact on (Opto)electronic Properties. Chemical Reviews, 2023, 123, 8395-8487.	23.0	27
574	Cyano-functionalized organic and polymeric semiconductors for high-performance n-type organic electronic devices. Materials Chemistry Frontiers, 2023, 7, 3803-3819.	3.2	3
588	Biorenewable Solvents for High-Performance Organic Solar Cells. ACS Energy Letters, 2023, 8, 3038-3047.	8.8	4
599	Regioregular polymerized small-molecule acceptors for high-performance all-polymer solar cells. Journal of Materials Chemistry C, 2023, 11, 9082-9092.	2.7	7
619	The development of A-DA'D-A type nonfullerene acceptors containing non-halogenated end groups. Nano Research, 2023, 16, 12949-12961.	5.8	2
650	Recent progress in organic–metal complexes for organic photovoltaic applications. Materials Chemistry Frontiers, 2023, 7, 5063-5103.	3.2	2
663	An electron acceptor with an intrinsic quinoidal core for bulk-heterojunction organic solar cells and photodetectors. Chemical Communications, 2023, 59, 9529-9532.	2.2	2
739	Conductivity Transport Mechanisms of Solution-Processed Spinel Nickel Cobaltite-Based Hole Transporting Layers and Its Implementation as Charge Selective Contact in Organic Photovoltaics. , 0, ,		0
750	Orthogonal solvent-sequential deposition of a nonfullerene acceptor solution on polymer donor film: complete interpenetration and highly efficient inverted organic solar cells. Journal of Materials Chemistry A, 2023, 11, 19860-19869.	5.2	1
752	Indoor Organic Solar Cell for Low-power IoT Devices: Recent Progress, Challenges, and Application. Journal of Materials Chemistry C, 0, , .	2.7	0
756	A dive into underwater solar cells. Nature Photonics, 2023, 17, 747-754.	15.6	3
762	A polymer library enables the rapid identification of a highly scalable and efficient donor material for organic solar cells. Materials Horizons, 2023, 10, 4202-4212.	6.4	1
775	A narrow-bandgap non-fullerene acceptor constructed with an S,N-heteroacene up to a dodecamer in size. Journal of Materials Chemistry C, 2023, 11, 12900-12905.	2.7	0
777	Going ballistic: a novel characterization for the electronic energy gap. Physical Chemistry Chemical Physics, 2023, 25, 24234-24243.	1.3	0
796	Toward ultraflexible organic electronic devices. MRS Bulletin, 2023, 48, 999-1012.	1.7	1

#	Article	IF	CITATIONS
813	Key molecular perspectives for high stability in organic photovoltaics. Nature Reviews Materials, 2023, 8, 839-852.	23.3	3
839	Additive-free molecular acceptor organic solar cells processed from a biorenewable solvent approaching 15% efficiency. Materials Horizons, 2023, 10, 5564-5576.	6.4	2
885	Influence of triphenylamine derivatives in efficient dye-sensitized/organic solar cells. Journal of Materials Chemistry A, 2023, 11, 25136-25215.	5.2	1
894	Central unit hetero-di-halogenation of acceptors enables organic solar cells with 19% efficiency. Chemical Communications, 2023, 59, 13367-13370.	2.2	1
917	Advances in layer-by-layer processing for efficient and reliable organic solar cells. Materials Advances, 2023, 4, 6031-6063.	2.6	1
923	Suppressing pre-aggregation to increase polymer solar cell ink shelf life. Journal of Materials Chemistry A, 0, , .	5.2	0
979	Recent progress in side chain engineering of Y-series non-fullerene molecule and polymer acceptors. Science China Chemistry, 2024, 67, 788-805.	4.2	2
985	Self-assembled hole-transporting material constructed by chlorination and conjugation strategies toward the efficient organic solar cells. Chemical Communications, 0, , .	2.2	0
1007	Advantages, challenges and molecular design of different material types used in organic solar cells. Nature Reviews Materials, 2024, 9, 46-62.	23.3	5
1044	Organic Solar Cells. , 2024, , 119-145.		0
1046	Stability of organic solar cells: toward commercial applications. Chemical Society Reviews, 2024, 53, 2350-2387.	18.7	0
1099	Recent Progress in High-Performance Organic Photovoltaic Devices. , 2024, , .		0
1106	Perovskite–organic tandem solar cells. Nature Reviews Materials, 2024, 9, 202-217.	23.3	0
1162	Efficiency Amelioration of Novel PM6:D18:L8-BO Bulk Heterojunction Organic Solar Cell by 1D Binary Photonic Crystal Integration. , 2023, , .		0