The spreading of silicone oil drops on horizontal surface

Journal Physics D: Applied Physics 12, 1473-1484 DOI: 10.1088/0022-3727/12/9/009

Citation Report

#	Article	IF	CITATIONS
2	The surface tension effect on the flow of liquid down vertical or inclined surfaces. Journal Physics D: Applied Physics, 1980, 13, 1633-1641.	1.3	7
3	The application of Fizeau interferometry of oil films to the study of surface flow phenomena. Optics and Lasers in Engineering, 1981, 2, 105-118.	2.0	13
4	Spreading kinetics of drops on glass. Journal of Colloid and Interface Science, 1981, 82, 518-525.	5.0	90
5	An application of the optics of oil films to the study of engineering surfaces. Optics and Lasers in Engineering, 1982, 3, 101-110.	2.0	1
6	Spreading laws for liquid polymer droplets : interpretation of the « foot ». Journal De Physique (Paris), Lettres, 1984, 45, 597-602.	2.8	55
7	Wetting: statics and dynamics. Reviews of Modern Physics, 1985, 57, 827-863.	16.4	6,203
8	Dynamics and optics of oil hills and oilscapes. Journal Physics D: Applied Physics, 1985, 18, 1037-1061.	1.3	2
9	The form and motion of draining oil drops. Journal Physics D: Applied Physics, 1985, 18, 1311-1326.	1.3	8
10	Existence and Role of the Precursor Film in the Spreading of Polymer Liquids. Physical Review Letters, 1986, 57, 2671-2674.	2.9	144
11	Oil hills, ridges, peaks, cliffs and ravines. Journal Physics D: Applied Physics, 1986, 19, 233-253.	1.3	0
12	Kinetics of Instabilities in Solid Films. Europhysics Letters, 1986, 2, 61-66.	0.7	3
13	An edge angle and velocity relation for silicone oil films for the full angular range. Journal Physics D: Applied Physics, 1986, 19, 751-760.	1.3	6
14	HOW LIQUIDS SPREAD ON SOLIDS. Chemical Engineering Communications, 1987, 55, 41-82.	1.5	206
15	Dynamics of wetting on smooth and rough surfaces. , 1987, , 69-75.		4
16	An experimental study of the Saffman-Taylor instability. Journal of Fluid Mechanics, 1987, 177, 67-82.	1.4	204
17	How does a droplet spread?. Contemporary Physics, 1987, 28, 347-364.	0.8	147
18	Hydrodynamic and physicochemical aspects of spreading. Colloids and Surfaces, 1987, 27, 43-55.	0.9	5
19	Hydrodynamic and physicochemical aspects of spreading. Colloids and Surfaces, 1987, 27, 43-55.	0.9	14

ARTICLE IF CITATIONS # Steady-state motion of a liquid/liquid/solid contact line. Journal of Colloid and Interface Science, 20 5.0 16 1987, 119, 451-458. The spreading of liquid droplets on solid surfaces. Journal of Colloid and Interface Science, 1988, 121, 5.0 54 154-160. Experiments on a spreading drop and its contact angle on a solid. Journal of Colloid and Interface 22 5.0 101 Science, 1988, 122, 60-72. Precursor Film Profiles of Spreading Liquid Drops. Physical Review Letters, 1988, 60, 2390-2393. 98 Final Stages of Spreading of Polymer Droplets on Smooth Solid Surfaces. Europhysics Letters, 1988, 6, 24 0.7 48 431-436. An experimental study of the Saffman–Taylor instability. , 1988, , 219-234. Dynamics of Wetting. NATO ASI Series Series B: Physics, 1989, , 221-235. 0.2 26 1 Wetting dynamics of the edge of a spreading drop. Physical Review Letters, 1989, 62, 3050-3053. Kinetics of spreading of a liquid supporting a surfactant monolayer: Repulsive solid surfaces. Journal 28 5.0 21 of Colloid and Interface Science, 1989, 128, 407-415. Dynamics of spreading on a liquid substrate. Journal of Colloid and Interface Science, 1989, 133, 54 452-460. Dynamics of stick-slip jumps. Colloids and Surfaces, 1989, 41, 77-86. 30 0.9 6 The kinetics of wetting: the dynamic contact angle., 1989, , 142-149. 128 Statics and Dynamics of Wetting. Molecular Crystals and Liquid Crystals Incorporating Nonlinear 32 0.3 1 Optics, 1990, 179, 99-107. The kinetics of displacement wetting in liquid/liquid/solid systems. Journal of Colloid and Interface 5.0 54 Science, 1990, 136, 266-282. The spreading of drops on solid surfaces. Journal of Physics Condensed Matter, 1990, 2, SA421-SA425. 34 0.7 4 A Numerical and Asymptotic Study of Some Third-Order Ordinary Differential Equations Relevant to 183 Draining and Coating Flows. SIAM Review, 1990, 32, 453-469. Hydrodynamic fingering instability of driven wetting films: hindrance by diffusion. Journal of Physics Condensed Matter, 1990, 2, SA477-SA482. 36 0.7 $\mathbf{13}$ Experiments on wetting on the scale of nanometers: Influence of the surface energy. Physical Review 178 Letters, 1990, 65, 599-602.

#	Article	IF	CITATIONS
38	On unsteady reacting flow in a channel with a cavity. Journal of Fluid Mechanics, 1991, 229, 339.	1.4	3
39	On the Origin of the Bump in the Profile of Surface-Tension-Gradient-Driven Spreading Films. Materials Research Society Symposia Proceedings, 1991, 248, 519.	0.1	5
40	The kinetics of wetting: The motion of a three phase contactline in a capillary. Journal of Colloid and Interface Science, 1991, 141, 348-359.	5.0	41
41	Droplet spreading in presence of contamination. Colloids and Surfaces, 1991, 58, 287-292.	0.9	6
42	An experimental investigation of the dynamic contact angle in liquid-liquid systems. Journal of Colloid and Interface Science, 1991, 146, 226-241.	5.0	123
43	Spreading of "heavy―droplets. Journal of Colloid and Interface Science, 1991, 142, 518-527.	5.0	60
44	Dynamic capillary pressure variations in diphasic flows through glass capillaries. Journal of Colloid and Interface Science, 1991, 141, 384-394.	5.0	27
45	Evidence for a new spreading regime between partial and total wetting. Physical Review Letters, 1991, 66, 185-188.	2.9	51
46	Exponential Growth of Fingering Instabilities of Spreading Films Under Horizontal Thermal Gradients. Europhysics Letters, 1992, 19, 97-102.	0.7	64
47	Molecular dynamics of a microscopic droplet on solid surface. Physical Review Letters, 1992, 69, 124-127.	2.9	110
48	Rival contact-angle models and the spreading of drops. Journal of Fluid Mechanics, 1992, 239, 671.	1.4	121
49	Dynamics of braze spreading. Acta Metallurgica Et Materialia, 1992, 40, 2483-2488.	1.9	63
50	Edge profiles and dynamic contact angles of a spreading drop. Journal of Colloid and Interface Science, 1992, 148, 207-222.	5.0	54
51	Spreading of "heavy―droplets. Journal of Colloid and Interface Science, 1992, 149, 580-591.	5.0	12
52	Dynamic wetting in the low capillary number regime. Chemical Engineering Science, 1992, 47, 4455-4464.	1.9	99
53	Wetting.from macroscopic to microscopic scale. Advances in Colloid and Interface Science, 1992, 42, 65-87.	7.0	24
54	Studies of the wetting kinetics of liquid drops on solid surfaces. Colloid and Polymer Science, 1993, 271, 680-687.	1.0	53
55	Contact Line Elasticity of a Completely Wetting Liquid Rising on a Wall. Europhysics Letters, 1993, 21, 483-488.	0.7	12

#	Article	IF	CITATIONS
56	Spreading of droplets on a solid surface. Physical Review Letters, 1993, 71, 593-596.	2.9	56
57	Dynamics of Spreading of Small Droplets of Chainlike Molecules on Surfaces. Europhysics Letters, 1994, 25, 593-598.	0.7	16
58	Morphological Changes of Small Viscous Droplets under Spreading. Europhysics Letters, 1994, 25, 125-130.	0.7	7
59	Spreading dynamics of polymer microdroplets: A molecular-dynamics study. Physical Review E, 1994, 49, 4228-4236.	0.8	42
60	Apparent dynamic contact angle of an advancing gas–liquid meniscus. Physics of Fluids, 1994, 6, 12-23.	1.6	76
61	Laplace pressure driven drop spreading. Physics of Fluids, 1994, 6, 24-33.	1.6	32
62	Dynamic measurements of surface tension of solutions of polyisobutylene in mixtures of polybutene oil and Decalin. Journal of Non-Newtonian Fluid Mechanics, 1994, 52, 233-248.	1.0	12
63	Spreading of liquid drops over dry surfaces. Advances in Colloid and Interface Science, 1994, 50, 187-221.	7.0	78
64	Spreading of a droplet on a solid surface. Journal of Applied Polymer Science, 1994, 52, 431-435.	1.3	54
65	Simulations of solid-on-solid models of spreading of viscous droplets. Physica A: Statistical Mechanics and Its Applications, 1994, 210, 362-375.	1.2	3
66	Mathematical modeling of wetting hydrodynamics. Fluid Dynamics Research, 1994, 13, 45-64.	0.6	63
67	Frenkel's method and the spreading of small spherical droplets. Journal Physics D: Applied Physics, 1994, 27, 2619-2623.	1.3	21
68	Kinetics of wetting Ag substrates by 60Sn40Pb. Scripta Metallurgica Et Materialia, 1994, 30, 725-730.	1.0	18
69	Dynamic wetting on porous and non porous substrates. Influence of surface tension, viscosity and porosity. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1994, 98, 429-434.	0.9	9
70	Wetting kinetics of liquid aluminium on an Al2O3 surface. Journal of Materials Science, 1995, 30, 3571-3575.	1.7	26
71	Kinetics of wetting Ag and Cu substrates by molten 60Sn40Pb. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1995, 26, 459-469.	1.1	15
72	Spreading Kinetics of Molten 60Sn40Pb on Higher Melting Temperature Pb-Sn Alloy Substrates. Materials Research Society Symposia Proceedings, 1995, 390, 189.	0.1	0
73	Lubrication theory for reactive spreading of a thin drop. Physics of Fluids, 1995, 7, 1797-1810.	1.6	53

#	Article	IF	CITATIONS
74	Wetting Kinetics of Molten 60Sn40Pb on a Ag-0.33 wt.% Pt Thick Film Conductor. Journal of Electronic Packaging, Transactions of the ASME, 1995, 117, 241-245.	1.2	3
75	A surface acoustic wave technique for the observation of dynamic wetting. Journal Physics D: Applied Physics, 1995, 28, 1930-1936.	1.3	4
76	Droplet profiles obtained from the intensity distribution of refraction patterns. Applied Optics, 1995, 34, 5840.	2.1	10
77	Thermocapillary migration of a two-dimensional liquid droplet on a solid surface. Journal of Fluid Mechanics, 1995, 294, 209-230.	1.4	99
78	The spreading of small viscous stripes of oil. Journal Physics D: Applied Physics, 1995, 28, 1925-1929.	1.3	30
79	Experimental Study of the Spreading of a Viscous Droplet on a Nonviscous Liquid. Langmuir, 1996, 12, 6708-6711.	1.6	22
80	Two Problems from Draining Flows Involving Third-Order Ordinary Differential Equations. SIAM Journal on Mathematical Analysis, 1996, 27, 515-527.	0.9	64
81	Microscopic Model of Upward Creep of an Ultrathin Wetting Film. Physical Review Letters, 1996, 76, 86-89.	2.9	71
82	Quasi-self-similarity for wetting drops. Physical Review E, 1996, 53, 3563-3572.	0.8	18
83	Wetting Kinetics in Surface Capillary Grooves. Langmuir, 1996, 12, 4625-4627.	1.6	60
84	Spreading of oil droplets on silicon oxide surfaces with parallel v-shaped channels. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1996, 116, 135-144.	2.3	20
85	Spreading of viscous droplets on a non viscous liquid. Colloid and Polymer Science, 1996, 274, 70-72.	1.0	30
86	Waiting-time solutions of a nonlinear diffusion equation: Experimental study of a creeping flow near a waiting front. Physical Review E, 1996, 54, 2628-2636.	0.8	15
87	Spreading of a thin wetting film: Microscopic approach. Physical Review E, 1996, 54, 3832-3845.	0.8	40
88	Physics of leakage of liquids into vessels. Journal of Physics Condensed Matter, 1996, 8, 2775-2780.	0.7	0
89	Motion and arrest of a molten contact line on a cold surface: An experimental study. Physics of Fluids, 1997, 9, 2217-2226.	1.6	79
90	Source-type solutions to thin-film equations in higher dimensions. European Journal of Applied Mathematics, 1997, 8, 507-524.	1.4	60
91	The Spreading of Silicone Oil Droplets on a Surface with Parallel V-Shaped Grooves. Langmuir, 1997, 13, 7258-7264.	1.6	23

#	Article	IF	CITATIONS
92	Contact Angle Relaxation during the Spreading of Partially Wetting Drops. Langmuir, 1997, 13, 7293-7298.	1.6	121
93	Dewetting Dynamics at a Polymerâ^'Polymer Interface. Macromolecules, 1997, 30, 3640-3645.	2.2	82
94	Molten droplet deposition and solidification at low Weber numbers. Physics of Fluids, 1997, 9, 3172-3187.	1.6	323
95	Contact Angle Relaxation during Droplet Spreading:Â Comparison between Molecular Kinetic Theory and Molecular Dynamics. Langmuir, 1997, 13, 2164-2166.	1.6	149
96	Interaction of surface acoustic waves with viscous liquids. Faraday Discussions, 1997, 107, 15-26.	1.6	10
97	Linear stability and transient growth in driven contact lines. Physics of Fluids, 1997, 9, 530-539.	1.6	217
98	Long-scale evolution of thin liquid films. Reviews of Modern Physics, 1997, 69, 931-980.	16.4	2,461
99	Moving contact lines in liquid/liquid/solid systems. Journal of Fluid Mechanics, 1997, 334, 211-249.	1.4	358
100	Solder wetting kinetics in narrow V-grooves. Acta Materialia, 1997, 45, 5337-5345.	3.8	64
101	A third-order differential equation arising in thin-film flows and relevant to Tanner's Law. Applied Mathematics Letters, 1997, 10, 63-68.	1.5	86
102	A Theoretical Study of Instabilities at the Advancing Front of Thermally Driven Coating Films. Journal of Colloid and Interface Science, 1997, 192, 350-362.	5.0	120
103	Capillary Spreading of Liquid Drops on Solid Surfaces. Journal of Colloid and Interface Science, 1997, 195, 66-76.	5.0	12
104	Predicting the spreading kinetics of high-temperature liquids on solid surfaces. Journal of Materials Research, 1998, 13, 3504-3511.	1.2	4
105	Dynamic Wetting Effects During Infiltration of Metals. Scripta Materialia, 1998, 38, 1203-1210.	2.6	15
106	Influence of Viscosity on Forced and Spontaneous Spreading: Wilhelmy Fiber Studies Including Practical Methods for Rapid Viscosity Measurement. Journal of Colloid and Interface Science, 1998, 199, 28-37.	5.0	42
107	Stabilizing the Advancing Front of Thermally Driven Climbing Films. Journal of Colloid and Interface Science, 1998, 203, 335-344.	5.0	57
108	Approximate Solution for the Spreading of a Droplet on a Smooth Solid Surface. Journal of Colloid and Interface Science, 1998, 207, 30-40.	5.0	16
109	A model for a liquid drop spreading on a solid surface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 142, 243-256.	2.3	53

~			<u> </u>	
CĽ	ΓΑΤΙ	ION.	REPC	DRT

#	Article	IF	CITATIONS
110	Effect of temperature on the dynamic contact angle. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 144, 235-243.	2.3	84
111	Dynamics of wetting in reactive metal/ ceramic systems. Acta Materialia, 1998, 46, 2319-2327.	3.8	31
112	Energetics and kinetics of dissolutive wetting processes. Acta Materialia, 1998, 46, 2329-2336.	3.8	42
113	Thin Films with High Surface Tension. SIAM Review, 1998, 40, 441-462.	4.2	350
114	Effect of Surface Structure on the Spreading of a PDMS Droplet. Langmuir, 1998, 14, 7052-7057.	1.6	24
115	Asymptotic analysis of axisymmetric drop spreading. Physical Review E, 1998, 58, 4478-4484.	0.8	11
116	Time- and temperature-dependent wetting behavior of eutectic SnPb on Cu leadframes plated with Pd/Ni and Au/Pd/Ni thin films. Journal of Applied Physics, 1998, 84, 770-775.	1.1	29
117	Influence of the aspect ratio of a drop in the spreading process over a horizontal surface. Physical Review E, 1998, 58, 4473-4477.	0.8	4
118	Influence of reactive solute transport on spreading kinetics of alloy droplets on ceramic surfaces. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 1998, 356, 871-884.	1.6	11
119	Determination of the quench velocity and rewetting temperature of hot surfaces: Formulation of a nonisothermal microscale hydrodynamic model. Physical Review E, 1999, 59, 6687-6698.	0.8	6
120	Observation and application of optical interference and diffraction effects in reflection from photochemically fabricated Gaussian interfaces. Journal of Applied Physics, 1999, 86, 1800-1807.	1.1	17
121	Surface acoustic wave–liquid drop interactions. Sensors and Actuators A: Physical, 1999, 76, 89-92.	2.0	12
122	Droplet spreading: a microscopic approach. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 149, 123-130.	2.3	38
123	Spreading of liquids on rough surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 146, 273-279.	2.3	45
124	The dynamics of spreading at the microscopic scale. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 154, 5-11.	2.3	19
125	Structure and dynamics of thin liquid films on solid substrates. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 154, 25-31.	2.3	6
126	Spontaneous spreading of surfactant solutions on hydrophilic surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 159, 47-56.	2.3	40
127	Concepts of Rehbinder's school and modern theories of spreading. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 160, 63-77.	2.3	15

#	Article	IF	CITATIONS
128	Droplet spreading: a tool to characterize surfaces at the microscopic scale. Journal of Petroleum Science and Engineering, 1999, 24, 189-198.	2.1	10
129	Capillary Spreading of Liquid Drops on Prewetted Solid Surfaces. Journal of Colloid and Interface Science, 1999, 211, 230-237.	5.0	8
130	Unusual Contact-Line Dynamics of Thick Films and Drops. Journal of Colloid and Interface Science, 1999, 215, 425-440.	5.0	11
131	Dynamic Wetting Studied by Molecular Modeling Simulations of Droplet Spreading. Langmuir, 1999, 15, 7836-7847.	1.6	343
132	Wetting Dynamics of Alkyl Ketene Dimer on Cellulosic Model Surfaces. Langmuir, 1999, 15, 7863-7869.	1.6	34
133	Molecular dynamics of a molten Cu droplet spreading on a cold Cu substrate. Surface Science, 1999, 426, L413-L419.	0.8	14
134	Dynamics of Spontaneous Spreading on Heterogeneous Surfaces in a Partial Wetting Regime. Journal of Physical Chemistry B, 1999, 103, 4854-4861.	1.2	33
135	Dissipation Processes at the Mesoscopic and Molecular Scale. The Case of Polymer Films. Langmuir, 1999, 15, 1522-1527.	1.6	13
136	Radial displacement of a fluid annulus in a rotating Hele–Shaw cell. Physics of Fluids, 1999, 11, 778-785.	1.6	39
137	An acoustic technique for the monitoring of dynamic wetting behavior. Journal of Adhesion Science and Technology, 1999, 13, 1471-1480.	1.4	1
138	The spreading of a non-isothermal liquid droplet. Physics of Fluids, 1999, 11, 982-989.	1.6	23
139	Spreading of a wetting film under the action of van der Waals forces. Physics of Fluids, 2000, 12, 480-483.	1.6	32
140	Effective and microscopic contact angles in thin film dynamics. European Journal of Applied Mathematics, 2000, 11, 181-201.	1.4	13
141	Can a Dynamic Contact Angle Be Understood in Terms of a Friction Coefficient?. Journal of Colloid and Interface Science, 2000, 226, 199-204.	5.0	108
142	Dynamics of Wetting. Journal of Colloid and Interface Science, 2000, 229, 155-164.	5.0	15
143	Diffusion of Single Molecules Close to Interfaces. Single Molecules, 2000, 1, 299-305.	1.7	26
144	Spreading and wetting at the microscopic scale: recent developments and perspectives. Acta Materialia, 2000, 48, 4405-4417.	3.8	64
145	Reactive spreading: adsorption, ridging and compound formation. Acta Materialia, 2000, 48, 4449-4462.	3.8	146

# 146	ARTICLE An Experimental Study of Molten Microdroplet Surface Deposition and Solidification: Transient Behavior and Wetting Angle Dynamics. Journal of Heat Transfer, 2000, 122, 544-556.	IF 1.2	CITATIONS
147	Chain Segment Order in Polymer Thin Films on a Nonadsorbing Surface: A NMR Study. Physical Review Letters, 2000, 84, 499-502.	2.9	34
148	Spreading dynamics of water droplets. Physical Review E, 2000, 62, 6861-6864.	0.8	12
149	Contact line dynamics near the pinning threshold: A capillary rise and fall experiment. Physical Review E, 2000, 61, 5257-5277.	0.8	91
150	Spreading dynamics of three-dimensional droplets by the lattice-Boltzmann method. Computational Materials Science, 2000, 18, 7-12.	1.4	77
151	Experimental Evidence of Several Time Scales in Drop Spreading. Langmuir, 2000, 16, 2363-2368.	1.6	121
152	Spreading of a Thin Liquid Drop Under the Influence of Gravity, Rotation and Non-Uniform Surface Tension. , 2001, , 37-44.		0
153	Hydrodynamics and Contact Angle Relaxation during Unsteady Spreading. Langmuir, 2001, 17, 6988-6994.	1.6	9
154	Contact angles for evaporating liquids predicted and compared with existing experiments. Journal of Fluid Mechanics, 2001, 432, 1-30.	1.4	88
155	Singular problems on the infinite interval modelling phenomena in draining flows. IMA Journal of Applied Mathematics, 2001, 66, 621-635.	0.8	26
156	Coating by Capillary Transport through Porous Media. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2001, 81, 517-518.	0.9	1
157	A novel optical method in micro drop deformation measurements. Optics and Lasers in Engineering, 2001, 35, 187-198.	2.0	3
158	Dynamics of wetting. Current Opinion in Colloid and Interface Science, 2001, 6, 49-53.	3.4	120
159	Adsorption layer structures and spreading behavior of aqueous non-ionic surfactants on graphite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 183-185, 607-620.	2.3	50
160	On the Spreading of Partially Miscible Liquids. Journal of Colloid and Interface Science, 2001, 234, 375-383.	5.0	18
161	Spreading Dynamics of Polydimethylsiloxane Drops: Crossover from Laplace to Van der Waals Spreading. Journal of Colloid and Interface Science, 2001, 234, 178-193.	5.0	44
162	Falling Slugs. Journal of Colloid and Interface Science, 2001, 243, 262-264.	5.0	63
163	Spontaneous spreading of emulsions on solid surfaces: Morphology and dynamics. Journal of Applied Polymer Science, 2001, 81, 1817-1825.	1.3	5

#	Article	IF	CITATIONS
164	Determination of the quench velocity and rewetting temperature of hot surfaces. Part I: analytical solution of the micro-scale hydrodynamic model. International Journal of Heat and Mass Transfer, 2001, 44, 1323-1342.	2.5	8
165	Thin-Film Flows And High-Order Degenerate Parabolic Equations. Fluid Mechanics and Its Applications, 2001, , 7-18.	0.1	14
166	Pattern formation in the flow of thin films down an incline: Constant flux configuration. Physics of Fluids, 2001, 13, 3168-3184.	1.6	88
167	Dynamics of capillary spreading along hydrophilic microstripes. Physical Review E, 2001, 64, 031603.	0.8	85
168	Droplet spreading: A Monte Carlo test of Tanner's law. Journal of Chemical Physics, 2002, 116, 7691-7694.	1.2	33
169	Shear-thinning liquid films: macroscopic and asymptotic behaviour by quasi-self-similar solutions. Nonlinearity, 2002, 15, 2147-2164.	0.6	27
170	The steady propagation of a bubble in a flexible-walled channel: Asymptotic and computational models. Physics of Fluids, 2002, 14, 443-457.	1.6	55
171	Surfactant Self-Assemblies Controlling Spontaneous Dewetting. Langmuir, 2002, 18, 1649-1654.	1.6	36
172	Spreading Drop Dynamics on Porous Surfaces. Langmuir, 2002, 18, 7496-7502.	1.6	35
173	Electric Field Induced Dewetting at Polymer/Polymer Interfaces. Macromolecules, 2002, 35, 6255-6262.	2.2	100
174	Superspreading:Â Aqueous Surfactant Drops Spreading on Hydrophobic Surfaces. Langmuir, 2002, 18, 10486-10488.	1.6	105
175	Material Properties of Fluoropolymers and Perfluoroalkyl-based Polymers. , 2002, , 47-67.		2
176	Photocontrol of liquid motion on an azobenzene monolayer. Journal of Materials Chemistry, 2002, 12, 2262-2269.	6.7	125
177	Onset of menisci. Journal of Fluid Mechanics, 2002, 460, 131-149.	1.4	90
178	Spreading and peeling dynamics in a model of cell adhesion. Journal of Fluid Mechanics, 2002, 460, 381-409.	1.4	51
179	Semi-empirical strategies for predicting adhesion. , 2002, , 1-73.		12
181	Droplet spreading: Intermediate scaling law by PDE methods. Communications on Pure and Applied Mathematics, 2002, 55, 217-254.	1.2	29
182	Computing Three-Dimensional Thin Film Flows Including Contact Lines. Journal of Computational Physics, 2002, 183, 274-306.	1.9	98

#	Article	IF	CITATIONS
183	Evaporatively-driven Marangoni instabilities of volatile liquid films spreading on thermally conductive substrates. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 206, 409-423.	2.3	91
184	Experimental results of dewetting in the visco-gravitational regime. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 206, 167-177.	2.3	5
185	Frenkel's method and the dynamic wetting of heterogeneous planar surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 206, 193-201.	2.3	32
186	Predicting the kinetics of cell spreading. Journal of Biomechanics, 2002, 35, 1137-1141.	0.9	71
187	Nanodroplets on a solid plane: wetting and spreading in a Monte Carlo simulation. Computer Physics Communications, 2002, 146, 38-53.	3.0	26
188	Lattice-Boltzmann Simulation of Capillary Rise Dynamics. Journal of Statistical Physics, 2002, 107, 143-158.	0.5	90
189	Spreading of a Liquid Droplet over a Solid Horizontal Surface. Journal of Engineering Physics and Thermophysics, 2003, 76, 274-278.	0.2	2
190	Dynamics of a Spreading Nanodroplet: A Molecular Dynamic Simulation. Macromolecular Theory and Simulations, 2003, 12, 573-581.	0.6	17
191	Deformation of advancing gas–liquid interfaces in capillary tubes. Journal of Colloid and Interface Science, 2003, 265, 166-173.	5.0	19
192	The spreading of surfactant solutions on thin liquid films. Advances in Colloid and Interface Science, 2003, 106, 183-236.	7.0	96
193	Wetting Kinetics Study of Modified Polyimide Surfaces Containing Ionizable Functional Groups. Langmuir, 2003, 19, 5763-5770.	1.6	9
194	Dynamics of Partial Wetting and Dewetting of an Amorphous Fluoropolymer by Pure Liquids. Langmuir, 2003, 19, 2795-2801.	1.6	50
195	Forced Wetting Dynamics:Â A Molecular Dynamics Study. Langmuir, 2003, 19, 3996-4003.	1.6	24
196	Spreading of droplets under the influence of intermolecular forces. Physics of Fluids, 2003, 15, 1837-1842.	1.6	29
197	Liquid Drops on Homogeneous and Chemically Heterogeneous Surfaces:Â A Two-Dimensional Lattice Boltzmann Study. Langmuir, 2003, 19, 9086-9093.	1.6	61
198	A molecular view of Tanner's law: molecular dynamics simulations of droplet spreading. Journal of Fluid Mechanics, 2003, 497, 123-132.	1.4	51
199	ELEMENTS OF SIMILARITY AND SINGULARITY. , 2003, , 285-318.		1
200	Spreading dynamics of polymer nanodroplets. Physical Review E, 2003, 68, 061603.	0.8	100

#	Article	IF	CITATIONS
201	Microscopic and Macroscopic Structure of the Precursor Layer in Spreading Viscous Drops. Physical Review Letters, 2003, 91, 196104.	2.9	107
202	Influence of attractive van der Waals interactions on the optimal excitations in thermocapillary-driven spreading. Physical Review E, 2003, 67, 016308.	0.8	25
203	Precursor Film Controlled Wetting of Pb on Cu. Physical Review Letters, 2003, 91, 236102.	2.9	86
204	Dynamics of liquid4Hein confined geometries from time-dependent density functional calculations. Physical Review B, 2003, 67, .	1.1	24
205	Spreading of Liquid Ag and Ag–Mo Alloys on Molybdenum Substrates. International Journal of Materials Research, 2003, 94, 233-237.	0.8	8
206	Simulated nanojet ejection process by spreading droplets on a solid surface. Journal of Physics Condensed Matter, 2003, 15, 8263-8270.	0.7	15
207	A molecular dynamics study of drop spreading on a solid surface. Physics of Fluids, 2003, 15, 1357.	1.6	16
208	Meniscus motion in a prewetted capillary. Physics of Fluids, 2003, 15, 3134.	1.6	17
209	Microfluidics and wetting. , 2003, , 1128-1130.		0
210	Spreading dynamics of polymer nanodroplets in cylindrical geometries. Physical Review E, 2004, 70, 011606.	0.8	57
211	First steps in the spreading of a liquid droplet. Physical Review E, 2004, 69, 016301.	0.8	257
212	Lattice Boltzmann Simulations of Bubble Dynamics in Microchannels. , 0, , .		0
213	Contact-line dynamics and damping for oscillating free surface flows. Physics of Fluids, 2004, 16, 748-758.	1.6	31
214	Late stage kinetics for various wicking and spreading problems. Physical Review E, 2004, 69, 041601.	0.8	22
215	Wetting kinetics of modified polyimide surfaces: interactions with polar solvents. Journal of Colloid and Interface Science, 2004, 279, 515-522.	5.0	3
216	Flow Structure and Transfer Jets in a Contra-Rotating Rigid-Roll Coating System. Theoretical and Computational Fluid Dynamics, 2004, 17, 189-212.	0.9	19
217	Efficient and accurate time adaptive multigrid simulations of droplet spreading. International Journal for Numerical Methods in Fluids, 2004, 45, 1161-1186.	0.9	58
218	Dynamics of water spreading on a glass surface. Journal of Colloid and Interface Science, 2004, 277, 424-436.	5.0	91

	Сітатіс	on Report	
#	Article	IF	CITATIONS
219	The exponential power law: partial wetting kinetics and dynamic contact angles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 250, 409-414.	2.3	67
220	Lattice Boltzmann Study on the Contact Angle and Contact Line Dynamics of Liquidâ^'Vapor Interfaces. Langmuir, 2004, 20, 8137-8141.	1.6	49
221	Low Inertia Impact Dynamics for Nanodrops. Langmuir, 2004, 20, 4748-4755.	1.6	21
222	Possibility of Different Time Scales in the Capillary Rise around a Fiber. Langmuir, 2004, 20, 737-742.	1.6	22
223	Liquid Coating of Moving Fiber at the Nanoscale. Langmuir, 2004, 20, 8385-8390.	1.6	32
224	Spreading of non-Newtonian fluids on hydrophilic surfaces. Journal of Fluid Mechanics, 2004, 513, 77-85.	1.4	71
225	Drops on a conical wire. Journal of Fluid Mechanics, 2004, 510, 29-45.	1.4	400
226	Theoretical and numerical results for spin coating of viscous liquids. Physics of Fluids, 2004, 16, 569-584.	1.6	96
227	Droplet Behaviors on Substrates in Thin-Film Formation Using Ink-Jet Printing. JSME International Journal Series B, 2004, 47, 490-496.	0.3	48
228	Spreading Characteristics of Aqueous Surfactant Solutions on Polymer Surfaces. Tenside, Surfactants, Detergents, 2005, 42, 82-87.	0.5	13
229	Surfactant-assisted spreading of a liquid drop on a smooth solid surface. Journal of Colloid and Interface Science, 2005, 287, 233-248.	5.0	24
230	A level-set approach for simulations of flows with multiple moving contact lines with hysteresis. Journal of Computational Physics, 2005, 207, 389-404.	1.9	170
231	Spreading of non-Newtonian fluids and surfactant solutions on solid surfaces. Physica A: Statistical Mechanics and Its Applications, 2005, 358, 58-67.	1.2	52
232	Dissolutive wetting of Ag on Cu: A molecular dynamics simulation study. Acta Materialia, 2005, 53, 3163-3177.	3.8	71
233	Evaluation of polymer rheology from drop spreading experiments. Chemical Engineering Science, 2005, 60, 2579-2584.	1.9	6
234	A boundary integral formulation of quasi-steady fluid wetting. Journal of Computational Physics, 2005, 207, 529-541.	1.9	20
235	Atomistic simulations of reactive wetting in metallic systems. Journal of Materials Science, 2005, 40, 2281-2286.	1.7	27
236	Kinetics of fluid spreading on viscoelastic substrates. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 562-572.	2.4	14

#	Article	IF	CITATIONS
237	Variational models for moving contact lines and the quasi-static approximation. European Journal of Applied Mathematics, 2005, 16, 713-740.	1.4	10
238	Starbursts and wispy drops: Surfactants spreading on gels. Chaos, 2005, 15, 041107.	1.0	8
239	Quasistatic relaxation of arbitrarily shaped sessile drops. Physical Review E, 2005, 72, 011606.	0.8	10
240	Contact line motion for partially wetting fluids. Physical Review E, 2005, 72, 061605.	0.8	47
241	Spreading of Viscous Fluid Drops on a Solid Substrate Assisted by Thermal Fluctuations. Physical Review Letters, 2005, 95, 244505.	2.9	94
242	Modeling of surface tension and contact angles with smoothed particle hydrodynamics. Physical Review E, 2005, 72, 026301.	0.8	234
243	An Effective Implementation of Surface Tension Using the Marker and Cell Method for Axisymmetric and Planar Flows. SIAM Journal of Scientific Computing, 2005, 26, 1340-1368.	1.3	14
244	Super spreading of oil by condensed water drops. Soft Matter, 2005, 1, 431.	1.2	16
245	Dynamics of the Rise around a Fiber: Experimental Evidence of the Existence of Several Time Scales. Langmuir, 2005, 21, 9584-9590.	1.6	27
246	Rescaling the Dynamics of Evaporating Drops. Langmuir, 2005, 21, 8226-8233.	1.6	81
247	Pinning of a Contact Line on Nanometric Steps during the Dewetting of a Terraced Substrate. Nano Letters, 2005, 5, 1744-1750.	4.5	58
248	Spontaneous Spreading of Nematic Liquid Crystals. Langmuir, 2005, 21, 6270-6276.	1.6	42
249	Effect of contact angle hysteresis on thermocapillary droplet actuation. Journal of Applied Physics, 2005, 97, 014906.	1.1	124
250	Simulation of Nanodroplets on Solid Surfaces: Wetting, Spreading and Bridging. , 2006, , 105-126.		1
251	Spreading of liquid drops over solid substrates: 'like wets like'. Journal of Adhesion Science and Technology, 2006, 20, 1333-1343.	1.4	8
252	Characterization of Watermarks Formed in Nano-Carpet Effect. Langmuir, 2006, 22, 3662-3671.	1.6	27
253	Comment on "Computer simulation of two-phase immiscible fluid motion in unsaturated complex fractures using a volume of fluid method―by Hai Huang, Paul Meakin, and Moubin Liu. Water Resources Research, 2006, 42, .	1.7	4
254	Dynamics of driven liquid films on heterogeneous surfaces. Journal of Fluid Mechanics, 2006, 559, 355.	1.4	24

#	Article	IF	CITATIONS
255	Effect of Surface Morphology on Crack Growth at a Sol-Gel Reinforced Epoxy/Aluminum Interface. Journal of Adhesion, 2006, 82, 487-516.	1.8	45
256	Experimental Investigation of the Spontaneous Wetting of Polymers and Polymer Blends. Langmuir, 2006, 22, 9928-9941.	1.6	14
257	On the Quasi-Static Relaxation of a Drop in a Combined Model of Dissipation. Langmuir, 2006, 22, 1580-1585.	1.6	1
258	Dissipative Particle Dynamics Simulation of Contact Angle Hysteresis on a Patterned Solid/Air Composite Surface. Langmuir, 2006, 22, 2065-2073.	1.6	38
259	A theoretical and experimental investigation of tri-helical gravure roll coating. Chemical Engineering Science, 2006, 61, 5487-5499.	1.9	24
260	Spreading of nematic liquid crystals on hydrophobic substrates. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 282-283, 240-246.	2.3	19
261	On the question of rate-dependence of contact angles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 282-283, 256-262.	2.3	45
262	Effects of temperature and velocity of droplet ejection process of simulated nanojets onto a moving plate's surface. Applied Surface Science, 2006, 253, 1649-1654.	3.1	15
263	The physics of moving wetting lines. Journal of Colloid and Interface Science, 2006, 299, 1-13.	5.0	715
264	Spontaneous spreading of surfactant-bearing drops in the sorption-controlled limit. Journal of Colloid and Interface Science, 2006, 302, 374-377.	5.0	4
265	On the dynamics of liquid lenses. Journal of Colloid and Interface Science, 2006, 303, 503-516.	5.0	42
266	Numerical Simulation of the Spontaneous Penetration of Liquids into Cylindrical Capillaries. Annals of the New York Academy of Sciences, 2006, 1077, 426-442.	1.8	1
267	A mesoscopic model for (de)wetting. European Physical Journal E, 2006, 20, 209-214.	0.7	26
268	Experimental evidence of liquid drop break-up in complete wetting experiments. Journal of Materials Science, 2006, 41, 5068-5080.	1.7	31
269	The spreading of a viscous microdrop on a solid surface. Microfluidics and Nanofluidics, 2006, 2, 537-549.	1.0	5
270	Effect of solid surface properties on dynamic contact angles. Heat Transfer - Asian Research, 2006, 35, 1-12.	2.8	5
271	Transient dynamics and structure of optimal excitations in thermocapillary spreading: Precursor film model. Physics of Fluids, 2006, 18, 092101.	1.6	13
272	Radial spreading of a viscous drop between parallel-plane surfaces. Physics of Fluids, 2006, 18, 093101.	1.6	7

		CITATION REPORT		
#	Article		IF	CITATIONS
273	Coalescence of Spreading Droplets on a Wettable Substrate. Physical Review Letters, 2	006, 97, 064501.	2.9	162
274	Visualization of the curved liquid surface by means of the optical method. Journal of Ap 2006, 100, 124914.	plied Physics,	1.1	10
275	Solidlike spreading of a liquid/liquid system. Applied Physics Letters, 2006, 89, 181906.		1.5	4
276	Static and dynamic properties of the interface between a polymer brush and a melt of id Journal of Chemical Physics, 2006, 124, 064902.	dentical chains.	1.2	122
277	Profile Patterns and Stability of Evaporating Liquid Sessile Drops. Journal of Thermophys Transfer, 2006, 20, 620-624.	sics and Heat	0.9	1
279	Spreading of a water droplet on a vertically aligned Si nanorod array surface. Applied Ph 2007, 90, 013102.	ysics Letters,	1.5	32
280	Instabilities in Droplets Spreading on Gels. Physical Review Letters, 2007, 99, 124501.		2.9	32
281	Scaling of Dynamic Contact Angles in a Lattice-Boltzmann Model. Physical Review Lette 254503.	rs, 2007, 98,	2.9	49
282	Video-based Metrology of Water Droplet Spreading on Nanostructured Surfaces. Proce Workshop on Applications of Computer Vision, 2007, , .	edings IEEE	0.0	0
283	Spreading Dynamics and Dynamic Contact Angle of Non-Newtonian Fluids. Langmuir, 2 8042-8047.	007, 23,	1.6	72
284	Spreading of Completely Wetting or Partially Wetting Power-Law Fluid on Solid Surface 2007, 23, 9258-9262.	. Langmuir,	1.6	67
285	Inertial effects in droplet spreading: a comparison between diffuse-interface and level-se Journal of Fluid Mechanics, 2007, 576, 287-296.	et simulations.	1.4	125
286	Microscale fibre alignment by a three-dimensional sessile drop on a wettable pad. Journa Mechanics, 2007, 574, 179-207.	al of Fluid	1.4	9
287	Material Properties: Measurement and Data. , 2007, , 85-177.			6
288	Comparative molecular dynamics study of simple and polymer nanodroplet spreading. Surfaces A: Physicochemical and Engineering Aspects, 2007, 298, 52-57.	Colloids and	2.3	15
289	Receding contact angle in the situation of complete wetting: Experimental check of a mevaporating droplets. Colloids and Surfaces A: Physicochemical and Engineering Aspect 307-314.		2.3	20
290	Influence of dielectric relaxation times of fluid mixtures on solid/liquid interfacial tension and Surfaces A: Physicochemical and Engineering Aspects, 2007, 302, 616-622.	ı. Colloids	2.3	3
291	Contact angle hysteresis on fluoropolymer surfaces. Advances in Colloid and Interface S 134-135, 236-248.	Science, 2007,	7.0	34

#	Article	IF	CITATIONS
292	Analysis of Adomian decomposition applied to a third-order ordinary differential equation from thin film flow. Nonlinear Analysis: Theory, Methods & Applications, 2007, 66, 2315-2324.	0.6	16
293	Bridging grain boundary volume to segregation at symmetric grain boundaries. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 448, 299-302.	2.6	0
294	Dynamics of liquid penetration into capillary tubes. Journal of Colloid and Interface Science, 2007, 315, 255-260.	5.0	53
295	Dynamics of Spreading of Liquid on Solid Surface. Chinese Journal of Chemical Engineering, 2007, 15, 730-737.	1.7	26
296	Reduction in total surface area by the develpment of microdroplets during dewetting. Microsystem Technologies, 2007, 13, 999-1003.	1.2	0
297	The MAC method. Computers and Fluids, 2008, 37, 907-930.	1.3	149
298	Micro-hydrodynamics of immiscible displacement inside two-dimensional porous media. Microfluidics and Nanofluidics, 2008, 4, 307-319.	1.0	14
299	Contact line mobility in liquid droplet spreading on rough surface. Journal of Colloid and Interface Science, 2008, 323, 126-132.	5.0	15
300	Drop impact onto a dry surface: Role of the dynamic contact angle. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 322, 183-191.	2.3	115
301	Monolayer spreading in confined immiscible fluids: A molecular dynamics simulation. Computers and Mathematics With Applications, 2008, 55, 1554-1559.	1.4	Ο
302	A simplified model of the onset of air entrainment in curtain coating at small Capillary number. Chemical Engineering Research and Design, 2008, 86, 311-323.	2.7	3
303	Direct writing technology—Advances and developments. CIRP Annals - Manufacturing Technology, 2008, 57, 601-620.	1.7	389
304	3-D numerical simulation of contact angle hysteresis for microscale two phase flow. International Journal of Multiphase Flow, 2008, 34, 690-705.	1.6	107
305	Wetting kinetics of a hypo-eutectic Al–Si system. Materials Letters, 2008, 62, 2241-2244.	1.3	11
306	Threeâ€dimensional simulation of liquid drop dynamics within unsaturated vertical Heleâ€Shaw cells. Water Resources Research, 2008, 44, .	1.7	8
307	Dynamics of Wetting from an Experimental Point of View. Annual Review of Materials Research, 2008, 38, 23-43.	4.3	102
308	Wetting and Molecular Dynamics Simulations of Simple Liquids. Annual Review of Materials Research, 2008, 38, 1-22.	4.3	169
309	Spin coating of a colloidal suspension. Physics of Fluids, 2008, 20, .	1.6	58

#	Article	IF	CITATIONS
310	Electrohydrostatically Driven Flow and Instability in a Vertical Hele-Shaw Cell. Langmuir, 2008, 24, 3611-3620.	1.6	4
311	Continuum concepts in nanoscale capillary impregnation. New Journal of Physics, 2008, 10, 113022.	1.2	20
312	Dynamic capillary wetting studied with dissipative particle dynamics. New Journal of Physics, 2008, 10, 043009.	1.2	67
313	Statics and dynamics of a cylindrical droplet under an external body force. Journal of Chemical Physics, 2008, 128, 014709.	1.2	36
314	Experimental evaluation of wetting dynamics models for Sn63Pb37 and SnAg4.0Cu0.5 solder materials. Journal of Applied Physics, 2008, 104, .	1.1	14
315	Dynamic wetting and spreading and the role of topography. Journal of Physics Condensed Matter, 2009, 21, 464122.	0.7	48
316	Stationary GMAW-P weld metal deposit spreading. Science and Technology of Welding and Joining, 2009, 14, 626-635.	1.5	12
317	Post-Tanner stages of droplet spreading: the energy balance approach revisited. Journal of Physics Condensed Matter, 2009, 21, 464131.	0.7	10
318	Spreading of liquid droplets on permeable polymeric surfaces. Europhysics Letters, 2009, 86, 64004.	0.7	7
319	The atomistic mechanism of high temperature contact line advancement: results from molecular dynamics simulations. Journal of Physics Condensed Matter, 2009, 21, 464135.	0.7	12
320	Gravity-driven slug motion in capillary tubes. Physics of Fluids, 2009, 21, .	1.6	21
321	The superhydrophilic and superoleophilic leaf surface of Ruellia devosiana (Acanthaceae): a biological model for spreading of water and oil on surfaces. Functional Plant Biology, 2009, 36, 339.	1.1	61
322	A mesh-dependent model for applying dynamic contact angles to VOF simulations. Journal of Computational Physics, 2009, 228, 5370-5389.	1.9	190
323	Influence of electrical potential on the crystallization and adhesion of potassium hydrogen tartrate crystals. Journal of Applied Electrochemistry, 2009, 39, 1287-1296.	1.5	0
324	Spreading Kinetics of Liquid Solders over an Intermetallic Solid Surface. PartÂ1: Eutectic Lead Solder. Journal of Electronic Materials, 2009, 38, 1838-1845.	1.0	14
325	The spreading behaviour and spreading mechanism of new glucosamide-based trisiloxane on polystyrene surfaces. Journal of Colloid and Interface Science, 2009, 337, 211-217.	5.0	30
326	Dissipation mechanisms in ionic liquids. Journal of Colloid and Interface Science, 2009, 338, 523-528.	5.0	6
327	Symmetries, first integrals and phase planes of a third-order ordinary differential equation from thin film flow. Mathematical and Computer Modelling, 2009, 49, 215-225.	2.0	15

#	Article	IF	CITATIONS
328	Dynamic contact angles in CFD simulations. Computers and Fluids, 2009, 38, 757-764.	1.3	22
329	Lagrangian particle model for multiphase flows. Computer Physics Communications, 2009, 180, 1874-1881.	3.0	46
330	Effect of phase change and solute diffusion on spreading on a dissolving substrate. Acta Materialia, 2009, 57, 6022-6036.	3.8	21
331	Spreading of diblock copolymer droplets: A probe of polymer micro-rheology. European Physical Journal E, 2009, 29, 239-244.	0.7	9
332	Numerical studies of the influence of the dynamic contact angle on a droplet impacting on a dry surface. Physics of Fluids, 2009, 21, .	1.6	239
333	Molecular-dynamic simulation of nanosized droplet spreading over a continual solid surface. Colloid Journal, 2009, 71, 835-845.	0.5	7
334	Dynamics of wetting: from inertial spreading to viscous imbibition. Journal of Physics Condensed Matter, 2009, 21, 464127.	0.7	98
335	Enhanced droplet spreading due to thermal fluctuations. Journal of Physics Condensed Matter, 2009, 21, 464128.	0.7	7
336	Modeling the coalescence of sessile droplets. Biomicrofluidics, 2009, 3, 22412.	1.2	38
337	Wetting and spreading. Reviews of Modern Physics, 2009, 81, 739-805.	16.4	2,278
338	Spreading dynamics of power-law fluid droplets. Journal of Physics Condensed Matter, 2009, 21, 464117.	0.7	28
339	Dynamics of surfactant-assisted spreading. Soft Matter, 2009, 5, 3801.	1.2	70
340	Optical effect from the liquid drop surface on the horizontal plane. Journal of Modern Optics, 2009, 56, 1358-1362.	0.6	0
341	Modeling and simulation of the fluid–solid interaction in wetting. Journal of Statistical Mechanics: Theory and Experiment, 2009, 2009, P06008.	0.9	15
342	Modeling and simulation of poreâ€scale multiphase fluid flow and reactive transport in fractured and porous media. Reviews of Geophysics, 2009, 47, .	9.0	279
343	Dynamics and stability of thin liquid films. Reviews of Modern Physics, 2009, 81, 1131-1198.	16.4	1,086
344	Post-Tanner spreading of nematic droplets. Journal of Physics Condensed Matter, 2009, 21, 464134.	0.7	7
345	Ink Jet Printing for Direct Mask Deposition in Printed Circuit Board Fabrication. Journal of Imaging Science and Technology, 2009, 53, 50304-1-50304-8.	0.3	24

#	Article	IF	CITATIONS
346	Viscosity effect on the spreading of PDMS over different solid substrates. International Journal of Theoretical and Applied Multiscale Mechanics, 2010, 1, 236.	0.5	1
347	Contact Lenses Wettability In Vitro: Effect of Surface-Active Ingredients. Optometry and Vision Science, 2010, 87, 440-447.	0.6	51
348	Numerical investigation of the generalized lubrication equation. Applied Mathematics and Computation, 2010, 217, 2631-2638.	1.4	3
349	Gravity Effect on the Axisymmetric Drop Spreading. Microgravity Science and Technology, 2010, 22, 107-114.	0.7	13
350	Stability and dynamics of self-similarity in evolution equations. Journal of Engineering Mathematics, 2010, 66, 11-31.	0.6	19
351	Static and dynamic contact angles of evaporating liquids on heated surfaces. Journal of Colloid and Interface Science, 2010, 342, 550-558.	5.0	71
352	Experimental contribution to the understanding of the dynamics of spreading of Newtonian fluids: Effect of volume, viscosity and surfactant. Journal of Colloid and Interface Science, 2010, 344, 180-197.	5.0	29
353	Spreading of completely wetting, non-Newtonian fluids with non-power-law rheology. Journal of Colloid and Interface Science, 2010, 348, 250-254.	5.0	22
354	Spreading of a non-Newtonian liquid drop over a horizontal plane. Chemical Engineering Science, 2010, 65, 3427-3430.	1.9	8
355	Bead formation near the contact line in forced spreading. Chemical Engineering Science, 2010, 65, 4572-4578.	1.9	3
356	An introduction to superhydrophobicity. Advances in Colloid and Interface Science, 2010, 161, 124-138.	7.0	530
357	Impact of a heterogeneous liquid droplet on a dry surface: Application to the pharmaceutical industry. Advances in Colloid and Interface Science, 2010, 159, 144-159.	7.0	84
358	Spreading and retraction as a function of drop size. Advances in Colloid and Interface Science, 2010, 161, 61-76.	7.0	11
359	The spreading behaviour of capillary driven yield-stress drops. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 366, 18-26.	2.3	19
360	Symmetry Reduction and Numerical Solution of a Third-Order ODE from Thin Film Flow. Mathematical and Computational Applications, 2010, 15, 709-719.	0.7	12
361	Cytoskeleton reorganization of spreading cellsÂon micro-patterned islands: a functional model. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2010, 368, 2629-2652.	1.6	28
362	Dynamics of complete wetting liquid under evaporation. Europhysics Letters, 2010, 92, 54005.	0.7	19
363	Precursor Film in Dynamic Wetting, Electrowetting, and Electro-Elasto-Capillarity. Physical Review Letters, 2010, 104, 246101.	2.9	191

#	Article	IF	CITATIONS
364	Radial Spreading of Inks and Model Liquids on Heterogeneous Polar Surfaces. Journal of Adhesion Science and Technology, 2010, 24, 539-565.	1.4	4
365	Precursor Film Formation of Spreading Droplet. , 2010, , .		0
366	Formation and Stability of Lines Produced by Inkjet Printing. Langmuir, 2010, 26, 10365-10372.	1.6	213
367	Inkjet Printing of Functional and Structural Materials: Fluid Property Requirements, Feature Stability, and Resolution. Annual Review of Materials Research, 2010, 40, 395-414.	4.3	1,465
368	Initial Spreading Kinetics of High-Viscosity Droplets on Anisotropic Surfaces. Langmuir, 2010, 26, 6328-6334.	1.6	37
369	Evaporation of macroscopic sessile droplets. Soft Matter, 2010, 6, 2591.	1.2	266
370	Spreading with evaporation and condensation in one-component fluids. Physical Review E, 2010, 82, 021603.	0.8	30
371	Spreading Behavior of Water Droplets on Fractal Agar Gel Surfaces. Langmuir, 2010, 26, 16150-16154.	1.6	36
372	Modeling the early stages of reactive wetting. Physical Review E, 2010, 82, 051601.	0.8	26
373	Molecular dynamics simulations of nanodroplet spreading on solid surfaces, effect of droplet size. Fluid Dynamics Research, 2010, 42, 035501.	0.6	25
374	Controlled Flats on Spherical Polymer Colloids. Langmuir, 2010, 26, 7644-7649.	1.6	24
375	Dynamic Wetting of Polyisoprene Melts: Influence of the End Group. Langmuir, 2010, 26, 2544-2549.	1.6	9
376	Planar digital nanoliter dispensing system based on thermocapillary actuation. Lab on A Chip, 2010, 10, 1061.	3.1	42
377	Numerical studies of droplet splashing on a dry surface: triggering a splash with the dynamic contact angle. Soft Matter, 2011, 7, 5120.	1.2	60
378	Molecular dynamics simulations of spontaneous spreading of a nanodroplet on solid surfaces. Fluid Dynamics Research, 2011, 43, 015507.	0.6	19
379	Microscale Liquid Dynamics and the Effect on Macroscale Propagation in Pillar Arrays. Langmuir, 2011, 27, 10360-10364.	1.6	41
380	Pore-scale study of capillary trapping mechanism during CO2 injection in geological formations. International Journal of Greenhouse Gas Control, 2011, 5, 1566-1577.	2.3	70
381	Molecular transport and flow past hard and soft surfaces: computer simulation of model systems. Journal of Physics Condensed Matter, 2011, 23, 184105.	0.7	11

IF ARTICLE CITATIONS # Spreading of Liquids on Substrates., 2011, , 93-103. 382 0 Evolution of droplets of perfectly wetting liquid under the influence of thermocapillary forces. 0.8 Physical Review E, 2011, 83, 046302. 384 Short time wetting dynamics on soft surfaces. Soft Matter, 2011, 7, 9084. 1.2 65 Hydrodynamics of Writing with Ink. Physical Review Letters, 2011, 107, 264501. 2.9 Incorporation of Dynamic Capillary Pressure into the Green–Ampt Model for Infiltration. Vadose 386 1.3 20 Zone Journal, 2011, 10, 642-653. Basic issues concerning hardware systems., 0,, 58-115. 388 Dynamics of complete wetting liquid under evaporation. Europhysics Letters, 2011, 93, 69901. 0.7 9 Dynamics of elastocapillary rise. Journal of Fluid Mechanics, 2011, 679, 641-654. 1.4 54 390 Dissipation in rapid dynamic wetting. Journal of Fluid Mechanics, 2011, 682, 213-240. 1.4 68 The motion, stability and breakup of a stretching liquid bridge with a receding contact line. Journal of 1.4 Fluid Mechanics, 2011, 666, 554-572. On surfactant-enhanced spreading and superspreading of liquid drops on solid surfaces. Journal of 392 1.4 85 Fluid Mechanics, 2011, 670, 5-37. Inkjet printing ceramics: From drops to solid. Journal of the European Ceramic Society, 2011, 31, 394 2.8 289 2543-2550. On computer simulation of droplet spreading. Current Opinion in Colloid and Interface Science, 2011, 395 3.4 15 16, 303-309. Wetting of low free energy surfaces by aqueous surfactant solutions. Current Opinion in Colloid and Interface Science, 2011, 16, 285-291. 3.4 Wetting and Spreading Of Liquid Metals Through Open Microgrooves and Surface Alterations. Heat 397 1.2 13 Transfer Engineering, 2011, 32, 648-657. Capillary Driven Molten Metal Flow over Topographically Complex Substrates. Langmuir, 2011, 27, 6720-6730. Can diffuse-interface models quantitatively describe moving contact lines?. European Physical 399 1.2 49 Journal: Special Topics, 2011, 197, 37-46. Note on thin film equations for solutions and suspensions. European Physical Journal: Special Topics, 1.2 2011, 197, 213-220.

	Сітатіо	CITATION REPORT	
#	Article	IF	CITATIONS
401	Superspreading mechanisms: An overview. European Physical Journal: Special Topics, 2011, 197, 325-341.	1.2	32
402	Numerical investigation of a third-order ODE from thin film flow. Meccanica, 2011, 46, 313-323.	1.2	16
403	A variational approach to a quasi-static droplet model. Calculus of Variations and Partial Differential Equations, 2011, 41, 1-19.	0.9	18
404	Fast dynamic wetting of polymer surfaces by miscible and immiscible liquids. Colloid and Polymer Science, 2011, 289, 1609-1615.	1.0	23
405	Time scale analysis for fluidized bed melt granulation-II: Binder spreading rate. Chemical Engineering Science, 2011, 66, 327-335.	1.9	14
406	On the determination of the steady film profile for a non-Newtonian thin droplet. Computers and Mathematics With Applications, 2011, 62, 383-391.	1.4	2
407	Granule nucleation and growth: Competing drop spreading and infiltration processes. Powder Technology, 2011, 206, 63-71.	2.1	32
408	Droplet spreading on chemically heterogeneous substrates. Physical Review E, 2011, 84, 036305.	0.8	50
409	Towards the efficient numerical solution of three-dimensional thin film flows on real surfaces: an evaluation of finite-difference-based schemes. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2011, 225, 1886-1902.	1.1	5
410	Dynamics of Nanoscale Precursor Film near a Moving Contact Line of Spreading Drops. Physical Review Letters, 2011, 106, 254501.	2.9	54
411	A universal law for capillary rise in corners. Journal of Fluid Mechanics, 2011, 666, 146-154.	1.4	161
412	Liquid spreading on superhydrophilic micropillar arrays. Journal of Fluid Mechanics, 2011, 680, 477-487.	1.4	76
413	Study on wetting model with combined level Set-VOF method when drop impact onto a dry surface. , 2011, , .		1
414	Use of scanning probe microscopy to study the evolution of nanometer sized liquid structures. Review of Scientific Instruments, 2011, 82, 103708.	0.6	1
415	Interfacial Adhesion in Polymer Systems. Microsystems, 2012, , 101-133.	0.3	3
416	Interfacial Fluid Mechanics. , 2012, , .		34
417	Probing Properties of Polymers in Thin Films Via Dewetting. Advances in Polymer Science, 2012, , 29-63.	0.4	22
418	Contact line dissipation in short-time dynamic wetting. Europhysics Letters, 2012, 97, 44004.	0.7	50

#	Article	IF	CITATIONS
419	Droplet spreading on a porous surface: A lattice Boltzmann study. Physics of Fluids, 2012, 24, .	1.6	49
420	Initial spreading of low-viscosity drops on partially wetting surfaces. Physical Review E, 2012, 85, 055301.	0.8	135
421	Slip or not slip? A methodical examination of the interface formation model using two-dimensional droplet spreading on a horizontal planar substrate as a prototype system. Physics of Fluids, 2012, 24, .	1.6	43
422	Precursor Film Formation Process Ahead Macroscopic Contact Line of Spreading Droplet on Smooth Substrate. Journal of Heat Transfer, 2012, 134, .	1.2	12
423	Investigation of Pool Boiling Critical Heat Flux Enhancement on a Modified Surface Through the Dynamic Wetting of Water Droplets. Journal of Heat Transfer, 2012, 134, .	1.2	16
424	Hydrodynamics of oscillating slug flow inside mini channels: a state of art review. International Journal of Theoretical and Applied Multiscale Mechanics, 2012, 2, 225.	0.5	0
425	Transient Growth Process of Precursor Film at Early Stage of Droplet Spreading. Journal of Thermal Science and Technology, 2012, 7, 487-496.	0.6	10
426	Propagation of capillary waves and ejection of small droplets in rapid droplet spreading. Journal of Fluid Mechanics, 2012, 697, 92-114.	1.4	65
427	Precursor films in wetting phenomena. Journal of Physics Condensed Matter, 2012, 24, 243102.	0.7	136
428	Beyond Tanner's Law: Crossover between Spreading Regimes of a Viscous Droplet on an Identical Film. Physical Review Letters, 2012, 109, 154501.	2.9	34
429	Modeling and experiments in dissolutive wetting: a review. Journal of Materials Science, 2012, 47, 8261-8274.	1.7	34
430	Wetting effect on bubble shapes formed in a cylindrical T-junction. Chemical Engineering Science, 2012, 84, 100-106.	1.9	18
431	Anomalous Spreading with Marangoni Flow on Agar Gel Surfaces. Langmuir, 2012, 28, 3799-3806.	1.6	21
432	Unconventional Multiple Ring Structure Formation from Evaporation-Induced Self-Assembly of Polymers. Langmuir, 2012, 28, 11056-11063.	1.6	18
433	Writing with liquid using a nanodispenser: spreading dynamics at the sub-micron scale. Soft Matter, 2012, 8, 4995.	1.2	21
434	Spreading of a Suspension Drop on a Horizontal Surface. Langmuir, 2012, 28, 2680-2689.	1.6	11
435	Coalescence of Two Drops on Partially Wettable Substrates. Langmuir, 2012, 28, 3791-3798.	1.6	74
436	Wicking and Spreading of Water Droplets on Nanotubes. Langmuir, 2012, 28, 2614-2619.	1.6	46

#	Article	IF	CITATIONS
437	Reactive wetting of AgCuTi filler metal on the TiAl-based alloy substrate. Applied Surface Science, 2012, 259, 343-348.	3.1	33
438	Numerical solutions of thin-film equations for polymer flows. European Physical Journal E, 2012, 35, 114.	0.7	30
439	Obstructed Breakup of Slender Drops in a Microfluidic <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>T</mml:mi>Junction. Physical Review Letters, 2012, 108, 264502.</mml:math 	2.9	93
440	Phase plane analysis and traveling wave solution of third order nonlinear singular problems arising in thin film evolution. Computers and Mathematics With Applications, 2012, 64, 2886-2895.	1.4	4
441	The impact and spreading of a small liquid drop on a non-porous substrate over an extended time scale. Soft Matter, 2012, 8, 2686.	1.2	64
442	Wetting phenomena and time of wetness in atmospheric corrosion: a review. Corrosion Reviews, 2012, 30, .	1.0	64
443	Simple Approach for Spreading Dynamics of Polymeric Fluids. Macromolecular Chemistry and Physics, 2012, 213, 654-665.	1.1	41
444	An investigation of an Emden-Fowler equation from thin film flow. Acta Mechanica Sinica/Lixue Xuebao, 2012, 28, 300-307.	1.5	2
445	Energy-based model for capillary spreading of power-law liquids on a horizontal plane. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 403, 155-163.	2.3	33
446	The effect of liquid spreading due to micro-structures of flow boiling critical heat flux. International Journal of Multiphase Flow, 2012, 43, 1-12.	1.6	33
447	Short time spreading and wetting of offset printing liquids on model calcium carbonate coating structures. Journal of Colloid and Interface Science, 2012, 369, 426-434.	5.0	15
448	Spreading and Stability of a Thin Droplet on a Heated Rotating Plate. Chemie-Ingenieur-Technik, 2012, 84, 138-144.	0.4	Ο
449	Wetting and hydrophobic modification of cellulose surfaces for paper applications. Journal of Materials Science, 2013, 48, 6455-6498.	1.7	157
450	Droplet spreading: Theory and experiments. Comptes Rendus Physique, 2013, 14, 629-635.	0.3	7
451	Initial Electrospreading of Aqueous Electrolyte Drops. Physical Review Letters, 2013, 110, 026103.	2.9	26
452	Numerical simulation of drop oscillation in AC electrowetting. Science China: Physics, Mechanics and Astronomy, 2013, 56, 383-394.	2.0	6
453	Spreading of Boger fluid on horizontal surface. Journal of Non-Newtonian Fluid Mechanics, 2013, 202, 120-130.	1.0	14
454	Flow rate analysis of an EWOD-based device: how important are wetting-line pinning and velocity effects?. Microfluidics and Nanofluidics, 2013, 15, 587-597.	1.0	10

#	Article	IF	CITATIONS
455	Wetting kinetics of water nano-droplet containing non-surfactant nanoparticles: A molecular dynamics study. Applied Physics Letters, 2013, 103, .	1.5	38
456	Viscous Control of Peeling an Elastic Sheet by Bending and Pulling. Physical Review Letters, 2013, 111, 154501.	2.9	93
457	Wetting dynamics and evaporation of sessile droplets on nano-porous alumina surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 432, 71-81.	2.3	53
458	Spreading and bistability of droplets on differentially heated substrates. Journal of Fluid Mechanics, 2013, 725, 566-587.	1.4	10
459	Dynamic Wetting of Hydrophobic Polymers by Aqueous Surfactant and Superspreader Solutions. Langmuir, 2013, 29, 14855-14864.	1.6	45
460	A smoothed particle hydrodynamics model for droplet and film flow on smooth and rough fracture surfaces. Advances in Water Resources, 2013, 59, 1-14.	1.7	47
461	Experimental study of drop spreading on textured superhydrophilic surfaces. Physics of Fluids, 2013, 25, .	1.6	43
462	Surface Tension in Microsystems. Microtechnology and MEMS, 2013, , .	0.2	25
463	Drastic Changes in Interfacial Hydrodynamics due to Wall Slippage: Slip-Intensified Film Thinning, Drop Spreading, and Capillary Instability. Physical Review Letters, 2013, 111, 136001.	2.9	22
464	Extension of the natural element method to surface tension and wettability for the simulation of polymer flows at the micro and nano scales. Journal of Non-Newtonian Fluid Mechanics, 2013, 200, 9-16.	1.0	13
465	Electrostatic precursor films. Soft Matter, 2013, 9, 9918.	1.2	3
466	Experimental investigation of a moving contact line in a channel. Soft Matter, 2013, 9, 10229.	1.2	6
467	Multiscale dynamic wetting of a droplet on a lyophilic pillar-arrayed surface. Journal of Fluid Mechanics, 2013, 716, 171-188.	1.4	101
468	Synergistic effects of geometry, inertia, and dynamic contact angle on wetting and dewetting of capillaries of varying cross sections. Journal of Colloid and Interface Science, 2013, 396, 270-277.	5.0	20
469	Numerical simulations of spontaneous capillary rises with very low capillary numbers using a front-tracking method combined with generalized Navier boundary condition. International Journal of Multiphase Flow, 2013, 51, 22-32.	1.6	40
470	Uphill motion of droplets on tilted and vertical grooved substrates induced by a wettability gradient. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 434, 126-135.	2.3	33
471	Dynamic wetting at the nanoscale. Physical Review E, 2013, 88, 033010.	0.8	33
472	Spreading of a non-Newtonian liquid drop over a homogeneous rough surface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 419, 228-232.	2.3	15

#	Article	IF	CITATIONS
473	Spreading and merging of liquid streams flowing down an inclined plane: Modeling and experiments. Chemical Engineering Science, 2013, 95, 221-231.	1.9	3
474	A variational approach to a differential equation modeling thin-film flows and pertinent to Tanner's Law. Physica Scripta, 2013, 87, 015003.	1.2	1
475	A nonlinear eigenvalue problem from thin-film flow. Journal of Engineering Mathematics, 2013, 79, 91-99.	0.6	1
476	Voltage-induced spreading and superspreading of liquids. Nature Communications, 2013, 4, 1605.	5.8	88
477	Dynamics of droplet breakup in a T-junction. Journal of Fluid Mechanics, 2013, 717, .	1.4	110
478	Inertial to Viscoelastic Transition in Early Drop Spreading on Soft Surfaces. Langmuir, 2013, 29, 1893-1898.	1.6	67
479	Short time dynamics of viscous drop spreading. Physics of Fluids, 2013, 25, .	1.6	130
481	Effect of Contact Line Dynamics on the Thermocapillary Motion of a Droplet on an Inclined Plate. Langmuir, 2013, 29, 8892-8906.	1.6	70
482	Numerical simulation of spreading drops. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 432, 29-37.	2.3	51
483	Droplet impact dynamics on a spherical particle. Chemical Engineering Science, 2013, 100, 105-119.	1.9	122
484	Hydrodynamic Theory of Liquid Slippage on a Solid Substrate Near a Moving Contact Line. Physical Review Letters, 2013, 110, 234503.	2.9	22
485	Oscillation and Recoil of Single and Consecutively Printed Droplets. Langmuir, 2013, 29, 2185-2192.	1.6	22
486	Dewetting of thin liquid films on chemically patterned substrates: front propagation along narrow lyophobic stripes and stripe arrays. Microfluidics and Nanofluidics, 2013, 14, 669-682.	1.0	9
487	Self-Pinning by Colloids Confined at a Contact Line. Physical Review Letters, 2013, 110, 028303.	2.9	101
488	Inertial coalescence of droplets on a partially wetting substrate. Physics of Fluids, 2013, 25, .	1.6	23
489	Modeling of the sequence of phenomena in brazing. , 2013, , 55-84e.		2
490	Controlled atmosphere brazing of aluminum. , 2013, , 280-323e.		16
491	Airway reopening through catastrophic events in a hierarchical network. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 859-864.	3.3	28

#	Article	IF	CITATIONS
492	Numerical Investigation of the Steady State of a Driven Thin Film Equation. Journal of Applied Mathematics, 2013, 2013, 1-6.	0.4	2
493	The fastest drop climbing on a wet conical fibre. Physics of Fluids, 2013, 25, 052105.	1.6	18
494	Comparison of Navier-Stokes simulations with long-wave theory: Study of wetting and dewetting. Physics of Fluids, 2013, 25, 112103.	1.6	18
495	Droplet spreading on a two-dimensional wicking surface. Physical Review E, 2013, 88, 062406.	0.8	12
496	Molecular dynamics studies on spreading of nanofluids promoted by nanoparticle adsorption on solid surface. Theoretical and Applied Mechanics Letters, 2013, 3, 054006.	1.3	8
497	Short and long time drop dynamics on lubricated substrates. Europhysics Letters, 2013, 104, 34008.	0.7	80
498	The role height plays in the spreading of liquid droplets over sharp edges. Applied Physics Letters, 2013, 102, .	1.5	5
499	Chapter 4: Dynamics of wetting. , 2013, , 78-91.		0
500	Moving Contact Line Problem in Electrowetting. , 2013, , 491-556.		0
501	Wetting Phenomena on the Nanometer Scale. , 2013, , .		1
501 502	Wetting Phenomena on the Nanometer Scale. , 2013, , . Motion of a liquid bridge in a capillary slot: a numerical investigation of wettability and geometrical effects. Houille Blanche, 2013, 99, 50-56.	0.3	1
	Motion of a liquid bridge in a capillary slot: a numerical investigation of wettability and geometrical	0.3	
502	Motion of a liquid bridge in a capillary slot: a numerical investigation of wettability and geometrical effects. Houille Blanche, 2013, 99, 50-56.		3
502 504	Motion of a liquid bridge in a capillary slot: a numerical investigation of wettability and geometrical effects. Houille Blanche, 2013, 99, 50-56. Progress in Wettability Study of Reactive Systems. Journal of Metallurgy, 2014, 2014, 1-14. ENHANCED CAPILLARY RISE OF WETTING LIQUIDS IN REDUCED GRAVITATIONAL SHIELDING UNDER	1.1	3 8
502 504 505	Motion of a liquid bridge in a capillary slot: a numerical investigation of wettability and geometrical effects. Houille Blanche, 2013, 99, 50-56. Progress in Wettability Study of Reactive Systems. Journal of Metallurgy, 2014, 2014, 1-14. ENHANCED CAPILLARY RISE OF WETTING LIQUIDS IN REDUCED GRAVITATIONAL SHIELDING UNDER MICROGRAVITY CONDITIONS. Physics International, 2014, 5, 140-151. Enabling two-phase microfluidic thermal transport systems using a novel thermal-flux degassing and	1.1 2.0	3 8 0
502 504 505 506	Motion of a liquid bridge in a capillary slot: a numerical investigation of wettability and geometrical effects. Houille Blanche, 2013, 99, 50-56. Progress in Wettability Study of Reactive Systems. Journal of Metallurgy, 2014, 2014, 1-14. ENHANCED CAPILLARY RISE OF WETTING LIQUIDS IN REDUCED GRAVITATIONAL SHIELDING UNDER MICROGRAVITY CONDITIONS. Physics International, 2014, 5, 140-151. Enabling two-phase microfluidic thermal transport systems using a novel thermal-flux degassing and fluid charging approach. Journal of Micromechanics and Microengineering, 2014, 24, 035021. SPREADING DYNAMICS OF NANODROPS: A LATTICE BOLTZMANN STUDY. International Journal of Modern	1.1 2.0 1.5	3 8 0 3
502 504 505 506	Motion of a liquid bridge in a capillary slot: a numerical investigation of wettability and geometrical effects. Houille Blanche, 2013, 99, 50-56. Progress in Wettability Study of Reactive Systems. Journal of Metallurgy, 2014, 2014, 1-14. ENHANCED CAPILLARY RISE OF WETTING LIQUIDS IN REDUCED GRAVITATIONAL SHIELDING UNDER MICROGRAVITY CONDITIONS. Physics International, 2014, 5, 140-151. Enabling two-phase microfluidic thermal transport systems using a novel thermal-flux degassing and fluid charging approach. Journal of Micromechanics and Microengineering, 2014, 24, 035021. SPREADING DYNAMICS OF NANODROPS: A LATTICE BOLTZMANN STUDY. International Journal of Modern Physics C, 2014, 25, 1340019.	1.1 2.0 1.5 0.8	3 8 0 3 8

ARTICLE IF CITATIONS # Capillary tube wetting induced by particles: towards armoured bubbles tailoring. Soft Matter, 2014, 511 1.2 16 10, 9403-9412. Effects of surface wettability and liquid viscosity on the dynamic wetting of individual drops. 0.8 84 Physical Review E, 2014, 90, 022401. Effects of structural and chemical anisotropy of nanostructures on droplet spreading on a two 513 1.1 4 dimensional wicking surface. Journal of Applied Physics, 2014, 116, . Early stage spreading: Mechanisms of rapid contact line advance. Current Opinion in Colloid and 514 Interface Science, 2014, 19, 255-265. A study of dynamic contact angles of shear-thickening power-law fluids. Physics of Fluids, 2014, 26, 515 1.6 1 052103. Dynamics of viscous slugs fall in dry capillaries. Journal of Adhesion Science and Technology, 2014, 1.4 28, 1655-1660. Dewetting of evaporating thin films over nanometer-scale topographies. Physical Review E, 2014, 90, 517 0.8 3 012409. Breakdown of the Bretherton law due to wallÂslippage. Journal of Fluid Mechanics, 2014, 741, 200-227. 1.4 9 519 Moffatt vortices induced by the motion of a contact line. Journal of Fluid Mechanics, 2014, 746, . 1.4 11 Simulation of Droplet Impact with Dynamic Contact Angle Boundary Conditions., 2014, , 297-325. Role of self-assembled surfactant structure on the spreading of oil on flat solid surfaces. Advances 521 3 7.0 in Colloid and Interface Science, 2014, 210, 72-77. Spreading of emulsions on a solid substrate. Journal of Coatings Technology Research, 2014, 11, 1.2 103-108. Numerical Simulations of Flows with Moving Contact Lines. Annual Review of Fluid Mechanics, 2014, 523 10.8 248 46, 97-119. Contact-line instability of liquids spreading on top of rotating substrates. European Journal of Mechanics, B/Fluids, 2014, 43, 33-44. 524 1.2 Electrowetting â€" From statics to dynamics. Advances in Colloid and Interface Science, 2014, 210, 2-12. 525 7.0 146 Theoretical and experimental studies on the contact line motion of second-order fluid. Rheologica 1.1 Acta, 2014, 53, 55-66. Molecular Dynamics Study on the Self-Assembled Monolayer Grown from a Droplet of Alkanethiol. 527 1.515 Journal of Physical Chemistry C, 2014, 118, 11149-11157. 528 Universal spreading of water drops on complex surfaces. Soft Matter, 2014, 10, 2641. 1.2 44

#	Article	IF	CITATIONS
529	Effect of Microtextured Surface Topography on the Wetting Behavior of Eutectic Gallium–Indium Alloys. Langmuir, 2014, 30, 533-539.	1.6	142
530	Contact angles in the pseudopotential lattice Boltzmann modeling of wetting. Physical Review E, 2014, 90, 053301.	0.8	151
531	Reactive wetting by liquid sodium on thin Au plating. Journal of Nuclear Science and Technology, 2014, 51, 201-207.	0.7	4
532	Elastocapillary deformations on partially-wetting substrates: rival contact-line models. Soft Matter, 2014, 10, 7361.	1.2	77
533	Thermocapillary-Driven Motion of a Sessile Drop: Effect of Non-Monotonic Dependence of Surface Tension on Temperature. Langmuir, 2014, 30, 4310-4321.	1.6	86
534	Wetting Dynamics on Superhydrophilic Surfaces Prepared by Photonic Microfolding. Langmuir, 2014, 30, 3127-3131.	1.6	5
535	Surfactant Enhanced Spreading: Catanionic Mixture. Colloids and Interface Science Communications, 2014, 1, 1-5.	2.0	13
536	Fractal pattern formation in nanosuspension sessile droplets via evaporation-spreading on a glass substrate. Colloids and Interface Science Communications, 2014, 1, 43-46.	2.0	12
537	Spreading and Arrest of a Molten Liquid on Cold Substrates. Langmuir, 2014, 30, 10151-10155.	1.6	31
538	Effect of relative humidity on the spreading dynamics of sessile drops of blood. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 456, 273-285.	2.3	43
539	The influence of topography on dynamic wetting. Advances in Colloid and Interface Science, 2014, 206, 275-293.	7.0	98
540	Forced spreading of films and droplets of colloidal suspensions. Journal of Fluid Mechanics, 2014, 742, 495-519.	1.4	25
541	Air entrainment in dynamic wetting: Knudsen effects and the influence of ambient air pressure. Journal of Fluid Mechanics, 2015, 769, 444-481.	1.4	28
542	Non-isothermal droplet spreading/dewetting andÂits reversal. Journal of Fluid Mechanics, 2015, 776, 74-95.	1.4	8
543	Water–substrate physico-chemistry in wetting dynamics. Journal of Fluid Mechanics, 2015, 781, 695-711.	1.4	23
544	Droplet spreading and absorption on rough, permeable substrates. Journal of Fluid Mechanics, 2015, 784, 465-486.	1.4	58
545	On contact-line dynamics with mass transfer. European Journal of Applied Mathematics, 2015, 26, 671-719.	1.4	10
546	Thin Film Flows: Theory and Modeling. , 0, , 7377-7390.		2

#	Article	IF	CITATIONS
547	Lattice Boltzmann investigation of droplet inertial spreading on various porous surfaces. Physical Review E, 2015, 91, 052405.	0.8	20
548	Symmetric drop coalescence on an under-liquid substrate. Physical Review E, 2015, 92, 033013.	0.8	10
549	Dynamic wetting of viscoelastic droplets. Physical Review E, 2015, 92, 043002.	0.8	18
550	Kinetic undercooling in Hele-Shaw flows. Physical Review E, 2015, 92, 043019.	0.8	6
551	Onset of Area-Dependent Dissipation in Droplet Spreading. Physical Review Letters, 2015, 115, 046103.	2.9	4
552	InÂsituDetermination of Surface Tension-to-Shear Viscosity Ratio for Quasiliquid Layers on Ice Crystal Surfaces. Physical Review Letters, 2015, 115, 256103.	2.9	27
553	Surface structure determines dynamic wetting. Scientific Reports, 2015, 5, 8474.	1.6	54
554	Role of Viscous Dissipative Processes on the Wetting of Textured Surfaces. Scientific Reports, 2015, 5, 14159.	1.6	29
555	Effects of surface wettability on fast liquid transfer. Physics of Fluids, 2015, 27, .	1.6	31
556	Characterization and Modeling of Microscale Preplaced Powder Cladding Via Fiber Laser. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2015, 137, .	1.3	15
557	Axisymmetric model of drop spreading on a horizontal surface. Physics of Fluids, 2015, 27, 092103.	1.6	11
558	Amorphous Aggregation of Amyloid Beta 1â€40 Peptide in Confined Space. ChemPhysChem, 2015, 16, 3379-3384.	1.0	1
559	Wetting kinetics of the AgCuTi filler metal on pure molybdenum substrate. Surface and Interface Analysis, 2015, 47, 838-843.	0.8	4
560	BEYOND TANNER'S LAW: ROLE OF CONTACT LINE EVAPORATION ON THE SPREADING OF VISCOUS DROPLET. Interfacial Phenomena and Heat Transfer, 2015, 3, 221-229.	0.3	7
561	Evaporation of an isolated liquid plug moving inside a capillary tube. International Journal of Heat and Mass Transfer, 2015, 89, 176-185.	2.5	14
562	Dynamics of spreading on ultra-hydrophobic surfaces. Journal of Coatings Technology Research, 2015, 12, 959-964.	1.2	15
563	Dynamic contact angle measurements on superhydrophobic surfaces. Physics of Fluids, 2015, 27, .	1.6	56
564	Sliding droplets of Xanthan solutions: A joint experimental and numerical study. European Physical Journal E, 2015, 38, 126.	0.7	16

#	Article	IF	CITATIONS
565	Experimental studies on formation, spreading and drying of inkjet drop of colloidal suspensions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 468, 234-245.	2.3	38
567	Local surface shear stress measurements from oil streaks thinning rate. Sensors and Actuators A: Physical, 2015, 223, 31-39.	2.0	2
568	Surfactant spreading on a thin liquid film: reconciling models and experiments. Journal of Engineering Mathematics, 2015, 94, 63-79.	0.6	15
569	Vapour-mediated sensing and motility in two-component droplets. Nature, 2015, 519, 446-450.	13.7	335
570	Thin Films in Partial Wetting: Internal Selection of Contact-Line Dynamics. Physical Review Letters, 2015, 115, 034502.	2.9	22
571	Equilibria and their stability for a viscous droplet model. Nonlinearity, 2015, 28, 3175-3191.	0.6	2
572	When and how surface structure determines the dynamics of partial wetting. Europhysics Letters, 2015, 110, 46002.	0.7	10
573	Depletion of carbon nanotube depositions and tube realignment in the spreading of sessile drops. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 482, 624-630.	2.3	2
574	Compound chondrules fused cold. Icarus, 2015, 254, 56-61.	1.1	14
575	Liquid spreading on solid surfaces and penetration into porous matrices: Coated and uncoated papers. Advances in Colloid and Interface Science, 2015, 220, 8-53.	7.0	35
576	Comparison of spontaneous wetting and drop impact dynamics of aqueous surfactant solutions on hydrophobic polypropylene surfaces: scaling of the contact radius. Colloid and Polymer Science, 2015, 293, 257-265.	1.0	20
577	Local well-posedness for a quasi-stationary droplet model. Calculus of Variations and Partial Differential Equations, 2015, 54, 1147-1160.	0.9	4
578	Dynamics of thin fluid films controlled by thermal fluctuations. European Physical Journal: Special Topics, 2015, 224, 379-387.	1.2	12
579	Smoothing of contact lines in spreading droplets by trisiloxane surfactants and its relevance for superspreading. Soft Matter, 2015, 11, 4527-4539.	1.2	13
580	Elastic-plated gravity currents. European Journal of Applied Mathematics, 2015, 26, 1-31.	1.4	60
581	Encapsulation of gold nanoparticles with PHB based on coffee ring effect. RSC Advances, 2015, 5, 18501-18505.	1.7	4
582	Gravity driven current during the coalescence of two sessile drops. Physics of Fluids, 2015, 27, .	1.6	12
583	Motion of an isolated liquid plug inside a capillary tube: effect of contact angle hysteresis. Experiments in Fluids, 2015, 56, 1.	1.1	13

#	Article	IF	Citations
584	A diffuse-interface immersed-boundary method for two-dimensional simulation of flows with moving contact lines on curved substrates. Journal of Computational Physics, 2015, 294, 484-502.	1.9	69
585	Experimental study on the dynamic wetting of dilute nanofluids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 486, 6-13.	2.3	21
586	Dynamic contact angle measurements of viscoelastic fluids. Journal of Non-Newtonian Fluid Mechanics, 2015, 225, 54-61.	1.0	18
587	Universal contact-line dynamics at the nanoscale. Soft Matter, 2015, 11, 9247-9253.	1.2	12
588	On multiscale moving contact line theory. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, 471, 20150224.	1.0	8
589	Mixtures of catanionic surfactants can be superspreaders: Comparison with trisiloxane superspreader. Journal of Colloid and Interface Science, 2015, 459, 250-256.	5.0	29
590	Towards an improved understanding of liquid transportation along a hair fiber: ratchet-like microstructure induced capillary rise. RSC Advances, 2015, 5, 29931-29938.	1.7	1
591	3D computation of an incipient motion of a sessile drop on a rigid surface with contact angle hysteresis. Theoretical and Computational Fluid Dynamics, 2015, 29, 373-390.	0.9	14
592	Motion of non-wetting drop in constricted geometry. Mechanics Research Communications, 2015, 70, 85-93.	1.0	2
593	Characteristics of spreading dynamics for adsorption wetting at high temperatures. Computational Materials Science, 2015, 99, 29-32.	1.4	21
594	Current opinion in superspreading mechanisms. Advances in Colloid and Interface Science, 2015, 222, 517-529.	7.0	20
595	Impact of concentrated colloidal suspension drops on solid surfaces. Powder Technology, 2015, 270, 412-417.	2.1	18
596	Nanoparticle-tuned spreading behavior of nanofluid droplets on the solid substrate. Microfluidics and Nanofluidics, 2015, 18, 111-120.	1.0	33
598	Rigorous asymptotics of traveling-wave solutions to the thin-film equation and Tanner's law. Nonlinearity, 2016, 29, 2497-2536.	0.6	12
599	Droplet spreading on rough surfaces: Tackling the contact line boundary condition. Physics of Fluids, 2016, 28, .	1.6	44
600	Direct numerical simulation of gas-solid-liquid flows with capillary effects: An application to liquid bridge forces between spherical particles. Physical Review E, 2016, 94, 063301.	0.8	52
601	High-gravity spreading of liquid puddles on wetting flexible substrates. Applied Physics Letters, 2016, 108, 074102.	1.5	3
602	Aerosol jet fog (ajFOG) deposition of aluminum oxide phosphate thin films from an aqueous fog. Journal of Materials Research, 2016, 31, 3303-3312.	1.2	5

#	Article	IF	CITATIONS
603	On the motion of a sessile drop on an incline: Effect of non-monotonic thermocapillary stresses. Applied Physics Letters, 2016, 109, .	1.5	19
604	Bingham fluid contact line dynamics. Journal of Adhesion Science and Technology, 2016, 30, 1681-1688.	1.4	2
605	Curvature boundary condition for a moving contact line. Journal of Computational Physics, 2016, 310, 329-341.	1.9	19
606	Superhydrophilicity and spontaneous spreading on zwitterionic surfaces: carboxybetaine and sulfobetaine. RSC Advances, 2016, 6, 24827-24834.	1.7	40
607	The wetting properties of Li droplet on Cu surfaces: A molecular dynamics study. Computational Materials Science, 2016, 119, 114-119.	1.4	23
608	Capacitive micro-oil detector with a nanotextured superhydrophobic/superoleophilic surface. Sensors and Actuators B: Chemical, 2016, 237, 974-983.	4.0	4
609	Thermal model for additive restoration of mold steels using crucible steel. Journal of Manufacturing Processes, 2016, 24, 346-354.	2.8	23
610	A Critical Review of Dynamic Wetting by Complex Fluids: From Newtonian Fluids to Non-Newtonian Fluids and Nanofluids. Advances in Colloid and Interface Science, 2016, 236, 43-62.	7.0	146
611	Influence of surfactants in forced dynamic dewetting. Soft Matter, 2016, 12, 7782-7791.	1.2	32
612	Stretching liquid bridges with moving contact lines: comparison of liquid-transfer predictions and experiments. Soft Matter, 2016, 12, 7457-7469.	1.2	29
613	Understanding the Early Regime of Drop Spreading. Langmuir, 2016, 32, 8843-8848.	1.6	46
614	Kinetics of wetting and spreading of AgCu filler metal over Ti–6Al–4V substrates. Journal of Materials Science, 2016, 51, 10960-10969.	1.7	14
615	Spreading of Bubbles after Contacting the Lower Side of an Aerophilic Slide Immersed in Water. Physical Review Letters, 2016, 117, 094501.	2.9	33
616	Surfactant- and Aqueous-Foam-Driven Oil Extraction from Micropatterned Surfaces. Langmuir, 2016, 32, 13149-13158.	1.6	2
617	A Langevin model for fluctuating contact angle behaviour parametrised using molecular dynamics. Soft Matter, 2016, 12, 9604-9615.	1.2	18
618	Droplet Impact Dynamics on Lubricant-Infused Superhydrophobic Surfaces: The Role of Viscosity Ratio. Langmuir, 2016, 32, 10166-10176.	1.6	57
619	Forced versus Spontaneous Spreading of Liquids. Langmuir, 2016, 32, 10153-10158.	1.6	25
621	The design challenge in printing devices and circuits: Influence of the orientation of print patterns in inkjet-printed electronics. Organic Electronics, 2016, 37, 428-438.	1.4	18

#	Article	IF	CITATIONS
622	Thin three-dimensional droplets on an oscillating substrate with contact angle hysteresis. Physical Review E, 2016, 93, 013123.	0.8	4
623	Dynamic Chemically Driven Dewetting, Spreading, and Self-Running of Sessile Droplets on Crystalline Silicon. Langmuir, 2016, 32, 12611-12622.	1.6	7
624	On the predictive capabilities of a multiphase SPH model for hydrodynamic spreading dynamics. Proceedings in Applied Mathematics and Mechanics, 2016, 16, 611-612.	0.2	2
625	Application of a moving contact model for run-up waves to urban flooding process. Journal of Japan Society of Civil Engineers Ser B2 (Coastal Engineering), 2016, 72, I_67-I_72.	0.0	1
626	Superspreading on Immersed Gel Surfaces for the Confined Synthesis of Thin Polymer Films. Angewandte Chemie, 2016, 128, 3679-3683.	1.6	15
627	A study of the microstructure, thermal properties and wetting kinetics of Sn–3Ag–xZn lead-free solders. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	1.1	1
628	Universal evolution of a viscous–capillary spreading drop. Soft Matter, 2016, 12, 6073-6078.	1.2	6
629	Effect of wettability alteration on long-term behavior of fluids in subsurface. Computational Particle Mechanics, 2016, 3, 277-289.	1.5	4
630	Kinetics of spreading of synergetic surfactant mixtures in the case of partial wetting. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 505, 23-28.	2.3	10
631	Reactive wetting of low carbon steel by Al 4043 and 6061 alloys at 600–750 °C. Surface and Coatings Technology, 2016, 302, 166-172.	2.2	29
632	Capillary Flows. , 2016, , 26-1-26-19.		0
633	Transient behaviour of deposition of liquid metal droplets on a solid substrate. Heat and Mass Transfer, 2016, 52, 2283-2292.	1.2	7
634	Superspreading on Immersed Gel Surfaces for the Confined Synthesis of Thin Polymer Films. Angewandte Chemie - International Edition, 2016, 55, 3615-3619.	7.2	64
635	A New Method for Real-Time Measuring the Temperature-Dependent Dielectric Constant of the Silicone Oil. IEEE Sensors Journal, 2016, 16, 8792-8797.	2.4	8
636	Effect of Graphene Nanoplatelets on Wetting, Microstructure, and Tensile Characteristics of Sn-3.0Ag-0.5Cu (SAC) Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 494-503.	1.1	54
637	Effects of roughness on the wettability of high temperature wetting system. Surface and Coatings Technology, 2016, 287, 145-152.	2.2	46
638	Spreading dynamics of droplet on an inclined surface. Theoretical and Computational Fluid Dynamics, 2016, 30, 237-252.	0.9	15
639	Surfactant-enhanced spreading: Experimental achievements and possible mechanisms. Advances in Colloid and Interface Science, 2016, 233, 155-160.	7.0	46

#	Article	IF	CITATIONS
640	Experimental Study on the Nanofluid Dynamic Wetting. Springer Theses, 2016, , 23-40.	0.0	0
641	Local Dissipation in Nanofluid Dynamic Wetting: Effects of Structural Disjoining Pressure. Springer Theses, 2016, , 41-58.	0.0	0
642	The effect of adsorption kinetics on the rate of surfactant-enhanced spreading. Soft Matter, 2016, 12, 1009-1013.	1.2	29
643	Pairwise Force Smoothed Particle Hydrodynamics model for multiphase flow: Surface tension and contact line dynamics. Journal of Computational Physics, 2016, 305, 1119-1146.	1.9	96
644	Uptake of phosphorus from surfactant solutions by wheat leaves: spreading kinetics, wetted area, and drying time. Soft Matter, 2016, 12, 209-218.	1.2	22
645	Smoothed particle hydrodynamics and its applications for multiphase flow and reactive transport in porous media. Computational Geosciences, 2016, 20, 807-834.	1.2	79
646	CFD simulation and validation of self-cleaning on solar panel surfaces with superhydrophilic coating. Future Cities and Environment, 2017, 1, 8.	0.6	15
647	A review of defect modeling in laser material processing. Additive Manufacturing, 2017, 14, 137-147.	1.7	56
648	Electrostatic cloaking of surface structure for dynamic wetting. Science Advances, 2017, 3, e1602202.	4.7	12
649	A Coupled Level Set and Volume of Fluid method for automotive exterior water management applications. International Journal of Multiphase Flow, 2017, 91, 19-38.	1.6	62
650	Wetting and Spreading of Molten Volcanic Ash in Jet Engines. Journal of Physical Chemistry Letters, 2017, 8, 1878-1884.	2.1	45
651	Marangoni Contraction of Evaporating Sessile Droplets of Binary Mixtures. Langmuir, 2017, 33, 4682-4687.	1.6	87
652	Molecular dynamics simulations on dissolutive wetting of Al–Ni alloy droplets on NiAl substrate. Journal of the Taiwan Institute of Chemical Engineers, 2017, 75, 51-58.	2.7	15
653	Breakup of a liquid rivulet falling over an inclined plate: Identification of a critical Weber number. Physics of Fluids, 2017, 29, 052101.	1.6	19
654	Thermo-hydrodynamic transport phenomena in partially wetting liquid plugs moving inside micro-channels. Sadhana - Academy Proceedings in Engineering Sciences, 2017, 42, 607-624.	0.8	6
655	Dynamics of Dissolutive Wetting: A Molecular Dynamics Study. Langmuir, 2017, 33, 6464-6470.	1.6	21
656	Drop spreading on a superhydrophobic surface: pinned contact line and bending liquid surface. Physical Chemistry Chemical Physics, 2017, 19, 14442-14452.	1.3	7
657	Films, layers, and droplets: The effect of near-wall fluid structure on spreading dynamics. Physical Review E, 2017, 95, 023104.	0.8	18

#	Article	IF	CITATIONS
658	On evaporation of thin liquid films subjected to ultrasonic substrate vibration. International Communications in Heat and Mass Transfer, 2017, 83, 15-22.	2.9	27
659	Capillary fracture of ultrasoft gels: variability and delayed nucleation. Soft Matter, 2017, 13, 2962-2966.	1.2	10
660	Spreading Kinetics of Ultrathin Liquid Films Using Molecular Dynamics. Langmuir, 2017, 33, 3476-3483.	1.6	11
661	Superamphiphilic Silicon Wafer Surfaces and Applications for Uniform Polymer Film Fabrication. Angewandte Chemie - International Edition, 2017, 56, 5720-5724.	7.2	54
662	Superamphiphilic Silicon Wafer Surfaces and Applications for Uniform Polymer Film Fabrication. Angewandte Chemie, 2017, 129, 5814-5818.	1.6	11
663	Theoretical analysis and simulation of obstructed breakup of micro-droplet in T-junction under an asymmetric pressure difference. Physics of Fluids, 2017, 29, .	1.6	29
664	Symmetric and uniform coalescence of ink-jetting printed polyfluorene ink drops by controlling the droplet spacing distance and ink surface tension/viscosity ratio. Polymer, 2017, 115, 45-51.	1.8	32
665	Drop spreading and penetrating on micro/nano particle sintering porous with multiscale structure. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 516, 9-22.	2.3	16
666	Liquid-like behavior of UV-irradiated interstellar ice analog at low temperatures. Science Advances, 2017, 3, eaao2538.	4.7	32
667	Sharp acceleration of a macroscopic contact line induced by a particle. Journal of Fluid Mechanics, 2017, 830, .	1.4	9
668	Smoothed particle hydrodynamics study of the roughness effect on contact angle and droplet flow. Physical Review E, 2017, 96, 033115.	0.8	22
669	Capillary spreading of contact line over a sinking sphere. Applied Physics Letters, 2017, 111, .	1.5	9
670	Biological applications of kinetics of wetting and spreading. Advances in Colloid and Interface Science, 2017, 249, 17-36.	7.0	22
671	Drying of Droplets of Colloidal Suspensions on Rough Substrates. Langmuir, 2017, 33, 10061-10076.	1.6	68
672	Viscous Force Retards Initial Droplet Spreading. Journal of Physical Chemistry C, 2017, 121, 22054-22059.	1.5	13
673	Spreading dynamics of a precursor film of nanodrops on total wetting surfaces. Physical Chemistry Chemical Physics, 2017, 19, 27786-27794.	1.3	21
674	Drop friction on liquid-infused materials. Soft Matter, 2017, 13, 6981-6987.	1.2	110
675	Molecular dynamics study of high temperature wetting kinetics for Al/NiAl and Al/Ni3Al systems: Effects of grain boundaries. Chemical Engineering Science, 2017, 174, 127-135.	1.9	11

#	Article	IF	CITATIONS
676	Morphological evolution of microscopic dewetting droplets with slip. Journal of Fluid Mechanics, 2017, 828, 271-288.	1.4	9
677	Forced Spreading of Aqueous Solutions on Zwitterionic Sulfobetaine Surfaces for Rapid Evaporation and Solute Separation. Langmuir, 2017, 33, 7569-7574.	1.6	7
678	Spreading Dynamics of Molten Polymer Drops on Glass Substrates. Langmuir, 2017, 33, 8447-8454.	1.6	33
679	Spreading law of non-Newtonian power-law liquids on a spherical substrate by an energy-balance approach. Physical Review E, 2017, 96, 012803.	0.8	3
680	Hygromorphic actuator from a metal oxide film driven by a nano-capillary forest structure. NPG Asia Materials, 2017, 9, e417-e417.	3.8	8
681	Spreading law on a completely wettable spherical substrate: The energy balance approach. Physical Review E, 2017, 95, 052802.	0.8	6
682	Effect of injection angle, density ratio, and viscosity on droplet formation in a microfluidic T-junction. Theoretical and Applied Mechanics Letters, 2017, 7, 243-251.	1.3	50
683	Wetting kinetics of nanodroplets on lyophilic nanopillar-arrayed surfaces: A molecular dynamics study. Chemical Physics Letters, 2017, 685, 27-33.	1.2	18
684	Dynamics of droplet motion induced by Electrowetting. International Journal of Heat and Mass Transfer, 2017, 106, 920-931.	2.5	55
685	Level Set Method Based Simulations on Impact-Dynamics of Bouncing and Non-bouncing Droplet on Super-Hydrophobic Substrates. Lecture Notes in Mechanical Engineering, 2017, , 1141-1149.	0.3	1
686	Evolution of Droplet Impact on Dry Surfaces with Different Surface Characteristics. Advanced Structured Materials, 2017, , 99-112.	0.3	0
687	Wetting length in gas metal arc brazing of galvanised steel. Science and Technology of Welding and Joining, 2017, 22, 166-169.	1.5	8
688	Topography- and topology-driven spreading of non-Newtonian power-law liquids on a flat and a spherical substrate. Physical Review E, 2017, 96, 042803.	0.8	2
689	A Conformal Decomposition Finite Element Method for Dynamic Wetting Applications. , 2017, , .		4
690	Numerical simulation of the drop spreading on a horizontal plane. Journal of Physics: Conference Series, 2017, 894, 012035.	0.3	0
691	10. Dynamics of wetting: bouncing, spreading and rolling of droplets (water hammer effect – water) Tj ETQq1	1 0.78431	4 rgBT /Ove
692	Dynamics of Microscale Liquid Propagation in Micropillar Arrays. Langmuir, 2017, 33, 6620-6629.	1.6	16
693	Approximate Analytical Solution of a Third-Order IVP arising in Thin Film Flows driven by Surface Tension. Boletim Da Sociedade Paranaense De Matematica, 2017, 35, 117-129.	0.4	1

ARTICLE IF CITATIONS Spreading of Liquids on Substrates., 2017, , 1-13. 694 0 Drop splashing is independent of substrate wetting. Physics of Fluids, 2018, 30, . 1.6 Viscous dewetting of metastable liquid films on substrates with microgrooves. Journal of Colloid 696 5.0 9 and Interface Science, 2018, 520, 11-18. The effect of ions on the motion of an oil slug through a charged capillary. Journal of Fluid Mechanics, 2018, 841, 310-350. Capillary wrinkling scaling laws of floating elastic thin film with a liquid drop. Science China: 698 2.0 6 Physics, Mechanics and Astronomy, 2018, 61, 1. Effect of Electric Field on the Wetting Behavior of Eutectic Gallium–Indium Alloys in Aqueous Environment. Journal of Electronic Materials, 2018, 47, 2782-2790. 1.0 700 Moving contact-line mobility measured. Journal of Fluid Mechanics, 2018, 841, 767-783. 1.4 23 Comparisons and validations of contact angle models. International Journal of Hydrogen Energy, 3.8 2018, 43, 6364-6378. Correlating contact line capillarity and dynamic contact angle hysteresis in surfactant-nanoparticle 702 1.6 17 based complex fluids. Physics of Fluids, 2018, 30, . Wetting characteristics of lithium droplet on iron surfaces in atomic scale: A molecular dynamics 1.4 simulation. Computational Materials Science, 2018, 149, 435-441. Drop spreading and gelation of thermoresponsive polymers. Soft Matter, 2018, 14, 3096-3104. 704 10 1.2 A semi-analytical method to estimate the effective slip length of spreading spherical-cap shaped 0.6 droplets using Cox theory. Fluid Dynamics Research, 2018, 50, 035501. Energetic analysis of drop's maximum spreading on solid surface with low impact speed. Physics of 706 1.6 69 Fluids, 2018, 30, . Droplet spreading and capillary imbibition in a porous medium: A coupled IB-VOF method based 1.6 49 numerical study. Physics of Fluids, 2018, 30, . A volume-of-fluid ghost-cell immersed boundary method for multiphase flows with contact line 708 1.3 16 dynamics. Computers and Fluids, 2018, 165, 43-53. Dynamics of a liquid plug in a capillary tube under cyclic forcing: memory effects and airway reopening. Journal of Fluid Mechanics, 2018, 838, 165-191. 710 Healing capillary films. Journal of Fluid Mechanics, 2018, 838, 404-434. 1.4 23 Thick drops climbing uphill on an oscillatingÂsubstrate. Journal of Fluid Mechanics, 2018, 840, 131-153. 1.4

#	Article	IF	CITATIONS
712	Nonisothermal Spreading Dynamics of Self-Rewetting Droplets. Langmuir, 2018, 34, 1916-1931.	1.6	13
713	Dielectrowetting: The past, present and future. Current Opinion in Colloid and Interface Science, 2018, 36, 28-36.	3.4	48
714	Marine Antifouling Behavior of Lubricant-Infused Nanowrinkled Polymeric Surfaces. ACS Applied Materials & amp; Interfaces, 2018, 10, 4173-4182.	4.0	163
715	Scaling Laws in Directional Spreading of Droplets on Wettability-Confined Diverging Tracks. Langmuir, 2018, 34, 1899-1907.	1.6	41
716	Numerical investigation of droplet spreading and heat transfer on hot substrates. International Journal of Heat and Mass Transfer, 2018, 121, 402-411.	2.5	31
717	3D numerical study of large-scale two-phase flows with contact lines and application to drop detachment from a horizontal fiber. International Journal of Multiphase Flow, 2018, 101, 35-46.	1.6	14
718	Effect of upstream meniscus shape on dynamic wetting and operating limits of Newtonian coating liquids in slot coating bead flows. Journal of Coatings Technology Research, 2018, 15, 1067-1076.	1.2	6
719	Moving Contact Lines: Linking Molecular Dynamics and Continuum-Scale Modeling. Langmuir, 2018, 34, 12501-12518.	1.6	26
720	Modeling of liquid water transport in a proton exchange membrane fuel cell gas flow channel with dynamic wettability. International Journal of Energy Research, 2018, 42, 3315-3327.	2.2	18
721	In Situ Wettability Characterization of Chemically Heterogeneous Surfaces Probed by Ionic Liquid Contact Angle in Vacuum: Pentacene on Single-Crystal SrTiO ₃ (001). Journal of Physical Chemistry C, 2018, 122, 8390-8395.	1.5	6
722	Measurement of nanoscale molten polymer droplet spreading using atomic force microscopy. Review of Scientific Instruments, 2018, 89, 033703.	0.6	7
723	Dynamic Spreading of Droplets on Lyophilic Micropillar-Arrayed Surfaces. Langmuir, 2018, 34, 4417-4425.	1.6	14
724	Viscous drops on a layer of the same fluid: from sinking, wedging and spreading to their long-time evolution. Journal of Fluid Mechanics, 2018, 843, 1-28.	1.4	12
725	Wetting behaviour of Zn–Al filler metal on a stainless steel substrate. Science and Technology of Welding and Joining, 2018, 23, 1-6.	1.5	28
726	Recent advances in droplet wetting and evaporation. Chemical Society Reviews, 2018, 47, 558-585.	18.7	261
727	Plasma treatment of silicone oil- infused surfaces switches impact of water droplets from bouncing to tanner-like spreading. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 538, 133-139.	2.3	11
728	Droplet spreading on a surface exhibiting solid-liquid interfacial premelting. Acta Materialia, 2018, 143, 319-328.	3.8	12
729	Multiparametric study of Leidenfrost point and wettability of lubricants on high-pressure die-casting dies. International Journal of Thermal Sciences, 2018, 125, 66-73.	2.6	8

#	Article	IF	CITATIONS
730	Experimental study of dynamic contact angles on rough hydrophobic surfaces. Journal of Colloid and Interface Science, 2018, 513, 658-665.	5.0	51
731	Evolution of the interfacial shape in dissolutive wetting: Coupling of wetting and dissolution. International Journal of Heat and Mass Transfer, 2018, 118, 201-207.	2.5	14
732	Bubble splitting under gas–liquid–liquid threeâ€phase flow in a double Tâ€junction microchannel. AICHE Journal, 2018, 64, 376-388.	1.8	19
734	Thermodynamics, Dynamics, and Kinetics at Liquid–Fluid and Fluid–Solid Interfaces. , 2018, , 654-667.		3
735	Mapping the transition to superwetting state for nanotextured surfaces templated from block-copolymer self-assembly. Nanoscale, 2018, 10, 20652-20663.	2.8	14
736	Table model and portable optical sensors for the monitoring of time-dependent liquid spreading over rough surfaces. Journal of the European Optical Society-Rapid Publications, 2018, 14, .	0.9	3
737	Four stages of droplet spreading on a spherical substrate and in a spherical cavity: Surface tension versus line tension and viscous dissipation versus frictional dissipation. Physical Review E, 2018, 98, .	0.8	4
738	Boundary Element Simulation of Axisymmetric Viscous Creeping Flows under Gravity in Free Surface Domains. Computational Mathematics and Mathematical Physics, 2018, 58, 1620-1639.	0.2	0
739	Physical ageing of spreading droplets in a viscous ambient phase. Scientific Reports, 2018, 8, 14159.	1.6	8
740	Beyond the coffee-ring effect: Pattern formation by wetting and spreading of drops. Physical Review E, 2018, 98, .	0.8	7
741	Effects of the Grain Size on Dynamic Capillary Pressure and the Modified Green–Ampt Model for Infiltration. Geofluids, 2018, 2018, 1-11.	0.3	6
742	Consistent formulation of the power-law rheology and its application to the spreading of non-Newtonian droplets. Meccanica, 2018, 53, 3709-3717.	1.2	2
744	Time Evolution of Precursor Thin Film of Water on Polyelectrolyte Brush. Langmuir, 2018, 34, 10276-10286.	1.6	7
745	Anomalous Wetting of Underliquid Systems: Oil Drops in Water and Water Drops in Oil. Langmuir, 2018, 34, 11695-11705.	1.6	21
746	Two-component marangoni-contracted droplets: friction and shape. Soft Matter, 2018, 14, 7724-7730.	1.2	14
747	4. Dynamics of wetting. , 2018, , 75-88.		0
748	Droplet spreading on liquid–fluid interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 553, 143-148.	2.3	13
749	Fluctuation assisted spreading of a fluid filled elastic blister. Journal of Fluid Mechanics, 2018, 846, 1076-1087.	1.4	8

#	Article	IF	CITATIONS
750	2D Prior Spreading Inspired from Chinese Xuan Papers. Advanced Functional Materials, 2018, 28, 1800832.	7.8	25
751	Drop "impact―on an airfoil surface. Advances in Colloid and Interface Science, 2018, 256, 23-47.	7.0	28
752	A shallow water type model to describe the dynamic of thin partially wetting films for the simulation of anti-icing systems. , 2018, , .		3
753	Wetting kinetics and spreading phenomena of Sn-35Bi-1Ag solder on different substrates. Journal of Materials Science: Materials in Electronics, 2018, 29, 13914-13924.	1.1	11
754	The shape evolution of liquid droplets in miscible environments. Journal of Fluid Mechanics, 2018, 852, 422-452.	1.4	9
755	Accelerated spreading of inviscid droplets prompted by the yielding of strongly elastic interfacial films. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 554, 326-333.	2.3	12
756	Direct simulation of multiphase flows with modeling of dynamic interface contact angle. Theoretical and Computational Fluid Dynamics, 2018, 32, 655-687.	0.9	22
757	Wetting dynamics of polydimethylsiloxane mixtures on a poly(ethylene terephthalate) fiber. Journal of Colloid and Interface Science, 2018, 525, 243-250.	5.0	15
758	Dynamic contact angle effects on gas-liquid transport phenomena in proton exchange membrane fuel cell cathode with parallel design. International Journal of Energy Research, 2018, 42, 4439-4457.	2.2	18
759	An immersed boundary based dynamic contact angle framework for handling complex surfaces of mixed wettabilities. International Journal of Multiphase Flow, 2018, 109, 164-177.	1.6	45
760	Wettability Alteration of Calcite by Nonionic Surfactants. Langmuir, 2018, 34, 10650-10658.	1.6	43
761	Effects of thermal fluctuations in the fragmentation of a nanoligament. Physical Review E, 2018, 98, 012802.	0.8	14
762	Contact line friction of electrowetting actuated viscous droplets. Physical Review E, 2018, 97, 063101.	0.8	29
763	Wetting dynamics in two-liquid systems: Effect of the surrounding phase viscosity. Physical Review E, 2018, 97, 063104.	0.8	17
764	Non-universal dynamic exponents for thin-film spreading. Europhysics Letters, 2018, 122, 26002.	0.7	2
765	Spreading of Liquids on Substrates. , 2018, , 101-113.		0
766	A study of wall boundary conditions in pseudopotential lattice Boltzmann models. Computers and Fluids, 2019, 193, 103896.	1.3	9
767	Evaporation effect on spreading time of a droplet in fluidized bed wet granulation. International Journal of Heat and Mass Transfer, 2019, 143, 118517.	2.5	6

#	Article	IF	CITATIONS
768	Spreading of Micrometer-Sized Droplets under the Influence of Insoluble and Soluble Surfactants: A Numerical Study. Colloids and Interfaces, 2019, 3, 56.	0.9	1
769	Wetting Properties and Thin-Film Quality in the Wet Deposition of Zeolites. ACS Omega, 2019, 4, 13488-13495.	1.6	5
770	Analysis of impact dynamics and deposition of single and multiple PEDOT:PSS solution droplets. Experiments in Fluids, 2019, 60, 1.	1.1	15
771	Controlled imbibition in a porous medium from a soft wet material (poultice). Soft Matter, 2019, 15, 6732-6741.	1.2	4
772	Rapid Spreading of a Droplet on a Thin Soap Film. Langmuir, 2019, 35, 14855-14860.	1.6	13
773	Capillary ripples in thin viscous films. Journal of Fluid Mechanics, 2019, 880, 430-440.	1.4	12
774	Wetting dynamics and surface energy components of single carbon fibers. Journal of Colloid and Interface Science, 2019, 557, 349-356.	5.0	14
775	Drying Droplets with Soluble Surfactants. Langmuir, 2019, 35, 14734-14741.	1.6	19
776	Aroma Molecules as Dynamic Volatile Surfactants: Functionality beyond the Scent. ACS Applied Materials & Interfaces, 2019, 11, 40988-40995.	4.0	9
777	A Comparative Study of the Diffuse-Interface Model and Sharp-Interface Model in the Soldering Related Wetting Spreading Systems. Metals, 2019, 9, 944.	1.0	1
778	Superspreading on Hydrophobic Substrates: Effect of Glycerol Additive. Colloids and Interfaces, 2019, 3, 51.	0.9	9
779	High-temperature reactive wetting systems: Role of lattice constant. Chemical Engineering Science, 2019, 209, 115206.	1.9	14
780	Molecular Dynamics Simulation of the Superspreading of Surfactant-Laden Droplets. A Review. Fluids, 2019, 4, 176.	0.8	10
781	500 Examples and Problems of Applied Differential Equations. Problem Books in Mathematics, 2019, , .	0.1	7
782	Peculiar Wetting of <i>N</i> , <i>N</i> -Dimethylformamide: Expansion, Contraction, and Self-Running. Journal of Physical Chemistry C, 2019, 123, 24477-24486.	1.5	14
783	Water vapor uptake into hygroscopic lithium bromide desiccant droplets: mechanisms of droplet growth and spreading. Physical Chemistry Chemical Physics, 2019, 21, 1046-1058.	1.3	19
784	Generalised Navier boundary condition for a volume of fluid approach using a finite-volume method. Physics of Fluids, 2019, 31, 021203.	1.6	15
785	The dual role of viscosity in capillary rise. Soft Matter, 2019, 15, 2757-2761.	1.2	16

	Сітат	ion Report	
#	Article	IF	CITATIONS
786	Practical Formulation Science for Particle-Based Inks. Colloids and Interfaces, 2019, 3, 23.	0.9	6
787	Analysis and experiments on the spreading dynamics of a viscoelastic drop. Applied Mathematical Modelling, 2019, 75, 201-209.	2.2	8
788	Revealing How Topography of Surface Microstructures Alters Capillary Spreading. Scientific Reports, 2019, 9, 7787.	1.6	14
789	Droplet impingement on nano-textured superhydrophobic surface: Experimental and numerical study. Applied Surface Science, 2019, 491, 160-170.	3.1	46
790	A review on inkjet printing of nanoparticle inks for flexible electronics. Journal of Materials Chemistry C, 2019, 7, 8771-8795.	2.7	303
791	Wetting kinetics and spreading phenomena of the precursor film and bulk liquid in the AgCuTi/TC4 system. Journal of Alloys and Compounds, 2019, 802, 345-354.	2.8	34
792	Slipping moving contact lines: critical roles of deÂGennes's â€~foot' in dynamic wetting. Journal o Mechanics, 2019, 873, 110-150.	f Fluid 1.4	3
793	Quick Liquid Propagation on a Linear Array of Micropillars. Langmuir, 2019, 35, 9139-9145.	1.6	5
794	Improvement and further investigation on Hoffman-function-based dynamic contact angle model. International Journal of Hydrogen Energy, 2019, 44, 16898-16908.	3.8	8
795	Direct numerical simulation study of droplet spreading on spherical particles. Powder Technology, 2019, 354, 11-18.	2.1	27
796	On the use of a friction model in a Volume of Fluid solver for the simulation of dynamic contact lines. Journal of Computational Physics, 2019, 393, 29-45.	1.9	10
797	Effects of surface tension and inclined surface wettability on sliding bubble heat transfer. International Journal of Thermal Sciences, 2019, 142, 77-88.	2.6	6
798	Dynamics of Liquid Transfer from Nanoporous Stamps in High-Resolution Flexographic Printing. Langmuir, 2019, 35, 7659-7671.	1.6	21
799	Impact dynamics and deposition of perovskite droplets on PEDOT:PSS and TiO2 coated glass substrates. Experimental Thermal and Fluid Science, 2019, 105, 181-190.	1.5	14
800	Contact angle hysteresis of a water droplet on a hydrophobic fuel cell surface. Journal of Colloid and Interface Science, 2019, 545, 231-241.	5.0	38
801	Understanding the asymmetry between advancing and receding microscopic contact angles. Soft Matter, 2019, 15, 3923-3928.	1.2	7
802	Uplift of an elastic membrane by a viscous flow. Physical Review E, 2019, 99, 043102.	0.8	9
803	Onset of thin film meniscus along a fibre. Journal of Fluid Mechanics, 2019, 865, 650-680.	1.4	10

#	Article	IF	CITATIONS
804	Predictive Model to Probe the Impact of Gravity and Surface Tension on Rising Wetting Thin Films. Langmuir, 2019, 35, 4189-4196.	1.6	5
805	Numerical study on the effects of inertia and wettability on subcooled flow boiling in microchannels. Applied Thermal Engineering, 2019, 152, 175-183.	3.0	27
806	Molecular dynamics simulation of nanosized water droplet spreading on chemically heterogeneous surfaces. AIP Advances, 2019, 9, 125105.	0.6	8
807	Lattice Boltzmann method for thin-liquid-film hydrodynamics. Physical Review E, 2019, 100, 033313.	0.8	15
808	Droplet leaping governs microstructured surface wetting. Soft Matter, 2019, 15, 9528-9536.	1.2	5
809	Surface-tension- and injection-driven spreading of a thin viscous film. Journal of Fluid Mechanics, 2019, 861, 765-795.	1.4	12
810	Post-spreading behavior of impacting fuel drops on stainless steel surface. Experimental Thermal and Fluid Science, 2019, 102, 74-80.	1.5	7
811	Capillary rise of polydimethylsiloxane around a poly(ethylene terephthalate) fiber versus viscosity: Existence of a sharp transition in the dynamic wetting behavior. Journal of Colloid and Interface Science, 2019, 536, 499-506.	5.0	13
812	Pressure-driven dynamics of liquid plugs in rectangular microchannels: Influence of the transition between quasi-static and dynamic film deposition regimes. International Journal of Multiphase Flow, 2019, 113, 343-357.	1.6	4
813	Toward direct numerical simulation of high speed droplet impact. Meccanica, 2020, 55, 387-401.	1.2	14
814	Prediction of curved oil–water interface in horizontal pipes using modified model with dynamic contact angle. Chinese Journal of Chemical Engineering, 2020, 28, 698-711.	1.7	17
815	Droplet behaviors on inclined surfaces with dynamic contact angle. International Journal of Hydrogen Energy, 2020, 45, 29848-29860.	3.8	16
816	Dynamics of particle wetting in wet granulation: Micro-scale analysis. International Journal of Heat and Mass Transfer, 2020, 146, 118853.	2.5	6
817	Dropwise condensation on solid hydrophilic surfaces. Science Advances, 2020, 6, eaax0746.	4.7	143
818	Bioinspired Topological Surface for Directional Oil Lubrication. ACS Applied Materials & Interfaces, 2020, 12, 5113-5119.	4.0	38
819	Spreading on viscoelastic solids: are contact angles selected by Neumann's law?. Soft Matter, 2020, 16, 1306-1322.	1.2	32
820	A Numerical Study of Micro-Droplet Spreading Behaviors on Wettability-Confined Tracks Using a Three-Dimensional Phase-Field Lattice Boltzmann Model. Langmuir, 2020, 36, 340-353.	1.6	7
821	Faceted and Circular Droplet Spreading on Hierarchical Superhydrophobic Surfaces. Langmuir, 2020, 36, 534-539.	1.6	19

#	ARTICLE	IF	CITATIONS
822	The wetting characteristics of copper droplets on tungsten surfaces on atomic scale: A molecular dynamics simulation. Computational Materials Science, 2020, 174, 109487.	1.4	13
823	Pumping effect of heterogeneous meniscus formed around spherical particle. Journal of Colloid and Interface Science, 2020, 562, 133-141.	5.0	6
824	Dynamic Leidenfrost temperature behaviors on uniformly distributed micropillars. Experimental Thermal and Fluid Science, 2020, 111, 109954.	1.5	9
825	Direct observation of micro-droplet dynamics on substrates. Applied Physics Express, 2020, 13, 017001.	1.1	6
826	Lateral Spreading of Gas Bubbles on Submerged Wettability-Confined Tracks. Langmuir, 2020, 36, 11829-11835.	1.6	12
827	Characterizing Dissipation in Fluid-Fluid Displacement Using Constant-Rate Spontaneous Imbibition. Physical Review Letters, 2020, 125, 174503.	2.9	10
828	Moving contact lines and dynamic contact angles: a †litmus test' for mathematical models, accomplishments and new challenges. European Physical Journal: Special Topics, 2020, 229, 1945-1977.	1.2	17
829	Bioinspired Antiâ€Plateau–Rayleighâ€Instability on Dual Parallel Fibers. Advanced Materials, 2020, 32, 2003453.	11.1	18
830	Dynamic behavior of droplets on confined porous substrates: A many-body dissipative particle dynamics study. Physics of Fluids, 2020, 32, .	1.6	15
831	Fingering instability of a viscous liquid bridge stretched by an accelerating substrate. Journal of Fluid Mechanics, 2020, 899, .	1.4	12
832	Direct Measurement of Contact Angle Change in Capillary Rise. Langmuir, 2020, 36, 14597-14606.	1.6	12
833	Study of spontaneous mobility and imbibition of a liquid droplet in contact with fibrous porous media considering wettability effects. Physics of Fluids, 2020, 32, .	1.6	32
834	Receding Dynamics of Droplet Deposition on a Smooth Surface from a Central Jet to Secondary Droplet Emission. Langmuir, 2020, 36, 15082-15093.	1.6	5
835	Anisotropy-induced directional self-transportation of low surface tension liquids: a review. RSC Advances, 2020, 10, 40569-40581.	1.7	15
836	Self-Similar Draining near a Vertical Edge. Physical Review Letters, 2020, 125, 064502.	2.9	6
837	A thin-film model for droplet spreading on soft solid substrates. Soft Matter, 2020, 16, 8284-8298.	1.2	22
838	Superspreading performance of branched ionic trimethylsilyl surfactant Mg(AOTSiC)2. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 604, 125277.	2.3	6
839	Wettability of metal surface with oil/refrigerant mixture. International Journal of Refrigeration, 2020, 119, 131-138.	1.8	6

	CITATIO	N REPORT	
#	Article	IF	Citations
840	Spreading of soap bubbles on dry and wet surfaces. Scientific Reports, 2020, 10, 13188.	1.6	3
841	Prediction of the droplet spreading dynamics on a solid substrate at irregular sampling intervals: Nonlinear Auto-Regressive eXogenous Artificial Neural Network approach (NARX-ANN). Chemical Engineering Research and Design, 2020, 156, 263-272.	2.7	14
842	Study of wetting of the animal retinas by Water and organic liquids and its Implications for ophthalmology. Colloids and Surfaces B: Biointerfaces, 2020, 195, 111265.	2.5	5
843	A general ink formulation of 2D crystals for wafer-scale inkjet printing. Science Advances, 2020, 6, eaba5029.	4.7	89
844	Spreading of Normal Liquid Helium Drops. Physical Review E, 2020, 102, 043105.	0.8	0
845	Wetting Kinetics and Microstructure Analysis of BNi2 Filler Metal over Selective Laser Melted Ti-6Al-4V Substrate. Materials, 2020, 13, 4666.	1.3	3
846	Modeling of early stage droplet spreading based on numerical simulations. Nuclear Engineering and Design, 2020, 369, 110855.	0.8	8
847	Spreading Dynamics of Water Droplets on a Completely Wetting Surface. Journal of Physical Chemistry C, 2020, 124, 20109-20115.	1.5	8
848	Dynamics of a single isolated ferrofluid plug inside a micro-capillary in the presence of externally applied magnetic field. Experiments in Fluids, 2020, 61, 1.	1.1	15
849	Liquid Spreading Induced by In Situ Generation of Metallic Nanoparticles. Langmuir, 2020, 36, 12237-12246.	1.6	1
850	Spreading Kinetics of Herschel-Bulkley Fluids Over Solid Substrates. Frontiers in Physics, 2020, 8, .	1.0	1
851	Wetting and Evaporation of Solvents on Thin Soluble Substrates. Colloids and Interfaces, 2020, 4, 48.	0.9	3
852	A Quartz Crystal Microbalance, Which Tracks Four Overtones in Parallel with a Time Resolution of 10 Milliseconds: Application to Inkjet Printing. Sensors, 2020, 20, 5915.	2.1	7
853	Directional spreading of a viscous droplet on a conical fibre. Journal of Fluid Mechanics, 2020, 894, .	1.4	16
854	Anisotropic Spreading of Bubbles on Superaerophilic Straight Trajectories beneath a Slide in Water. Water (Switzerland), 2020, 12, 798.	1.2	3
855	Probing Ink–Powder Interactions during 3D Binder Jet Printing Using Time-Resolved X-ray Imaging. ACS Applied Materials & Interfaces, 2020, 12, 34254-34264.	4.0	32
856	Role of surfactants in spontaneous displacement of high viscosity oil droplets from solid surfaces in aqueous solutions. Journal of Colloid and Interface Science, 2020, 579, 898-908.	5.0	18
857	Toward Long-Lasting Low-Haze Antifog Coatings through the Deposition of Zeolites. Industrial & Engineering Chemistry Research, 2020, 59, 13042-13050.	1.8	8

#	Article	IF	CITATIONS
858	Oil recovery mechanisms of Pickering nanoemulsions stabilized by surfactant-polymer-nanoparticle assemblies: A versatile surface energies' approach. Fuel, 2020, 276, 118138.	3.4	67
859	Unraveling the Mechanism of a Rising Three-Phase Contact Line along a Vertical Surface Using Many-Body Dissipative Particle Dynamics. Langmuir, 2020, 36, 7474-7482.	1.6	5
860	Dynamic Wetting of Molten Polymers on Cellulosic Substrates: Model Prediction for Total and Partial Wetting. Frontiers in Materials, 2020, 7, .	1.2	10
861	Measurement of Temporal Change in Shape of a Suspended Droplet Containing Particles Using Light Scattering. Journal of the Physical Society of Japan, 2020, 89, 034802.	0.7	0
862	Effect of interfacial mass transport on inertial spreading of liquid droplets. Physics of Fluids, 2020, 32, .	1.6	11
863	Leveling of a model paint film with a yield stress. Journal of Coatings Technology Research, 2020, 17, 851-863.	1.2	2
864	Effect of temperature and substrate surface roughness on wetting behavior and interfacial structure between Sn–35Bi–1Ag solder and Cu substrate. Journal of Materials Science: Materials in Electronics, 2020, 31, 4224-4236.	1.1	10
865	Enhancement of Meniscus Pump by Multiple Particles. Langmuir, 2020, 36, 4447-4453.	1.6	4
866	Pinning and depinning of Wenzel-state droplets around inclined steps. Colloids and Interface Science Communications, 2020, 35, 100238.	2.0	14
867	Central uprising sheet in simultaneous and near-simultaneous impact of two high kinetic energy droplets onto dry surface and thin liquid film. Physics of Fluids, 2020, 32, .	1.6	21
868	A geometric diffuse-interface method for droplet spreading. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2020, 476, 20190222.	1.0	1
869	Wetting Dynamics of a Water Droplet on Micropillar Surfaces with Radially Varying Pitches. Langmuir, 2020, 36, 5312-5323.	1.6	25
870	Layered nanocomposites by shear-flow-induced alignment of nanosheets. Nature, 2020, 580, 210-215.	13.7	284
871	Capillary phenomena in assemblies of parallel cylindrical fibers: From statics to dynamics. International Journal of Multiphase Flow, 2020, 129, 103304.	1.6	7
872	Early stage of liquid drop spreading on tunable nanostructured surfaces. Experimental Thermal and Fluid Science, 2020, 116, 110126.	1.5	1
873	Surfactant-mediated wetting and spreading: Recent advances and applications. Current Opinion in Colloid and Interface Science, 2021, 51, 101375.	3.4	36
874	Two-phase flow and mass transfer in microchannels: A review from local mechanism to global models. Chemical Engineering Science, 2021, 229, 116017.	1.9	81
875	Dynamic wetting of porous Ni substrate under MCFC conditions. International Journal of Hydrogen Energy, 2021, 46, 15066-15077.	3.8	4

#	Article	IF	CITATIONS
876	On the Relationship Between the Thin Film Equation and Tanner's Law. Communications on Pure and Applied Mathematics, 2021, 74, 507-543.	1.2	5
877	Hydrodynamics of a completely wetting isolated liquid plug oscillating inside a square capillary tube. International Journal of Multiphase Flow, 2021, 135, 103534.	1.6	2
878	Spreading and receding of oil droplets on silanized glass surfaces in water: Role of three-phase contact line flow direction in spontaneous displacement. Journal of Colloid and Interface Science, 2021, 587, 672-682.	5.0	4
879	Wetting for self-healing and electrowetting for additive manufacturing. Current Opinion in Colloid and Interface Science, 2021, 51, 101378.	3.4	6
880	Axisymmetric evolution of gravity-driven thin films on a small sphere. Journal of Fluid Mechanics, 2021, 907, .	1.4	6
881	Dynamic contact angle measurements on lubricant infused surfaces. Journal of Colloid and Interface Science, 2021, 586, 647-654.	5.0	18
882	Capillary dynamics of confined water in nanopores: The impact of precursor films. Chemical Engineering Journal, 2021, 409, 128113.	6.6	10
883	Investigations into the Complete Spreading Dynamics of a Viscoelastic Drop on a Spherical Substrate. Langmuir, 2021, 37, 63-75.	1.6	8
884	Wettability of surfaces, nanoparticles, and biomimetic functional surfaces. , 2021, , 79-116.		0
885	Droplet Spreading on Unidirectional Fiber Beds. Journal of Composites Science, 2021, 5, 13.	1.4	2
886	Migration of nanoparticles across a polymer–polymer interface: theory and simulation. Soft Matter, 2021, 17, 7294-7310.	1.2	0
887	Thermocapillary lubricant migration on textured surfaces - a review of theoretical and experimental insights. Surface Topography: Metrology and Properties, 2021, 9, 013001.	0.9	27
888	Liquid-liquid-driven spreading process based on Marangoni effect. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 184701.	0.2	1
889	Flow and thermal field in sessile droplet evaporation at various environmental conditions. Heat Transfer, 2021, 50, 4535-4551.	1.7	2
890	Dynamics of hygroscopic aqueous solution droplets undergoing evaporation or vapour absorption. Journal of Fluid Mechanics, 2021, 912, .	1.4	13
891	Spreading of viscoplastic droplets. Journal of Fluid Mechanics, 2021, 914, .	1.4	22
892	Cellulose Nanocrystal Laden Oil–Water Interfaces: Interfacial Viscoelasticity, Emulsion Stability, and the Dynamics of Three-Phase Contact-Lines. Industrial & Engineering Chemistry Research, 2021, 60, 4892-4902.	1.8	6
893	Spreading Dynamics of a Precursor Film of Ionic Liquid or Water on a Micropatterned Polyelectrolyte Brush Surface. Langmuir, 2021, 37, 3049-3056.	1.6	3

#	Article	IF	CITATIONS
894	Investigation of Crystal Shape Controllability in the Micro-Pulling-Down Method for Low-Wettability Systems. ACS Omega, 2021, 6, 8131-8141.	1.6	4
895	Highly Textured Assembly of Engineered Si Nanowires for Artificial Synapses Model. ACS Applied Electronic Materials, 2021, 3, 1375-1383.	2.0	1
896	Wetting of silica and 304 stainless steel by SnO-P2O5-ZnO glass at 500–600 °C. Materials Today Communications, 2021, 26, 102103.	0.9	1
897	Phase-field modeling of wetting and balling dynamics in powder bed fusion process. Physics of Fluids, 2021, 33, .	1.6	10
898	Initial spreading dynamics of a liquid droplet: The effects of wettability, liquid properties, and substrate topography. Physics of Fluids, 2021, 33, .	1.6	31
899	Super-spreading on superamphiphilic micro-organized nanochannel anodic aluminum oxide surfaces for heat dissipation. IScience, 2021, 24, 102334.	1.9	15
900	Molecular dynamics simulation on spreading of mixture nanodroplets on a smooth and homogeneous surface. AIP Advances, 2021, 11, 045104.	0.6	1
901	Dynamic arrest during the spreading of a yield stress fluid drop. Physical Review Fluids, 2021, 6, .	1.0	11
902	Interconnect Fabrication by Electroless Plating on 3D-Printed Electroplated Patterns. ACS Applied Materials & amp; Interfaces, 2021, 13, 19271-19281.	4.0	23
903	Non-monotonic dynamics of thin film spreading. European Physical Journal E, 2021, 44, 69.	0.7	1
904	Contact line dynamics of gravity driven spreading of liquids. Fluid Dynamics Research, 2021, 53, 035503.	0.6	9
905	Contact angle measurements for automotive exterior water management. Experiments in Fluids, 2021, 62, 1.	1.1	5
906	Thermal Marangoni Flow Impacts the Shape of Single Component Volatile Droplets on Thin, Completely Wetting Substrates. Physical Review Letters, 2021, 127, 024502.	2.9	17
907	Self-propulsion dynamics of small droplets on general surfaces with curvature gradient. Physics of Fluids, 2021, 33, 082107.	1.6	4
908	Models for Droplet Motion on Hydrophilic and Hydrophobic Surfaces. Heat Transfer Engineering, 2022, 43, 1256-1268.	1.2	2
909	Wetting behavior and mechanism between hot metal and carbon brick. Journal of the European Ceramic Society, 2021, 41, 5740-5749.	2.8	15
910	Simple Model for the Spreading of Inks in Bioprinting—Revealing Relevant Scaling Laws—Part I Theory. Macromolecular Theory and Simulations, 0, , 2100032.	0.6	5
911	Spontaneous spreading of nanodroplets on partially wetting surfaces with continuous grooves: Synergy of imbibition and capillary condensation. Journal of Molecular Liquids, 2021, 339, 117270.	2.3	8

#	Article	IF	CITATIONS
912	Study of early time dynamics of drop spreading in different surrounding pressure. Experimental Thermal and Fluid Science, 2021, 128, 110450.	1.5	3
913	A finite-volume method for simulating contact lines on unstructured meshes in a conservative level-set framework. Journal of Computational Physics, 2021, 444, 110582.	1.9	3
914	Fluid–substrate interactions. , 2022, , 37-58.		0
915	Wetting Dynamics on Solvophilic, Soft, Porous, and Responsive Surfaces. Macromolecules, 2021, 54, 584-596.	2.2	11
916	The contact angle of an evaporating droplet of a binary solution on a super wetting surface. Soft Matter, 2021, 17, 7932-7939.	1.2	7
917	Wetting equilibrium in a rectangular channel. Soft Matter, 2021, 17, 3594-3602.	1.2	2
918	The Dynamics Of Wetting. NATO ASI Series Series B: Physics, 1988, , 709-720.	0.2	1
919	Recent Studies in Polymer Adhesion Mechanisms. , 1991, , 1-30.		9
920	Thermocapillary Droplet Migration on an Inclined Solid Surface. Lecture Notes in Physics, 2003, , 263-289.	0.3	1
921	Physical Background. Microtechnology and MEMS, 2013, , 3-16.	0.2	4
923	Elements of Surface Physics. Springer Series in Solid-state Sciences, 2000, , 1-79.	0.3	6
925	Wetting: Static and Dynamic Contact Lines. , 1997, , 63-97.		43
926	Contact Lines. , 2004, , 161-180.		3
927	Dynamics of wetting on smooth and rough surfaces. Progress in Colloid and Polymer Science, 1987, 74, 69-75.	0.5	15
928	The isolated drop on an impermeable surface. , 1995, , 195-209.		1
929	Wetting phenomena and crystal growth. Annales De Physique, 1987, 12, 299-312.	0.2	4
930	Null-controllability of perturbed porous medium gas flow. ESAIM - Control, Optimisation and Calculus of Variations, 2020, 26, 85.	0.7	6
931	Spreading of miscible liquids. Physical Review Fluids, 2016, 1, .	1.0	8

#	Article	IF	CITATIONS
932	Air entrainment in hairy surfaces. Physical Review Fluids, 2016, 1, .	1.0	15
933	Wetting dynamics of a collapsing fluid hole. Physical Review Fluids, 2017, 2, .	1.0	9
934	Controlling droplet spreading with topography. Physical Review Fluids, 2017, 2, .	1.0	17
935	Role of viscosity coefficients during spreading and coalescence of droplets in liquids. Physical Review Fluids, 2017, 2, .	1.0	10
936	Static and dynamic fluid-driven fracturing of adhered elastica. Physical Review Fluids, 2018, 3, .	1.0	23
937	Imbibition and evaporation of droplets of colloidal suspensions on permeable substrates. Physical Review Fluids, 2019, 4, .	1.0	31
938	Predicting the maximum spreading of a liquid drop impacting on a solid surface: Effect of surface tension and entrapped air layer. Physical Review Fluids, 2019, 4, .	1.0	34
939	Spreading of rinsing liquids across a horizontal rotating substrate. Physical Review Fluids, 2019, 4, .	1.0	4
940	Asymptotic regimes in elastohydrodynamic and stochastic leveling on a viscous film. Physical Review Fluids, 2019, 4, .	1.0	13
941	Physics of nanoscale immiscible fluid displacement. Physical Review Fluids, 2019, 4, .	1.0	7
942	Universality of friction laws on liquid-infused materials. Physical Review Fluids, 2020, 5, .	1.0	38
943	Effects of moving contact line on filament pinch-off dynamics of viscoelastic surfactant fluids. Physical Review Fluids, 2020, 5, .	1.0	8
944	Retarding spreading of surfactant drops on solid surfaces: Interplay between the Marangoni effect and capillary flows. Physical Review Fluids, 2020, 5, .	1.0	9
945	Re-examination of complete spreading of polydimethylsiloxane droplets. Fluid Mechanics Research International Journal, 2018, 2, .	0.6	2
946	THERMAL TRANSPORT BEHAVIOR OF A LIQUID PLUG MOVING INSIDE A DRY CAPILLARY TUBE. Heat Pipe Science and Technology an International Journal, 2012, 3, 97-124.	0.2	12
947	Some Applications of Controlled Drop Deposition on Solid Surfaces. Recent Patents on Mechanical Engineering, 2010, 1, 167-174.	0.2	5
948	Spreading of droplets of different liquids on specially structured papers. Nordic Pulp and Paper Research Journal, 2000, 15, 598-606.	0.3	15
949	Viscosity solutions for a model of contact line motion. Interfaces and Free Boundaries, 2009, 11, 37-60.	0.2	8

#	Article	IF	CITATIONS
950	LOCAL HYDRODYNAMICS OF FLOW IN A PULSATING HEAT PIPE: A REVIEW. Frontiers in Heat Pipes, 2010, 1, .	0.9	67
951	Non-integer (or fractional) power model to represent the complexity of a viral spreading: Application to the COVID-19. Annual Reviews in Control, 2021, 52, 523-542.	4.4	3
952	Nanopumps without Pressure Gradients: Ultrafast Transport of Water in Patterned Nanotubes. Journal of Physical Chemistry B, 2022, 126, 660-669.	1.2	4
953	High-speed impact of micron-sized diesel drop trains—Splashing dynamics, secondary droplet formation, and effects of pre-existing film thickness. Physics of Fluids, 2021, 33, 102120.	1.6	11
954	Universal self-similar attractor in the bending-driven levelling of thin viscous films. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2021, 477, .	1.0	3
955	The Behavior of Fuel Droplets on a Heated Substrate. , 0, , .		0
956	Spreading of molecularly thin wetting films on solid interfaces. Nonlinear Phenomena and Complex Systems, 2000, , 233-267.	0.0	3
957	Heat Transfer and Solidification During the Impact of a Droplet on a Surface. CISM International Centre for Mechanical Sciences, Courses and Lectures, 2002, , 159-184.	0.3	2
958	On the Law of Spontaneous Spreading of Liquid Droplets on Solid Substrates. , 2002, , .		0
959	The Coating Application Using the Excellent Flow Modeling Software FLOW-3 D Kami Pa Gikyoshi/Japan Tappi Journal, 2002, 56, 1290-1296.	0.1	0
960	Dynamics of the Triple Line. , 2004, , 139-151.		2
961	Electrowetting Film Formation and Capillary Spreading in Dielectrics: A Theoretical Approach. Trends in Applied Sciences Research, 2007, 2, 327-333.	0.4	0
963	Kinetics of Dewetting. , 2009, , 203-246.		0
964	Kinetics of Dewetting. , 2009, , 215-258.		0
965	Thermodynamic Status of Contact Angles. Surfactant Science, 2010, , 329-421.	0.0	0
967	Visualization of Fluid Dynamics adjacent Solid-Liquid-Gas Boundary Line. Journal of the Visualization Society of Japan, 2013, 33, 8-13.	0.0	0
968	Thin Films in CompleteWetting and the Specific Case of Nematic Liquid Crystals. , 2013, , .		0
969	Wetting and Spreading. , 2014, , 1-16.		0

#	Article	IF	CITATIONS
970	Spreading of Liquids on Solid Surfaces. NATO ASI Series Series B: Physics, 1988, , 721-740.	0.2	0
971	Wetting Phenomena. , 1989, , 171-183.		1
972	New Perspective on Polymer Adhesion Mechanisms. , 1989, , 95-127.		0
973	Wetting Phenomena. , 1990, , 831-855.		0
974	Thermodynamics of Adsorption from Dilute Solutions. , 1990, , 857-878.		3
975	Spreading Of A Droplet On A Solid Surface And The Hoffman-Tanner Law. , 1993, , 297-300.		0
977	HYDRODYNAMICS OF A CONFINED MENISCUS IN A SQUARE CAPILLARY TUBE AT LOW CAPILLARY NUMBERS. Frontiers in Heat Pipes, 0, 5, .	0.9	0
979	Vibration-Induced Wetting. , 0, , 7545-7555.		0
980	Mikroströmungen. , 2016, , 1-52.		0
981	Mikroströmungen. , 2017, , 663-714.		0
982	Local velocity variations for a drop moving through an orifice: Effects of edge geometry and surface wettability. Physical Review Fluids, 2018, 3, .	1.0	1
983	Nonlinear Boundary Value Problems. Problem Books in Mathematics, 2019, , 293-378.	0.1	0
984	A Refined In-Flight Icing Model and its Numerical Implementation. , 0, , .		3
985	Multi-scale Multiphase Flow Gas–Liquid–Solid Interfacial Equation Based on Thermodynamic and Mathematical Approach. , 2022, , 317-341.		1
986	Spreading, Wetting and Drying of Human Blood. , 2022, , 105-132.		0
987	Droplet behavior analysis on inclined, highly sticky, or slippery superhydrophobic nanostructured surfaces by observation and SPH simulation. Chemical Engineering Science, 2022, 248, 117214.	1.9	5
988	Non-locality of the contact line in dynamic wetting phenomena. Journal of Colloid and Interface Science, 2022, 608, 2131-2141.	5.0	3
989	The Morphology and Mechanical Properties of PrDyFeCoB Microwires. Physics of the Solid State, 2020, 62, 2272-2279.	0.2	2

		CITATION REPORT		
#	Article		IF	CITATIONS
990	Gradient-dynamics model for liquid drops on elastic substrates. Soft Matter, 2021, 17,	10359-10375.	1.2	13
991	Spreading of Sessile and Pendant Drops on Partially Wetting Surfaces. Mechanical Eng 2020, , 41-80.	ineering Series,	0.1	1
992	Silicate ash-resistant novel thermal barrier coatings in gas turbines. Corrosion Science, 109929.	2022, 194,	3.0	12
993	Fundamental Fluid Dynamics Challenges in Inkjet Printing. Annual Review of Fluid Mecl 349-382.	nanics, 2022, 54,	10.8	207
994	Initial solidification dynamics of spreading droplets. Physical Review Fluids, 2021, 6, .		1.0	7
995	Development of a prediction model based on linear regression to estimate the success seafood caught from different catching centers. International Journal of Advanced and Sciences, 2021, 8, 110-116.	rates of Applied	0.2	1
996	Understanding drop spreading behaviour on WC-10wt%Co cutting tools – an experi numerical study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 20		2.3	8
997	Interfacial instabilities in Marangoni-driven spreading of polymer solutions on soap film Colloid and Interface Science, 2022, 612, 261-266.	ıs. Journal of	5.0	1
999	Investigation of HTPB-containing Droplet Impact on Ammonium Perchlorate Surfaces.	, 2022, , .		1
1000	Numerical study on the flow characteristic of shell-side film flow of floating LNG spiral exchanger. International Journal of Heat and Mass Transfer, 2022, 187, 122198.	wound heat	2.5	6
1001	Capillary Effects in Fiber Reinforced Polymer Composite Processing: A Review. Frontier: 2022, 9, .	s in Materials,	1.2	11
1002	Effective boundary conditions for dynamic contact angle hysteresis on chemically inho surfaces. Journal of Fluid Mechanics, 2022, 935, .	mogeneous	1.4	5
1003	Spreading, pinching, and coalescence: the Ohnesorge units. Soft Matter, 2022, 18, 32	91-3303.	1.2	20
1004	Universal Aspects of Droplet Spreading Dynamics in Newtonian and Non-Newtonian Fl 2022, 38, 2608-2613.	uids. Langmuir,	1.6	16
1005	Is contact-line mobility a material parameter?. Npj Microgravity, 2022, 8, 6.		1.9	10
1006	Fluctuation-driven dynamics in nanoscale thin-film flows: Physical insights from numeri investigations. Physical Review Fluids, 2022, 7, .	ical	1.0	6
1007	Experimental study on the spreading dynamics behavior of oil droplets over hydrophilic air and water phases. Experiments in Fluids, 2022, 63, 1.	: surfaces in	1.1	0
1009	Predicting the splash of a droplet impinging on solid substrates. Scientific Reports, 202	22, 12, 5093.	1.6	7

#	Article	IF	CITATIONS
1010	Dynamic contact angles and pressure drop at moving contact lines of water/ethanol mixture slug in hydrophobic capillary tubes via synchrotron x-ray imaging. Physics of Fluids, 2022, 34, .	1.6	2
1011	Influence of added dye on Marangoni-driven droplet instability. Physical Review Fluids, 2022, 7, .	1.0	6
1012	A critical review on selection of microemulsions or nanoemulsions for enhanced oil recovery. Journal of Molecular Liquids, 2022, 353, 118791.	2.3	42
1013	Wetting and evaporation of multicomponent droplets. Physics Reports, 2022, 960, 1-37.	10.3	56
1014	Experimental and theoretical investigation of the effects of pressure on the hydrodynamically driven droplet spreading. Chemical Engineering Science, 2022, 254, 117644.	1.9	2
1015	Pickering nanoemulsions and their mechanisms in enhancing oil recovery: A comprehensive review. Fuel, 2022, 319, 123667.	3.4	20
1016	Surface force-mediated dynamics of droplets spreading over wetting films. Physics of Fluids, 2021, 33, 122107.	1.6	3
1017	Toward Unveiling the Anomalies Associated with the Spontaneous Spreading of Droplets. Langmuir, 2021, 37, 14833-14845.	1.6	6
1018	Mikroströmungen. Springer Reference Technik, 2020, , 1-53.	0.0	0
1024	Wall-Confined Spreading Dynamics on the Surface of Surfactant Solution. Journal of Physical Chemistry Letters, 2022, 13, 4315-4320.	2.1	1
1025	Spreading fronts of wetting liquid droplets: Microscopic simulations and universal fluctuations. Physical Review E, 2022, 105, .	0.8	3
1026	Droplet impact dynamics over a range of capillary numbers and surface wettability: Assessment of moving contact line models and energy budget analysis. Physics of Fluids, 2022, 34, .	1.6	18
1027	Size-Dependent Dried Colloidal Deposit and Particle Sorting via Saturated Alcohol Vapor-Mediated Sessile Droplet Spreading. Langmuir, 2022, 38, 6128-6147.	1.6	7
1028	Experimental Study on Capillary Imbibition of Shale Oil in Nanochannels. Energy & Fuels, 2022, 36, 5267-5275.	2.5	10
1029	Marangoni spreading and contracting three-component droplets on completely wetting surfaces. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2120432119.	3.3	13
1030	Force-based dynamic contact angles on lubricant-infused surfaces. Experiments in Fluids, 2022, 63, .	1.1	3
1031	Kinetic analysis of wetting and spreading at high temperatures: A review. Advances in Colloid and Interface Science, 2022, 305, 102698.	7.0	15
1032	Non-Isothermal Dissolutive Wetting of Al-Ni and Cu-Ni Alloy Nanodroplets on a Cu(100) Substrate. Journal of Thermal Science, 0, , .	0.9	0

#	Article	IF	CITATIONS
1034	The physical properties of the stick insect pad secretion are independent of body size. Journal of the Royal Society Interface, 2022, 19, .	1.5	4
1035	Dynamic melting behavior of volcanic ash subjected to thermal shock relevant to aviation hazards. Journal of Volcanology and Geothermal Research, 2022, 429, 107597.	0.8	0
1036	A Review of Physics of Droplet Impact on Various Solid Surfaces Ranging from Hydrophilic to Superhydrophobic and from Rigid to Flexible and its Current Advancements in Interfacial Science. SSRN Electronic Journal, 0, , .	0.4	0
1037	Droplet dynamics driven by electrowetting. Physical Review E, 2022, 105, .	0.8	3
1038	The Cox–Voinov law for traveling waves in the partial wetting regime*. Nonlinearity, 2022, 35, 3560-3592.	0.6	1
1039	Droplet impacts on cold surfaces. Journal of Fluid Mechanics, 2022, 944, .	1.4	7
1040	Surfactant-surfactant interactions govern unusual Marangoni spreading on a soap film. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, , 129747.	2.3	1
1041	A level-set-based sharp-interface method for moving contact lines. Journal of Computational Physics, 2022, 467, 111445.	1.9	1
1042	Characterization of molecule clustering and liquid transport at nearly ideal solid surfaces. Advances in Colloid and Interface Science, 2022, 307, 102733.	7.0	0
1043	Molecular Dynamics Simulation of Spreading of Mixture Droplets on Chemically Heterogeneous Surfaces. Langmuir, 2022, 38, 8353-8365.	1.6	1
1044	Physics-informed machine learning for optimizing the coating conditions of blade coating. Physics of Fluids, 0, , .	1.6	1
1045	Effect of hybrid wall contact angles on slug flow behavior in a T-junction microchannel: A numerical study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 650, 129677.	2.3	20
1046	Dynamic and kinematic characteristics of unsteady motion of a water-in-oil emulsion droplet in collision with a solid heated wall under conditions of convective heat transfer. International Communications in Heat and Mass Transfer, 2022, 137, 106277.	2.9	12
1047	Arrested Dynamics of Droplet Spreading on Ice. Physical Review Letters, 2022, 129, .	2.9	8
1048	Viscoplastic sessile drop coalescence. Physical Review Fluids, 2022, 7, .	1.0	10
1049	A height function based momentum balance model to simulate contact angle dynamics with hysteresis. International Journal for Numerical Methods in Fluids, 2023, 95, 1-22.	0.9	1
1050	Spreading Equilibria Under Mildly Singular Potentials: Pancakes Versus Droplets. Journal of Nonlinear Science, 2022, 32, .	1.0	3
1051	A review of physics of moving contact line dynamics models and its applications in interfacial science. Journal of Applied Physics, 2022, 132, .	1.1	12

	Стл	ATION REPORT	
#	Article	IF	CITATIONS
1052	Spreading and shrinking behaviors of oil films with different viscosities on a cold immiscible liquid substrate. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 654, 130086.	2.3	3
1053	Inkjet-printed Electronics Technology. , 2022, , 69-102.		0
1054	Dynamics of fog droplets on a harp wire. Soft Matter, 2022, 18, 7148-7158.	1.2	5
1055	Mikroströmungen. , 2022, , 625-677.		0
1056	Spreading of water on a liquid-infused solid. Physical Review Fluids, 2022, 7, .	1.0	0
1057	Comparative Analysis of Dynamic Behavior of Liquid Droplet Impacting Flat and Circular Wires. Energies, 2022, 15, 6623.	1.6	1
1058	Effect of inertia on the dynamic contact angle in oscillating menisci. Physics of Fluids, 2022, 34, .	1.6	6
1059	Patterning Wettability for Open-Surface Fluidic Manipulation: Fundamentals and Applications. Chemical Reviews, 2022, 122, 16752-16801.	23.0	28
1060	Physics of Dynamic Contact Line: Hydrodynamics Theory versus Molecular Kinetic Theory. Fluids, 2022, 7, 318.	0.8	5
1061	Enhanced dip coating on a soft substrate. Physical Review Fluids, 2022, 7, .	1.0	4
1062	Non-equilibrium dynamics of bacterial colonies—growth, active fluctuations, segregation, adhesion, and invasion. Communications Physics, 2022, 5, .	2.0	2
1063	Isothermal and non-isothermal spreading of a viscous droplet on a solid surface in total wetting condition. Physics of Fluids, 2022, 34, .	1.6	3
1064	Intertwined roles of fluid–solid interactions and macroscopic flow geometry in dynamic wetting of complex fluids. European Physical Journal: Special Topics, 2023, 232, 769-780.	1.2	2
1065	A review of VOF methods for simulating bubble dynamics. Progress in Nuclear Energy, 2022, 154, 104478.	1.3	32
1066	Precursor film of self-propelled droplets: Inducing motion of a static droplet. Journal of Molecular Liquids, 2022, 368, 120729.	2.3	2
1067	Thermally driven Marangoni effects on the spreading dynamics of droplets. International Journal of Multiphase Flow, 2023, 159, 104335.	1.6	2
1068	Physics of droplet impact on flexible materials: A review. Advances in Mechanical Engineering, 2022, 14 168781322211372.	, 0.8	5
1069	Exploiting Liquid Surface Tension in Microrobotics. Annual Review of Control, Robotics, and Autonomous Systems, 2023, 6, 313-334.	7.5	3

#	Article	IF	CITATIONS
1070	Near-critical spreading of droplets. Nature Communications, 2022, 13, .	5.8	2
1071	Coalescence-induced propulsion of droplets on a superhydrophilic wire. Applied Physics Letters, 2022, 121, .	1.5	3
1072	Hep3Gel: A Shape-Shifting Extracellular Matrix-Based, Three-Dimensional Liver Model Adaptable to Different Culture Systems. ACS Biomaterials Science and Engineering, 2023, 9, 211-229.	2.6	8
1073	Spreading dynamics of microdroplets on nanostructured surfaces. Journal of Colloid and Interface Science, 2023, 635, 221-230.	5.0	11
1074	A Generalized Scaling Theory for Spontaneous Spreading of Newtonian Fluids on Solid Substrates. Journal of Colloid and Interface Science, 2023, , .	5.0	1
1075	Physics of droplet impact on various substrates and its current advancements in interfacial science: A review. Journal of Applied Physics, 2023, 133, .	1.1	10
1076	Activity-induced migration of viscous droplets on a solid substrate. Journal of Fluid Mechanics, 2023, 955, .	1.4	3
1077	Diverse wetting behavior of a binary mixture of antagonist liquids: Nanodroplet with finite precursor film and leak-out phenomenon. Journal of Molecular Liquids, 2023, 372, 121197.	2.3	2
1078	Rapid viscoelastic spreading. Physical Review Fluids, 2022, 7, .	1.0	2
1079	Reactive Spreading Dynamics of Molten Polymer Liquids. Macromolecules, 2023, 56, 1111-1121.	2.2	7
1080	Droplet Impact of Additives and HTPB. , 2023, , .		0
1081	Rapid wetting of shear-thinning fluids. Physical Review Fluids, 2023, 8, .	1.0	2
1082	Capillary-driven horseshoe vortex forming around a micro-pillar. Journal of Colloid and Interface Science, 2023, 642, 227-234.	5.0	0
1083	Surface tension gradient driven autonomous fatty acid-tetrahydrofuran liquid moving drops: Spreading to pinning. Journal of Molecular Liquids, 2023, 375, 121361.	2.3	2
1084	Droplet entrapment on inclined substrates by enforcement of pearl formation. Physics of Fluids, 2023, 35, .	1.6	2
1085	Viscous flow beneath a viscous or plastic skin. Journal of Fluid Mechanics, 2023, 957, .	1.4	Ο
1086	Role of offset during drop-on-drop impact dynamics on a superhydrophobic substrate. Results in Surfaces and Interfaces, 2023, 10, 100102.	1.0	1
1087	Dynamic wetting of various liquids: Theoretical models, experiments, simulations and applications. Advances in Colloid and Interface Science, 2023, 313, 102861.	7.0	9

#	Article	IF	CITATIONS
1088	The radial slump of a gravity current in a confined porous layer. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2023, 479, .	1.0	1
1089	Development of an ultrahigh vacuum low temperature transmission electron microscope for in-situ observation of ices. Journal of the Japanese Society of Snow and Ice, 2018, 80, 19-36.	0.0	0
1090	Wetting kinetics of a bitumen droplet on a glass substrate. Road Materials and Pavement Design, 2023, 24, 424-436.	2.0	0
1091	Dynamic Wetting Properties of Silica-Poly (Acrylic Acid) Superhydrophilic Coatings. Polymers, 2023, 15, 1242.	2.0	5
1092	Glycerol Droplet Spreading on Growing Bacillus Subtilis Biofilms. Micromachines, 2023, 14, 599.	1.4	0
1093	Viscoplastic lines: printing a single filament of yield stress material on a surface. Journal of Fluid Mechanics, 2023, 958, .	1.4	6
1094	Understanding and Engineering Interfacial Adhesion in Solidâ€State Batteries with Metallic Anodes. ChemSusChem, 2023, 16, .	3.6	8
1095	Engulfment of a drop on solids coated by thin and thick fluid films. Journal of Fluid Mechanics, 2023, 958, .	1.4	5
1096	Phase-field modeling of contact line dynamics. , 2024, , 203-214.		0
1129	Materials and wetting issues in molten carbonate fuel cell technology: a review. Journal of Materials Science, 2023, 58, 15936-15972.	1.7	0