Nitrogen Metabolism in the Height Forms of Spartina A

Ecology 60, 574-584 DOI: 10.2307/1936078

Citation Report

#	Article	IF	CITATIONS
1	Migration in Heterogeneous Environments: Differences in Habitat Selection Between the Wing Forms of the Dimorphic Planthopper, Prokelisia Marginata (Homoptera: Delphacidae). Ecology, 1980, 61, 859-867.	3.2	75
2	The influence of soil drainage on the growth of salt marsh cordgrass Spartina alterniflora in North Carolina. Estuarine and Coastal Marine Science, 1980, 11, 27-40.	0.9	133
3	Nitrogen Nutrition and Salinity Tolerance of Distichlis Spicata and Spartina Alterniflora. Ecology, 1980, 61, 630-638.	3.2	96
4	The Nitrogen Uptake Kinetics of Spartina Alterniflora in Culture. Ecology, 1980, 61, 1114-1121.	3.2	86
5	Vegetation Patterns and Processes in New England Salt Marshes. BioScience, 1980, 30, 301-307.	4.9	245
6	The streamside effect in a Carex lyngbyeiestuarine marsh: The possible role of recoverable underground reserves. Estuarine, Coastal and Shelf Science, 1981, 12, 451-460.	2.1	21
7	Oxidationâ€reduction potentials in a salt marsh: Spatial patterns and interactions with primary production1. Limnology and Oceanography, 1981, 26, 350-360.	3.1	320
8	Aeration, Nitrogen and Salinity as Determinants of Spartina alterniflora Loisel. Growth Response. Estuaries and Coasts, 1981, 4, 53.	1.7	89
9	Accumulation of proline and glycinebetaine in Spartina alterniflora Loisel. in response to NaCl and nitrogen in the marsh. Oecologia, 1981, 49, 224-228.	2.0	109
10	Nutrient enrichment of seagrass beds in a rhode island coastal lagoon. Marine Biology, 1981, 65, 221-229.	1.5	170
11	Relation of Soil Water Movement and Sulfide Concentration to Spartina alterniflora Production in a Georgia Salt Marsh. Science, 1982, 218, 61-63.	12.6	241
12	A Model of Growth Responses by Spartina Alterniflora to Nitrogen Limitation. Journal of Ecology, 1982, 70, 25.	4.0	50
13	Trophic importance of Spartina alterniflora production and decomposition to the marsh-estuarine ecosystem. Biological Conservation, 1982, 22, 35-58.	4.1	59
14	ELEMENTAL ANALYSIS OF DEPOSITS ON THE ROOTS OF SPARTINA ALTERNIFLORA LOISEL American Journal of Botany, 1982, 69, 904-912.	1.7	105
15	THE INFLUENCE OF FIDDLER CRAB BURROWS AND BURROWING ON METABOLIC PROCESSES IN SALT MARSH SEDIMENTS. , 1982, , 283-301.		60
16	Ecological growth strategies in the seaweeds Gracilaria foliifera (Rhodophyceae) and Ulva sp. (Chlorophyceae): Soluble nitrogen and reserve carbohydrates. Marine Biology, 1982, 66, 251-259.	1.5	181
17	Seasonal patterns of daily net photosynthesis, transpiration and net primary productivity of Juncus roemerianus and Spartina alterniflora in a Georgia salt marsh. Oecologia, 1982, 52, 404-410.	2.0	46
18	The Effects of Source, Rate and Placement of Nitrogen and Phosphorus Fertilizers on Growth of Spartina alterniflora Transplants in North Carolina. Estuaries and Coasts, 1983, 6, 212.	1.7	19

#	Article	IF	CITATIONS
19	Proline and glycinebetaine accumulation by Spartina alterniflora Loisel. in response to NaCl and nitrogen in a controlled environment. Oecologia, 1983, 57, 20-24.	2.0	60
20	Remote sensing salt marsh biomass and stress detection. Advances in Space Research, 1983, 2, 219-229.	2.6	34
21	Environmental patchiness, litter decomposition and associated faunal patterns in a Spartina alterniflora marsh. Estuarine, Coastal and Shelf Science, 1983, 16, 559-571.	2.1	26
22	The Effect of Nitrogen Fertilization on the Production of Halophytes in an Inland Salt Marsh. American Midland Naturalist, 1983, 109, 346.	0.4	16
23	Ribbed Mussels and Spartina Alterniflora Production in a New England Salt Marsh. Ecology, 1984, 65, 1794-1807.	3.2	207
24	Static and Dynamic Aspects of Nitrogen Cycling in the Salt Marsh Graminoid Spartina Alterniflora. Ecology, 1984, 65, 961-969.	3.2	92
25	Osmotic potential and turgor maintenance in Spartina alterniflora Loisel Oecologia, 1984, 62, 368-375.	2.0	39
26	Influence of the rhizosphere of Spartina alterniflora Loisel. On nitrogen loss from a Louisiana Gulf Coast salt marsh. Environmental and Experimental Botany, 1984, 24, 91-93.	4.2	11
27	Theoretical limits of belowground production by Spartina alterniflora: An analysis through modelling. Ecological Modelling, 1984, 26, 155-175.	2.5	17
28	Effects of oxygen and salinity on ammonium uptake by Spartina alterniflora Loisel. and Spartina patens (Aiton) Muhl Journal of Experimental Marine Biology and Ecology, 1984, 78, 87-98.	1.5	49
29	Fiddler Crab Regulation of Spartina alterniflora Production on a New England Salt Marsh. Ecology, 1985, 66, 1042-1055.	3.2	294
30	Biological consequences of ice rafting in a New England salt marsh community. Journal of Experimental Marine Biology and Ecology, 1985, 87, 283-298.	1.5	35
31	Factors Controlling the Growth Form of Spartina Alterniflora: Feedbacks Between Above-Ground Production, Sediment Oxidation, Nitrogen and Salinity. Journal of Ecology, 1986, 74, 881.	4.0	207
32	Factors affecting ¹³ C/ ¹² C ratios of inland halophytes. II. Ecophysiological interpretations of patterns in the field. Canadian Journal of Botany, 1986, 64, 2700-2707.	1.1	50
33	Nitrogen Cycling in a Freshwater Marsh of Panicum Hemitomon on the Deltaic Plain of the Mississippi River. Journal of Ecology, 1986, 74, 249.	4.0	38
34	Biomass and Structure of a Spartina alterniflora LoiselDominated Salt Marsh in France. Bulletin of the Torrey Botanical Club, 1986, 113, 125.	0.6	6
35	Glutamine synthetase activity and free amino acid pools of eelgrass (Zostera marina L.) roots. Journal of Experimental Marine Biology and Ecology, 1987, 106, 211-228.	1.5	46
36	Seasonal Variation of In Situ Nitrogen Fixation (C 2 H 2 Reduction) in an Expanding Marsh of Spartina Anglica. Journal of Ecology, 1987, 75, 1011.	4.0	12

#	Article	IF	CITATIONS
37	EFFECTS OF SALINITY AND NITROGEN ON GROWTH AND WATER RELATIONS IN THE MANGROVE, AVICENNIA MARINA (FORSK.) VIERH New Phytologist, 1987, 107, 317-325.	7.3	101
38	Nitrate reductase activity in Zostera marina. Marine Biology, 1988, 99, 457-463.	1.5	37
39	Interaction among sediment anaerobiosis, nitrogen uptake and photosynthesis of Spartina alterniflora. Physiologia Plantarum, 1988, 74, 561-565.	5.2	24
40	Nitrogen effects onSpartina foliosa andSalicornia virginica in the salt marsh at Tijuana Estuary, California. Wetlands, 1988, 8, 51-65.	1.5	61
41	Experimental manipulation of drainage in a Georgia saltmarsh: lessons learned. , 0, , .		1
42	Spartina Alterniflora Die-Back in Louisiana: Time-Course Investigation of Soil Waterlogging Effects. Journal of Ecology, 1988, 76, 509.	4.0	227
43	Peat Accumulation and the Success of Marsh Plants. Ecology, 1988, 69, 703-713.	3.2	50
44	Sulphide as a Soil Phytotoxin: Differential Responses in Two Marsh Species. Journal of Ecology, 1989, 77, 565.	4.0	167
45	Live Standing Crop and Metabolism of the Marsh Grass Spartina patens as Related to Edaphic Factors in a Brackish, Mixed Marsh Community in Louisiana. Estuaries and Coasts, 1989, 12, 195.	1.7	44
46	Photosynthesis of salt marsh species. Aquatic Botany, 1989, 34, 167-180.	1.6	47
47	Nitrogen Fixation and Nitrogen Assimilation in a Temperate Saline Ecosystem. Botanica Acta, 1989, 102, 96-105.	1.6	16
48	Landscape Development and Coastal Wetland Losses in the Northern Gulf of Mexico. American Zoologist, 1990, 30, 89-105.	0.7	82
49	Mechanism for the hydrogen sulfideâ€induced growth limitation in wetland macrophytes. Limnology and Oceanography, 1990, 35, 399-408.	3.1	280
50	Acetylene reduction associated with <i>Zostera novazelandica</i> Setch. and <i>Spartina alterniflora</i> Loisel., in Whangateau Harbour, North Island, New Zealand. New Zealand Journal of Marine and Freshwater Research, 1990, 24, 481-486.	2.0	2
51	Effects of nitrate, ammonium and salinity on growth of the mangrove Bruguiera gymnorrhiza (L.) lam. Aquatic Botany, 1990, 38, 209-219.	1.6	38
52	Ecophysiology of plants in waterlogged and flooded environments. Aquatic Botany, 1990, 38, 73-90.	1.6	137
53	Population Increases of Planthoppers on Fertilized Salt-Marsh Cord Grass May Be Prevented by Grasshopper Feeding. Florida Entomologist, 1991, 74, 88.	0.5	17
54	A comparison of physicochemical variables across plant zones in a mangal/salt marsh community in Louisiana. Wetlands, 1991, 11, 139-161.	1.5	52

#	Αρτιςι ε	IF	CITATIONS
55	The influence of salinity on the kinetics of NH inf4 sup+ uptake in Spartina alterniflora. Oecologia,	20	88
00	1991, 85, 375-380.	2.0	
56	Effect of salinity on the critical nitrogen concentration of Spartina alterniflora Loisel. Aquatic Botany, 1992, 43, 149-161.	1.6	42
57	Indicators of Environmental Stress in Wetland Plants. , 1992, , 603-624.		13
58	Factors Controlling Aboveground Spartina alterniflora (Smooth Cordgrass) Tissue Element Composition and Production in Different-Age Barrier Island Marshes. Estuaries and Coasts, 1993, 16, 815.	1.7	61
59	Flow hydrodynamics in tidal marsh canopies. Limnology and Oceanography, 1995, 40, 1474-1484.	3.1	446
60	Seasonal Patterns of Nitrification and Denitrification in a Natural and a Restored Salt Marsh. Estuaries and Coasts, 1995, 18, 399.	1.7	82
61	Seasonal flooding, nitrogen mineralization and nitrogen utilization in a prairie marsh. Biogeochemistry, 1995, 30, 171-189.	3.5	38
62	Effects of Nutrient Enrichment on Growth and Herbivory of Dwarf Red Mangrove (Rhizophora) Tj ETQq1 1 0.7843	314 rgBT /	Overlock 10
63	A comparison of indicators of sub-lethal untrient stress in the salt marsh grass, Spartina patens. Environmental and Experimental Botany, 1995, 35, 331-343.	4.2	15
64	Porewater chemistry associated withPhragmites andSpartina in a Connecticut tidal marsh. Wetlands, 1997, 17, 360-367.	1.5	74
65	Growth form and population density ofSpartina maritima (Curtis) Fernald in northwest Spain. Wetlands, 1997, 17, 368-374.	1.5	19
66	Allocation of nitrogen and carbon in an estuarine salt marsh in Portugal. Journal of Coastal Conservation, 1997, 3, 27-34.	1.6	21
67	The Influence of Subsurface Hydrology on Nutrient Supply and Smooth Cordgrass (Spartina) Tj ETQq0 0 0 rgBT /(Dverlock 1 1.7	0 Tf 50 262
68	Effects of wrack burial in salt-stressed habitats: Batis maritima in a southwest Atlantic salt marsh. Ecography, 1998, 21, 630-638.	4.5	92
69	Biomass Allocation, Clonal Dispersal, and Competitive Success in Three Salt Marsh Plants. Oikos, 1998, 82, 347.	2.7	52
70	The effect of water level management on the soils and vegetation of two coastal Louisiana marshes. Wetlands Ecology and Management, 1999, 7, 193-218.	1.5	13
71	Effects of Phragmites australis (Common Reed) Invasion on Aboveground Biomass and Soil Properties in Brackish Tidal Marsh of the Mullica River, New Jersey. Estuaries and Coasts, 1999, 22, 927.	1.7	179
72	Site Conditions, Not Parental Phenotype, Determine the Height of Spartina foliosa. Estuaries and Coasts, 2000, 23, 572.	1.7	21

#	Article	IF	CITATIONS
73	NUTRIENT STATUS IN TALL AND SHORT FORMS OFSPARTINA MARITIMAIN THE SALT MARSHES OF ORTIGUEIRA (NW IBERIAN PENINSULA) AS RELATED TO PHYSICOCHEMICAL PROPERTIES OF THE SOILS. Wetlands, 2000, 20, 461-469.	1.5	12
75	Eco-Physiological Controls on the Productivity of Spartina Alterniflora Loisel. , 2002, , 59-80.		63
76	Anthropogenic modification of New England salt marsh landscapes. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 1395-1398.	7.1	318
77	MANGROVE ISOTOPIC (Î'15N AND Î'13C) FRACTIONATION ACROSS A NITROGEN VS. PHOSPHORUS LIMITATION GRADIENT. Ecology, 2002, 83, 1065-1075.	3.2	192
78	Spatial Variation in Process and Pattern in Salt Marsh Plant Communities in Eastern North America. , 2002, , 39-57.		18
79	Nutrient effects on the composition of salt marsh plant communities along the Southern Atlantic and gulf coasts of the United States. Estuaries and Coasts, 2002, 25, 1164-1173.	1.7	55
80	Title is missing!. Plant Ecology, 2003, 168, 93-106.	1.6	26
81	Nitrogen vs. phosphorus limitation across an ecotonal gradient in a mangrove forest. Biogeochemistry, 2003, 62, 145-175.	3.5	270
82	Shoreline Development Drives Invasion of Phragmites australis and the Loss of Plant Diversity on New England Salt Marshes. Conservation Biology, 2004, 18, 1424-1434.	4.7	299
83	The effect of nutrient enrichment on growth, photosynthesis and hydraulic conductance of dwarf mangroves in Panama. Functional Ecology, 2004, 18, 25-33.	3.6	181
84	NUTRIENT SUBSIDIES TO BELOWGROUND MICROBES IMPACT ABOVEGROUND FOOD WEB INTERACTIONS. Ecology, 2006, 87, 1542-1555.	3.2	53
85	Consequences of nitrogen and phosphorus limitation for the performance of two planthoppers with divergent life-history strategies. Oecologia, 2006, 149, 444-455.	2.0	160
86	Nutrient enrichment and the role of salt marshes in the Tagus estuary (Portugal). Estuarine, Coastal and Shelf Science, 2007, 75, 393-407.	2.1	32
87	Eutrophication and Consumer Control of New England Salt Marsh Primary Productivity. Conservation Biology, 2008, 22, 131-139.	4.7	91
88	Nitrogen Dynamics of Coastal Salt Marshes. , 2008, , 991-1036.		31
89	Increased primary production shifts the structure and composition of a terrestrial arthropod community. Ecology, 2010, 91, 3303-3311.	3.2	66
90	Relationship between anthropogenic sewage discharge, marsh structure and bird assemblages in an SW Atlantic saltmarsh. Marine Environmental Research, 2011, 71, 122-130.	2.5	24
91	Responses of Salt Marsh Plant Rhizosphere Diazotroph Assemblages to Changes in Marsh Elevation, Edaphic Conditions and Plant Host Species. Microbial Ecology, 2011, 61, 386-398.	2.8	28

#	Article	IF	CITATIONS
92	The Response of Photosystem II to Soil Salinity and Nutrients in Wetland Plant Species of the Northwestern Gulf of Mexico. Journal of Coastal Research, 2012, 284, 1197-1207.	0.3	13
94	Specificity of Salt Marsh Diazotrophs for Vegetation Zones and Plant Hosts: Results from a North American marsh. Frontiers in Microbiology, 2012, 3, 84.	3.5	17
95	Salt Marshes on Substrate Enriched in Organic Matter: The Case of Ombrogenic Atlantic Salt Marshes. Estuaries and Coasts, 2013, 36, 595-609.	2.2	9
96	Brinson Review: Perspectives on the Influence of Nutrients on the Sustainability of Coastal Wetlands. Wetlands, 2013, 33, 975-988.	1.5	78
97	Ecological Impacts of Macroalgal Blooms on Salt Marsh Communities. Estuaries and Coasts, 2013, 36, 365-376.	2.2	21
98	Ditching and Ditch-Plugging in New England Salt Marshes: Effects on Plant Communities and Self-Maintenance. Estuaries and Coasts, 2014, 37, 354-368.	2.2	9
99	A Comparison of the Elemental Composition of Leaf Tissue of <i>Spartina Patens</i> and <i>Spartina Alternifora</i> in Louisiana's Coastal Marshes. Journal of Plant Nutrition, 2014, 37, 1327-1344.	1.9	6
100	Microbiology of the Sulfur Cycle. Agronomy, 0, , 23-55.	0.2	5
101	Nutrient levels modify saltmarsh responses to increased inundation in different soil types. Marine Environmental Research, 2015, 104, 37-46.	2.5	34
102	Magnitude and Trophic Fate of Black Needlerush (Juncus Roemerianus) Productivity: Does Nutrient Addition Matter?. Wetlands, 2015, 35, 401-417.	1.5	12
103	Relating salt marsh pore water geochemistry patterns to vegetation zones and hydrologic influences. Water Resources Research, 2016, 52, 1729-1745.	4.2	23
104	Saltmarsh plant responses to eutrophication. Ecological Applications, 2016, 26, 2649-2661.	3.8	60
105	A Landscape-Scale Assessment of Above- and Belowground Primary Production in Coastal Wetlands: Implications for Climate Change-Induced Community Shifts. Estuaries and Coasts, 2017, 40, 856-879.	2.2	38
106	Seasonal changes in above- and below-ground non-structural carbohydrates (NSC) in Spartina alterniflora in a marsh in Georgia, USA. Aquatic Botany, 2017, 140, 13-22.	1.6	8
107	Effect of Elevation on Soil Properties in Reconstructed Back Barrier Island Coastal Marsh Using Dredged Materials. Wetlands, 2017, 37, 301-311.	1.5	5
108	In situ soil net nitrogen mineralization in coastal salt marshes (Suaeda salsa) with different flooding periods in a Chinese estuary. Ecological Indicators, 2017, 73, 559-565.	6.3	37
109	Resource competition model predicts zonation and increasing nutrient use efficiency along a wetland salinity gradient. Ecology, 2018, 99, 670-680.	3.2	13
110	Nitrogen enrichment alters carbon fluxes in a New England salt marsh. Ecosystem Health and Sustainability, 2018, 4, 277-287.	3.1	14

#	Article	IF	CITATIONS
111	Restoring a degraded marsh using thin layer sediment placement: Short term effects on soil physical and biogeochemical properties. Ecological Engineering, 2018, 120, 61-67.	3.6	28
112	Evaluation of coastal wetland soil properties in a degrading marsh. Estuarine, Coastal and Shelf Science, 2018, 212, 311-317.	2.1	10
113	Responses of Salt Marsh Plant Rhizosphere Diazotroph Assemblages to Drought. Microorganisms, 2018, 6, 27.	3.6	8
114	Salt Marsh Aboveground Production in New England Estuaries in Relation to Nitrogen Loading and Environmental Factors. Wetlands, 2018, 38, 1327-1340.	1.5	4
115	Estimating Aboveground Biomass and Its Spatial Distribution in Coastal Wetlands Utilizing Planet Multispectral Imagery. Remote Sensing, 2019, 11, 2020.	4.0	27
116	Impacts of Nutrient Subsidies on Salt Marsh Arthropod Food Webs: A Latitudinal Survey. Frontiers in Ecology and Evolution, 2019, 7, .	2.2	8
117	Burrowing Crabs Weaken Mutualism Between Foundation Species. Ecosystems, 2019, 22, 767-780.	3.4	11
118	Archaeological herbivore δ13C and δ34S provide a marker for saltmarsh use and new insights into the process of 15N-enrichment in coastal plants. Journal of Archaeological Science, 2021, 125, 105295.	2.4	15
119	Community Ecology of Salt Marshes. , 2021, , 82-112.		6
121	Differential Nutrient Uptake by Saltmarsh Plants Is Modified by Increasing Salinity. Frontiers in Plant Science, 2021, 12, 709453.	3.6	4
122	Species identity and the functioning of ecosystems: the role of detritivore traits and trophic interactions in connecting of multiple ecosystem responses. Oikos, 2021, 130, 1692.	2.7	1
123	Aboveground Net Primary Productivity of Three Gulf Coast Marsh Macrophytes in Artificially Fertilized Plots. , 1981, , 437-445.		5
124	The Relationship of Soil Parameters and Root Metabolism to Primary Production in Periodically Inundated Soils. , 1988, , 398-428.		1
125	The Relationship of Soil Parameters and Root Metabolism to Primary Production in Periodically Inundated Soils. , 1988, , 398-428.		8
126	Coastal Habitats of the Gulf of Mexico. , 2017, , 359-640.		17
127	Coastal marshes. , 1985, , 323-347.		8
128	Distribution and environmental control of productivity and growth form of Spartina alterniflora (Loisel.). Tasks for Vegetation Science, 1982, , 127-142.	0.6	24
129	The Influence of Nutrients on the Coastal Wetlands of the Mississippi Delta. Estuaries of the World, 2014, , 111-123.	0.1	8

#	Article	IF	CITATIONS
130	AN EVALUATION OF AERATION, NITROGEN, pH AND SALINITY AS FACTORS AFFECTING SPARTINA ALTERNIFLORA GROWTH: A SUMMARY. , 1980, , 235-247.		16
131	A REVIEW OF PRIMARY PRODUCTION AND DECOMPOSITION DYNAMICS OF THE BELOWGROUND MARSH COMPONENT. , 1982, , 139-157.		63
132	SOIL DYNAMICS AND THE PRODUCTIVITY OF SPARTINA ALTERNIFLORA. , 1982, , 231-242.		26
133	Not All Nitrogen Is Created Equal: Differential Effects of Nitrate and Ammonium Enrichment in Coastal Wetlands. BioScience, 2020, 70, 1108-1119.	4.9	25
134	Evidence for NH4+ switch-off regulation of nitrogenase activity by bacteria in salt marsh sediments and roots of the grass Spartina alterniflora. Applied and Environmental Microbiology, 1986, 51, 143-149.	3.1	62
135	Nutrient Presses and Pulses Differentially Impact Plants, Herbivores, Detritivores and Their Natural Enemies. PLoS ONE, 2012, 7, e43929.	2.5	47
136	Experimental Ecology (Ecological Geobotany). , 1980, , 374-395.		0
139	Increasing tidal inundation corresponds to rising porewater nutrient concentrations in a southeastern U.S. salt marsh. PLoS ONE 2022, 17, e0278215	2.5	3