Quantum photoyield of diamond(111)â€"A stable negati

Physical Review B 20, 624-627 DOI: 10.1103/physrevb.20.624

Citation Report

#	Article	IF	CITATIONS
1	Magnetic surface states on Ni(100). Physical Review B, 1979, 20, 1444-1453.	3.2	94
2	Schottky barriers on diamond (1 1 1). Solid State Communications, 1980, 36, 631-633.	1.9	60
3	Electronic structure of clean and metal chemisorbed diamond (111) surfaces. Solid State Communications, 1980, 35, 971-973.	1.9	6
4	Comment on "Quantum photoyield of diamond (111)—A stable negative-affinity emitter". Physical Review B, 1980, 22, 1095-1095.	3.2	11
5	On the electronic structure of semiconductor surfaces, interfaces and defects at surfaces or interfaces. , 1979, , 117-175.		51
6	Experimental bulk energy bands for diamond usinghν-dependent photoemission. Physical Review B, 1980, 22, 1967-1971.	3.2	144
7	Comparative study of reconstructed silicon and diamond (111) surfaces modelled by small clusters. Surface Science, 1981, 103, 338-352.	1.9	21
8	Surface states on reconstructed diamond (111). Physical Review B, 1981, 24, 7270-7274.	3.2	120
9	Dynamical aspects of correlation corrections in a covalent crystal. Physical Review B, 1982, 25, 2867-2888.	3.2	260
10	Diamond (111) studied by electron energy loss spectroscopy in the characteristic loss region. Surface Science, 1982, 123, 47-60.	1.9	95
11	Electronic states of (2 × 1) and (1 × 1) (111) surfaces of Ge, Si, diamond, GaAs and Ge on Si. Surface Science, 1982, 120, L477-L482.	1.9	5
12	Electronic states of (2 × 1) and (1 × 1) (111) surfaces of Ge, Si, diamond, GaAs and Ge on Si. Surface Science Letters, 1982, 120, L477-L482.	0.1	0
13	Preparation of atomically clean surfaces of selected elements: A review. Applications of Surface Science, 1982, 10, 143-207.	1.0	326
14	Electron state associated with the unreconstructed (111) surface in diamond. Physica Status Solidi (B): Basic Research, 1982, 114, 581-583.	1.5	1
15	The diamond (111) surface: A dilemma resolved. Physica B: Physics of Condensed Matter & C: Atomic, Molecular and Plasma Physics, Optics, 1983, 117-118, 783-785.	0.9	16
16	He-diamond interaction probed by atom beam scattering. Physical Review B, 1983, 27, 2480-2487.	3.2	41
17	Periodic MINDO/3 study of the unreconstructed (111) surface of diamond and of hydrogen chemisorption thereon. Surface Science, 1984, 148, 225-236.	1.9	11
18	Observation of a C-1sCore Exciton in Diamond. Physical Review Letters, 1985, 54, 1960-1963.	7.8	222

#	Article	IF	CITATIONS
19	Amorphous carbon. Advances in Physics, 1986, 35, 317-374.	14.4	1,374
20	The diamond surface: atomic and electronic structure. Surface Science, 1986, 165, 83-142.	1.9	659
21	lon scattering determination of the atomic arrangement at polished diamond(111) surfaces before and after reconstruction. Surface Science, 1986, 167, 502-518.	1.9	89
22	Experimental tests of the dielectric electronegativity approach to the problem of heterojunction band discontinuities. Superlattices and Microstructures, 1986, 2, 173-174.	3.1	0
23	Nonempirical cluster-model study of the chemisorption of atomic hydrogen on the (111) surface of diamondlike crystals. Physical Review B, 1986, 34, 7203-7208.	3.2	24
24	C 1sexcitation studies of diamond (111). I. Surface core levels. Physical Review B, 1986, 33, 1340-1345.	3.2	211
25	C1sexcitation studies of diamond (111). II. Unoccupied surface states. Physical Review B, 1986, 33, 1346-1349.	3.2	126
26	Normally unoccupied states on C(111) (diamond) (2×1): Support for a relaxedï€-bonded chain model. Physical Review B, 1989, 39, 1381-1384.	3.2	90
27	2.1.29 References for 2.1., 0,, 103-112.		0
28	Photosensitization of diamond thin films. Applied Physics Letters, 1990, 56, 1898-1900.	3.3	18
29	Lithium doping and photoemission of diamond thin films. Applied Physics Letters, 1990, 57, 1907-1909.	3.3	62
30	Diamond cold cathode. IEEE Electron Device Letters, 1991, 12, 456-459.	3.9	316
31	Diamond transistor performance and fabrication. Proceedings of the IEEE, 1991, 79, 669-676.	21.3	69
32	Photoelectron emission from diamond films. Surface and Coatings Technology, 1991, 47, 481-486.	4.8	1
33	Capacitance-voltage measurements on metal-SiO/sub 2/-diamond structures fabricated with. IEEE Transactions on Electron Devices, 1991, 38, 619-626.	3.0	151
34	Epitaxy of LiF on Ge(100). Applied Physics Letters, 1991, 59, 2174-2176.	3.3	82
35	Secondary-electron-emission spectrum of diamond. Physical Review B, 1991, 44, 4640-4643.	3.2	10
36	Graphite microregions effect upon the Si-diamond layer junction properties. Diamond and Related Materials, 1992, 1, 588-593.	3.9	11

	CITATION	Report	
# 37	ARTICLE Photoelectrochemical investigations on boron-doped chemically vapour-deposited diamond	IF 3.9	Citations
38	Threshold ionization energy of C60 in the solid state. Chemical Physics, 1992, 162, 433-438.	1.9	55
39	Photoelectric measurement and study of diamond-like carbon thin films. Journal of Electronic Materials, 1992, 21, 115-117.	2.2	0
40	Device application of diamonds. Thin Solid Films, 1992, 216, 134-136.	1.8	2
41	Efficient electrochemical reduction of nitrate to ammonia using conductive diamond film electrodes. Journal of Electroanalytical Chemistry, 1993, 347, 409-415.	3.8	154
42	Low pressure diamond synthesis for electronic applications. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1993, 19, 203-227.	3.5	55
43	Reversible electronic logic using switches. Nanotechnology, 1993, 4, 21-40.	2.6	199
44	Electron Field Emission From Amorphic Diamond Thin Films. , 0, , .		1
45	Effect of surface hydrogen on metalâ€diamond interface properties. Journal of Applied Physics, 1993, 73, 835-842.	2.5	24
46	Growth of diamond particles on sharpened silicon tips. Materials Letters, 1993, 18, 61-63.	2.6	31
47	Similarities in the 'cold' electron emission characteristics of diamond coated molybdenum electrodes and polished bulk graphite surfaces. Journal Physics D: Applied Physics, 1993, 26, 1776-1780.	2.8	238
48	<title>Electronic and sensing properties of diamond</title> . , 1994, 2151, 133.		1
49	A vibrational study of the adsorption and desorption of hydrogen on polycrystalline diamond. Journal of Applied Physics, 1994, 75, 1804-1810.	2.5	81
50	Theoretical study of field emission from diamond. Applied Physics Letters, 1994, 65, 2562-2564.	3.3	116
51	Fabrication of a diamond field emitter array. Applied Physics Letters, 1994, 64, 2742-2744.	3.3	142
52	Influence of interfacial hydrogen and oxygen on the Schottky barrier height of nickel on (111) and (100) diamond surfaces. Physical Review B, 1994, 49, 13629-13637.	3.2	106
53	Electron emission from diamond coated silicon field emitters. Applied Physics Letters, 1994, 65, 2842-2844.	3.3	93
54	Stable secondary electron emission observations from chemical vapor deposited diamond. Applied Physics Letters, 1994, 65, 2702-2704.	3.3	39

#	Article	IF	CITATIONS
55	Photoemission from magnesium and from diamond film using high intensity laser beams. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1994, 340, 190-194.	1.6	5
56	Investigation of diamond films for electronic devices. Surface and Interface Analysis, 1994, 21, 138-143.	1.8	29
57	Fabrication of an electron multiplier utilizing diamond films. Thin Solid Films, 1994, 253, 151-156.	1.8	30
58	Observation of a negative electron affinity for heteroepitaxial AlN on α(6H)â€ S iC(0001). Applied Physics Letters, 1994, 64, 3288-3290.	3.3	218
59	Negative-electron-affinity effects on the diamond (100) surface. Physical Review B, 1994, 50, 5803-5806.	3.2	369
60	Electron emission from chemical vapor deposited diamond and dielectric breakdown. Applied Physics Letters, 1994, 65, 863-865.	3.3	60
61	Negative Electron Affinity and Low Work Function Surface: Cesium on Oxygenated Diamond (100). Physical Review Letters, 1994, 73, 1664-1667.	7.8	96
62	Properties of the Heteroepitaxial AIN/SiC Interface. Materials Research Society Symposia Proceedings, 1994, 339, 81.	0.1	0
63	Interaction of Hyperthermal Hydrogen with the Diamond Surface. Materials Research Society Symposia Proceedings, 1994, 339, 33.	0.1	3
64	Electron Emission Properties of the Negative Electron Affinity (111)2×1 Diamond-Tio Interface. Materials Research Society Symposia Proceedings, 1994, 339, 75.	0.1	7
65	High Resolution Tem Study of Diamond Formation on Silicon and Molybdenum Field Emitter Surfaces. Materials Research Society Symposia Proceedings, 1994, 354, 449.	0.1	0
66	Diamond Sensors and Vacuummicroelectronics. Materials Research Society Symposia Proceedings, 1995, 416, 407.	0.1	7
67	Auger Electron Spectroscopy of The CVD Diamond Surface Under Electron Exposure. Materials Research Society Symposia Proceedings, 1995, 416, 431.	0.1	0
68	(Negative) Electron Affinity of AlN and AlGaN Alloys. Materials Research Society Symposia Proceedings, 1995, 395, 777.	0.1	31
69	Electronic Structure of Polycrystalline PECVD Diamond Surfaces. Materials Research Society Symposia Proceedings, 1995, 416, 133.	0.1	3
70	Influence Of Surface Terminating Species On Electron Emission From Diamond Surfaces. Materials Research Society Symposia Proceedings, 1995, 416, 263.	0.1	16
71	Surface damage effects on secondary electron emission From the negative electron affinity diamond surface. Materials Research Society Symposia Proceedings, 1995, 416, 311.	0.1	2
72	Electron Field Emission Properties of Diamond. Materials Research Society Symposia Proceedings, 1995, 416, 443.	0.1	9

#	Article	IF	CITATIONS
73	Photoelectron Emission from the Cesiated Diamond (110) Surface. Materials Research Society Symposia Proceedings, 1995, 416, 449.	0.1	7
74	Secondary Electron Emission Studies of Diamond Surfaces. Materials Research Society Symposia Proceedings, 1995, 416, 461.	0.1	7
75	Microstructure and field emission of diamond particles on silicon tips. Applied Surface Science, 1995, 87-88, 24-30.	6.1	66
76	Defectâ€enhanced electron field emission from chemical vapor deposited diamond. Journal of Applied Physics, 1995, 78, 2707-2711.	2.5	291
77	Electron Emission Due to Exciton Breakup from Negative Electron Affinity Diamond. Physical Review Letters, 1995, 74, 777-780.	7.8	115
78	Surface structures and electron affinities of bare and hydrogenated diamond C(100) surfaces. Physical Review B, 1995, 51, 5291-5296.	3.2	89
79	Photoelectric emission from negative-electron-affinity diamond (111) surfaces: Exciton breakup versus conduction-band emission. Physical Review B, 1995, 52, 12056-12071.	3.2	225
80	Electron emission from chemical vapor deposited diamond and amorphous carbon films observed with a simple field emission device. Journal of Materials Research, 1995, 10, 1585-1588.	2.6	62
81	Fabrication and Characterization of Diamond-Clad Silicon Field Emitter Arrays. Japanese Journal of Applied Physics, 1995, 34, 6926-6931.	1.5	19
82	Estimation of the Emission Barrier Height of p-Type Semiconducting Diamond from its Field Emission Property. Japanese Journal of Applied Physics, 1995, 34, L1068-L1070.	1.5	10
83	The Current And Future Status Of Diamond in Electronics. Materials Research Society Symposia Proceedings, 1995, 416, 375.	0.1	0
84	Fabrication of a miniature-size pyramidal-shape diamond field emitter array. IEEE Electron Device Letters, 1995, 16, 239-241.	3.9	16
85	Field emission from plasma-treated diamond particles. , 0, , .		0
86	Diamond field emitter triode display cells. , 0, , .		0
87	Emission stability and high current performance of diamond-coated Si emitters. , 0, , .		0
88	Monte Carlo study of hot electron and ballistic transport in diamond: I. Low electric field region. , 0, , .		1
89	Photoyield measurements of CVD diamond. Diamond and Related Materials, 1995, 4, 806-808.	3.9	16
90	Diamond junction cold cathode. Diamond and Related Materials, 1995, 4, 586-590.	3.9	35

ARTICLE IF CITATIONS # Influence of surface modifications on the electronic properties of CVD diamond films. Diamond and 91 3.9 28 Related Materials, 1996, 5, 1378-1383. Growth of diamond particles on sharpened silicon tips for field emission. Diamond and Related Materials, 1996, 5, 938-942. 93 Electron affinity of carbon systems. Diamond and Related Materials, 1996, 5, 797-801. 3.9 82 Mold growth of polycrystalline pyramidal-shape diamond for field emitters. Diamond and Related 94 3.9 Materials, 1996, 5, 19-24. Negative electron affinity surfaces of aluminum nitride and diamond. Diamond and Related Materials, 95 3.9 84 1996, 5, 790-796. Dimer reconstruction and electronic surface states on clean and hydrogenated diamond (100) surfaces. Physical Review B, 1996, 53, 7334-7351. 3.2 240 Room temperature photovoltaic charging in photoemission from diamond. Surface Science, 1996, 345, 97 1.9 25 L23-L27. Photoelectric emission from the negative electron affinity (100) diamond surface â€" exciton effects. 1.9 40 Surface Science, 1996, 350, 315-321. Photoemission from the negative electron affinity (100) natural hydrogen terminated diamond 99 1.9 63 surface. Surface Science, 1996, 349, 176-184. Effect of ultraviolet light irradiation on CVD-grown (100) and (111) diamond surfaces. Surface Science, 1996, 357-358, 581-584. Atomic and electronic structure of diamond (111) surfaces I. Reconstruction and hydrogen-induced 101 1.9 117 de-reconstruction of the one dangling-bond surface. Surface Science, 1996, 366, 445-463. Field emission from a-C:H and a-C:H:N. Journal of Non-Crystalline Solids, 1996, 198-200, 611-614. 3.1 34 Electron emission characteristics of pulsed laser deposited diamond-like films. , 0, , . 103 0 Electron emission characteristics of pulsed laser deposited diamond-like films. , 0, , . 104 Photoemission from diamond and fullerene films for advanced accelerator applications. IEEE 105 1.3 7 Transactions on Plasma Science, 1996, 24, 428-438. A study of stable low-field electron emission from diamond-like films. Diamond and Related Materials, 23 1996, 5, 771-774. Photoelectron spectroscopic investigations and exoelectron emission of CVD diamond surfaces 107 3.9 23 modified with oxygen and potassium. Diamond and Related Materials, 1996, 5, 784-789. Surface Photovoltage Effects in Photoemission from Diamond Surfaces. Materials Research Society 0.1 Symposia Proceedings, 1996, 423, 759.

#	Article	IF	CITATIONS
109	Field emission characteristics of amorphous carbon and diamond emitters. , 0, , .		2
110	Effect of Au buffer on the field emission characteristics of chemical vapor deposited diamond films. , 0, , .		1
111	Enhanced electron emission from phosphorus-doped diamond-clad silicon field emitter arrays. IEEE Electron Device Letters, 1996, 17, 208-210.	3.9	24
112	Local electron field emission characteristics of pulsed laser deposited diamondlike carbon films. Applied Physics Letters, 1996, 69, 3504-3506.	3.3	44
113	Fabrication and characterization of DLC-coated field emitter array. , 0, , .		0
114	Enhancement of electron emission efficiency of Mo-tips by diamond-like carbon coatings. , 0, , .		0
115	Investigation of the Field Emission Current from Polycrystalline Diamond Films. Materials Research Society Symposia Proceedings, 1996, 423, 765.	0.1	0
116	Electron Field Emission From Diamond-Like Carbon. Materials Research Society Symposia Proceedings, 1996, 423, 777.	0.1	6
117	Electron Emission From Diamond and Carbon Nitride Grown by Hot Filament Cvd or Helical Resonator Pecvd. Materials Research Society Symposia Proceedings, 1996, 424, 375.	0.1	2
118	Properties of Diamond-Like Carbon for Thin Film Microcathodes for Field Emission Displays. Materials Research Society Symposia Proceedings, 1996, 424, 381.	0.1	5
119	Investigation of Electron Emission From Si and Hot Filament CVD Diamond. Materials Research Society Symposia Proceedings, 1996, 424, 403.	0.1	1
120	Diamond Growth on (a) Large Mo Cylinders at 30 Torr and (b) Flat Mo at One Atmospheric Pressure of H2 and CH4. Materials Research Society Symposia Proceedings, 1996, 441, 659.	0.1	0
121	Negative electron affinity observed in boronâ€dopedpâ€ŧype diamond films by scanning field emission spectroscopy. Journal of Applied Physics, 1996, 80, 6809-6812.	2.5	22
122	Enhanced electron emission from phosphorus- and boron-doped diamond-clad Si field emitter arrays. Thin Solid Films, 1996, 290-291, 176-180.	1.8	8
123	Field emission behavior of (nitrogen incorporated) diamond-like carbon films. Thin Solid Films, 1996, 290-291, 171-175.	1.8	33
124	Investigation of the field emission current from polycrystalline diamond films. Thin Solid Films, 1996, 290-291, 153-156.	1.8	7
125	Field emission observations from CVD diamond-coated silicon emitters. Thin Solid Films, 1996, 290-291, 190-195.	1.8	11
126	Electron emission characterization of diamond thin films grown from a solid carbon source. Thin Solid Films, 1996, 280, 256-261.	1.8	23

		Citation R	EPORT	
#	Article		IF	Citations
127	Hydrogen-terminated diamond surfaces and interfaces. Surface Science Reports, 1996,	, 26, 205-206.	7.2	529
128	UV photoemission study of heteroepitaxial AlGaN films grown on 6H-SiC. Applied Surfa 104-105, 455-460.	ce Science, 1996,	6.1	66
129	Measurements of the energy band offsets of and heterojunctions. Applied Surface Scie 104-105, 615-620.	nce, 1996,	6.1	7
130	Growth of chemical vapour deposition diamond on large molybdenum cylinders for cro amplifier applications. Journal of Materials Science Letters, 1996, 15, 2173.	ssed-field	0.5	1
131	Photoelectron Spectroscopy Study of Natural (100), (110), (111) and CVD Diamond Status Solidi A, 1996, 154, 91-108.	urfaces. Physica	1.7	23
132	Low-threshold cold cathodes made of nitrogen-doped chemical-vapour-deposited diam 1996, 381, 140-141.	ond. Nature,	27.8	539
133	Characterisation of Diamond-like Carbon by Raman Spectroscopy and Optical Constan Research Society Symposia Proceedings, 1996, 423, 699.	ts. Materials	0.1	1
134	Field emission of nitrogen doped DLC films deposited by PECVD. , 0, , .			1
135	Negative-electron-affinity effect on the surface of chemical-vapor-deposited diamond p films. Physical Review B, 1996, 53, R7650-R7653.	olycrystalline	3.2	62
136	Uniform field emission from polycrystalline CVD-diamond films. , 0, , .			3
137	Enhancement of electron emission efficiency and stability of molybdenum field emitter diamond-like carbon coating. , 0, , .	array by		6
138	Stable anionic site on hydrogenated (111) surface of diamond resulting from hydroger under chemical vapor deposition conditions. Journal of Applied Physics, 1996, 80, 3319	atom removal 9-3326.	2.5	4
139	Emission stability of DLC coated metal-tips FEA. , 0, , .			3
140	Electron Affinity and Surface Re-ordering of Homoepitaxial Diamond (100). Japanese Jo Physics, 1996, 35, 5444-5447.	urnal of Applied	1.5	5
141	Fabrication and Characterization of Diamond-Like Carbon Coated Knife Edge Field Emit Japanese Journal of Applied Physics, 1996, 35, L1305-L1307.	ter Array.	1.5	6
142	Electronic properties of diamond surfaces. , 1997, , 77-104.			9
143	Fabrication of diamond films at low temperature by pulse-modulated magneto-active m plasma CVD. Plasma Sources Science and Technology, 1996, 5, 235-240.	nicrowave	3.1	21
144	Diamond Nucleation on Singlecrystalline 6H-SiC Substrates by Bias-Enhanced Nucleation Filament Chemical Vapor Deposition. Japanese Journal of Applied Physics, 1997, 36, 62	on in Hot 95-6299.	1.5	9

#	Article	IF	CITATIONS
145	Characteristics of Heterojunction Utilizing Conducting Polymer and Diamond Film on Si. Japanese Journal of Applied Physics, 1997, 36, L1678-L1680.	1.5	7
146	Stability of Field Emission Current from Boron-Doped Diamond Thin Films Terminated with Hydrogen and Oxygen. Japanese Journal of Applied Physics, 1997, 36, L1250-L1253.	1.5	13
147	Reactive Ion Etching of Diamond inO2andCF4Plasma, and Fabrication of Porous Diamond for Field Emitter Cathodes. Japanese Journal of Applied Physics, 1997, 36, 7745-7748.	1.5	111
148	Electron emission from the pyramidal-shaped diamond after hydrogen and oxygen surface treatments. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1997, 15, 1678.	1.6	22
149	Field emission from amorphous diamond coated Mo tip emitters by pulsed laser deposition. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1997, 15, 840.	1.6	20
150	Electron emission from nitrogen-doped pyramidal-shape diamond and its battery operation. Applied Physics Letters, 1997, 70, 2201-2203.	3.3	75
151	Fabrication of amorphous-carbon-nitride field emitters. Applied Physics Letters, 1997, 71, 324-326.	3.3	60
152	Microwave plasma chemical vapor deposited diamond tips for scanning tunneling microscopy. Applied Physics Letters, 1997, 71, 2848-2850.	3.3	18
153	Auger spectroscopy of hydrogenated diamond surfaces. Physical Review B, 1997, 56, 13529-13534.	3.2	8
154	Electron emission from boron nitride coated Si field emitters. Applied Physics Letters, 1997, 71, 2704-2706.	3.3	94
155	Electron transport and emission properties of C(100). Physical Review B, 1997, 56, R4410-R4416.	3.2	49
156	Bias voltage dependent field-emission energy distribution analysis of wide band-gap field emitters. Journal of Applied Physics, 1997, 82, 5763-5772.	2.5	55
157	Influence of surface treatment and dopant concentration on field emission characteristics of boron-doped diamond thin films. Applied Physics Letters, 1997, 71, 2806-2808.	3.3	26
158	Enhancement on field emission characteristics of pulsed laser deposited diamondlike carbon films using Au precoatings. Applied Physics Letters, 1997, 70, 2111-2113.	3.3	13
159	Diamond grit-based field emission cathodes. IEEE Electron Device Letters, 1997, 18, 595-598.	3.9	6
160	Electron field emission characteristics of planar diamond film array synthesized by chemical vapor deposition process. Applied Physics Letters, 1997, 71, 554-556.	3.3	30
161	Electron emission from disordered tetrahedral carbon. Applied Physics Letters, 1997, 71, 794-796.	3.3	22
162	Secondary electron emission from diamond surfaces. Journal of Applied Physics, 1997, 82, 1860-1867.	2.5	94

#	Article	IF	CITATIONS
163	Theory of reflectance anisotropy of clean and hydrogenated (001) diamond surfaces. Physical Review B, 1997, 56, 3903-3906.	3.2	11
164	Effects of dopant concentration, crystallographic orientation, and crystal morphology on secondary electron emission from diamond. Journal of Applied Physics, 1997, 82, 4538-4545.	2.5	20
165	The role of atomic hydrogen and its influence on the enhancement of secondary electron emission from C(001) surfaces. Applied Physics Letters, 1997, 70, 1257-1259.	3.3	38
166	Effect of substrate materials on the electron field emission characteristics of chemical vapor deposited diamond films. Journal of Applied Physics, 1997, 82, 3310-3313.	2.5	21
167	Energy distribution of field emitted electrons from diamond coated molybdenum tips. Applied Physics Letters, 1997, 70, 1596-1598.	3.3	56
168	Electron emission and structure properties of cesiated carbon films prepared by negative carbon ion beam. Journal of Applied Physics, 1997, 82, 2631-2635.	2.5	6
169	Measurement of electron affinity in boron-doped diamond from capacitance spectroscopy. Applied Physics Letters, 1997, 70, 2891-2893.	3.3	15
170	Self-texturing of nitrogenated amorphous carbon thin films for electron field emission. Applied Physics Letters, 1997, 71, 1477-1479.	3.3	81
171	Characterization and Field Emission of Sulfur-Doped Boron Nitride Synthesized by Plasma-Assisted Chemical Vapor Deposition. Japanese Journal of Applied Physics, 1997, 36, L463-L466.	1.5	105
172	Enhancement of electron emission characteristics of platform-shaped Mo emitters by diamond-like carbon coatings. , 1997, , .		0
173	Low Voltage Emission Characteristics of the Undoped Polycrystalline Diamond Field Emitter by MPCVD. , 1997, , .		0
174	Preparation of Ultrasharp Diamond Tip Emitters by Ion Beam Etching. , 1997, , .		0
175	Field emission energy distribution analysis of wide bandgap field emitters. , 1997, , .		0
176	Electron emission characteristics of polycrystalline diamond films. , 1997, , .		0
177	Field Emission Properties of Disordered and Partially Ordered Nano Clustered Carbon Films. Materials Research Society Symposia Proceedings, 1997, 498, 185.	0.1	49
178	Theory of Electron Field Emission From Diamond And Diamond-Ldxe Carbon. Materials Research Society Symposia Proceedings, 1997, 498, 197.	0.1	21
179	Electron Field Emission from Multilayered Tetrahedral Amorphous Carbon Films. Materials Research Society Symposia Proceedings, 1997, 498, 215.	0.1	2
180	Electron Field Emission from Aluminum Nitride. Materials Research Society Symposia Proceedings, 1997, 468, 437.	0.1	6

# 181	ARTICLE Band Model for Electron Emission from Diamond and Diamond-Like Carbon. Materials Research Society Symposia Proceedings, 1997, 471, 217.	IF 0.1	Citations 14
182	Morphology and Electron Emission Properties of Nanocrystalline CVD Diamond Thin Films. Materials Research Society Symposia Proceedings, 1997, 495, 299.	0.1	28
183	Defect Spectroscopy and Determination of the Electron Diffusion Length in Single Crystal Diamond by Total Photoelectron Yield spectroscopy. Physical Review Letters, 1997, 78, 1803-1806.	7.8	107
184	Enhancement of electron emission efficiency and stability of molybdenum-tip field emitter array by diamond like carbon coating. IEEE Electron Device Letters, 1997, 18, 197-199.	3.9	37
185	Improvement Of Electron Emission Stabilityof Mo-tip Feas By DLC Coating. , 1997, , .		1
186	Characterization of electron emission from planar amorphous carbon thin films using in situ scanning electron microscopy. Applied Physics Letters, 1997, 70, 1995-1997.	3.3	64
187	Electron emission characteristics of metal/diamond field emitters. Diamond and Related Materials, 1997, 6, 889-892.	3.9	29
188	Comparative study of excitonic recombination radiation from diamonds grown by CVD and HP/HT methods. Diamond and Related Materials, 1997, 6, 1668-1673.	3.9	0
189	Field emission properties of diode devices based on amorphic diamond-Si heterojunctions. Journal of Applied Physics, 1997, 81, 1505-1508.	2.5	12
190	Electronic structure of diamond-like carbon. Diamond and Related Materials, 1997, 6, 212-218.	3.9	100
191	Field emission from tetrahedral amorphous carbon. Applied Physics Letters, 1997, 71, 1430-1432.	3.3	312
192	Electron field emission from thin fine-grained CVD diamond films. Diamond and Related Materials, 1997, 6, 1111-1116.	3.9	77
193	Internal field emission at metal/diamond contact and performance of thin film field emitters: computer simulation. Diamond and Related Materials, 1997, 6, 884-888.	3.9	5
194	Excimer laser-induced electron emission from diamond films. Diamond and Related Materials, 1997, 6, 1650-1657.	3.9	7
195	Hydrogen and oxygen negative ion production by surface ionization using diamond surfaces. Surface Science, 1997, 373, 56-66.	1.9	76
196	Structure and morphology of the as-polished diamond(111)-1 × 1 surface. Surface Science, 1997, 387, 342-353.	1.9	24
197	Surface-state dispersion of hydrogenated and hydrogen-free diamond (100) surfaces determined by angle-resolved photoemission. Surface Science, 1997, 393, L77-L83.	1.9	19
198	Electron emission from a laser ablated and laser annealed BN thin film emitter. Journal of Applied Physics, 1997, 82, 5148-5153.	2.5	60

#	ARTICLE	IF	CITATIONS
199	Reproducibly Sharpened Pyramidal Diamond Field Emitter Arrays. , 1997, , .		1
200	Field Emission from Undoped Polycrystalline Diamond Deposited by MPCVD at 520-665 C. , 1997, , .		0
201	Environmental effects on electron emission from a diamond surface. , 1997, , .		0
202	Field electron emission of diamond-like-carbon films deposited by a laser ablation method. , 1997, , .		Ο
203	Boron-doping effect on the field emission behavior of pulsed laser deposited diamond like carbon films. , 1997, , .		0
204	Field emission properties of diamond coated silicon tip arrays. , 1997, , .		0
205	Effect of N doping on the electron emission properties of DLC Film on 2-inch Mo FEAs panel. , 1997, , .		0
206	Secondary electron emission studies. Applied Surface Science, 1997, 111, 251-258.	6.1	156
207	Secondary electron emission from chemical vapor deposited diamond films with nagative electron affinity. Applied Surface Science, 1997, 111, 265-269.	6.1	14
208	Effect of morphology on electron emission characteristics of pulsed laser deposited diamond-like films. Applied Surface Science, 1997, 113-114, 259-263.	6.1	15
209	Applications for small photoelectron emission microscopes. Journal of Electron Spectroscopy and Related Phenomena, 1997, 84, 129-136.	1.7	42
210	On low-field electron emission mechanisms. JETP Letters, 1997, 65, 857-862.	1.4	2
211	Fabrication and characterization of spherical polycrystalline diamond emitter arrays. Thin Solid Films, 1997, 308-309, 85-89.	1.8	7
212	Absolute photoyield from chemical vapor-deposited diamond and diamond-like carbon films in the UV. Applied Physics Letters, 1997, 70, 3446-3448.	3.3	32
213	Electron emission characteristics of diamond like carbon films deposited by laser ablation technique. Applied Surface Science, 1997, 111, 140-144.	6.1	13
214	Field emission from DLC films. Applied Surface Science, 1997, 111, 135-139.	6.1	98
215	Secondary emission in heat-treated CVD-diamonds. Applied Surface Science, 1997, 111, 151-156.	6.1	1
216	Effect of Au buffer on the field emission characteristics of chemical vapor deposited diamond films.	6.1	0

		CITATION R	EPORT	
#	Article		IF	CITATIONS
217	Electron emitter device of NEA diamond thin film. Applied Surface Science, 1997, 117-1	.18, 592-596.	6.1	21
218	Amorphous carbon cathodes for field emission display. Thin Solid Films, 1997, 296, 61-	65.	1.8	108
219	Field emission from amorphous diamond films prepared by filtered arc deposition. Thin 1998, 317, 356-358.	Solid Films,	1.8	10
220	A novel analysis system of synchrotron-orbital-radiation-light induced photoemission co ion scattering: SORI. Nuclear Instruments & Methods in Physics Research B, 1998, 136-	oupled with 138, 798-803.	1.4	31
221	Technology and characterization of diamond field emitter structures. IEEE Transactions Devices, 1998, 45, 977-985.	on Electron	3.0	9
222	Effect of diamond-like carbon coating on the emission characteristics of molybdenum f arrays. IEEE Transactions on Electron Devices, 1998, 45, 2232-2237.	ield emitter	3.0	6
223	Electron emission from diamond having negative electron affinity. Electronics and Com in Japan, 1998, 81, 54-64.	munications	0.2	1
224	Bias enhanced nucleation and bias textured growth of diamond on silicon(100) in hot f chemical vapor deposition. Thin Solid Films, 1998, 315, 35-39.	ilament	1.8	20
225	Characterization of diamond-like carbon by Raman spectroscopy, XPS and optical cons Solid Films, 1998, 317, 397-401.	tants. Thin	1.8	23
226	Field emission from diamond-like carbon films and fabrication of gated diamond-like car emitter. Ultramicroscopy, 1998, 73, 17-22.	bon film	1.9	6
227	Electron emission from nitrogen-doped chemical vapour deposited diamond. Ultramicro 73, 43-49.	эѕсору, 1998,	1.9	9
228	Controlling mechanisms for field-induced electron emission from diamond-like carbon f Ultramicroscopy, 1998, 73, 51-57.	ilms.	1.9	17
229	Electronic properties of cesium-covered GaN(0001) surfaces. Applied Surface Science, 28-32.	1998, 123-124,	6.1	39
230	Electron emission properties of crystalline diamond and III-nitride surfaces. Applied Surf 1998, 130-132, 694-703.	ace Science,	6.1	33
231	Field emission from filtered arc deposited amorphous diamond. Materials Letters, 1998	, 35, 157-160.	2.6	6
232	Ab initio calculation of electron affinities of diamond surfaces. Computational Materials 1998, 10, 330-333.	Science,	3.0	7
233	Band model for electron emission from diamond-like carbon and diamond. Journal of No Solids, 1998, 227-230, 558-564.	on-Crystalline	3.1	15
234	Surface cleaning, electronic states and electron affinity of diamond (100), (111) and (1 Surface Science, 1998, 409, 320-335.	10) surfaces.	1.9	88

#	Article	IF	CITATIONS
235	Electron affinity and work function of differently oriented and doped diamond surfaces determined by photoelectron spectroscopy. Surface Science, 1998, 418, 219-239.	1.9	210
236	Electron Affinity of the Bare and Hydrogen Covered Single Crystal Diamond (111) Surface. Physical Review Letters, 1998, 81, 429-432.	7.8	424
237	Photoelectron spectroscopy studies of barium films on diamond with respect to the modification of negative electron affinity characteristics. Diamond and Related Materials, 1998, 7, 651-655.	3.9	9
238	Electron emission from metal-diamond (100), (111) and (110) interfaces. Diamond and Related Materials, 1998, 7, 612-619.	3.9	32
239	Effect of boron-doping on electron field emission behavior of pulsed-laser deposited diamond-like-carbon films. Diamond and Related Materials, 1998, 7, 711-716.	3.9	2
240	Band diagram of diamond and diamond-like carbon surfaces. Diamond and Related Materials, 1998, 7, 620-625.	3.9	92
241	Field emission from tetrahedral amorphous carbon. Diamond and Related Materials, 1998, 7, 656-659.	3.9	54
242	Influence of film deposition parameters on the field emission properties of diamond-like carbon films. Diamond and Related Materials, 1998, 7, 687-691.	3.9	39
243	Photoelectron emission from the negative electron affinity caesiated natural diamond (100) surface. Diamond and Related Materials, 1998, 7, 660-665.	3.9	35
244	Field electron emission from diamond-like carbon films deposited using RF inductively coupled CH4-plasma source. Diamond and Related Materials, 1998, 7, 695-698.	3.9	19
245	Photoelectron yield spectroscopy on negative electron affinity diamond surfaces: A contactless unipolar transport experiment. Diamond and Related Materials, 1998, 7, 626-631.	3.9	33
246	A study on improved electron emission characteristics of micro-patterned DLC films. , 0, , .		0
247	Electron field emission from SiC/Si heterostructures synthesized by carbon implantation using a metal vapor vacuum arc ion source. Applied Physics Letters, 1998, 72, 1926-1928.	3.3	27
248	An addressable amorphous diamond field emission array for e-beam lithography. , 0, , .		2
249	Progress of flat panel displays. , 0, , .		0
250	Examination of electron field emission efficiency and homogeneity from CVD carbon-type films. , 0, , .		1
251	A study of influence of interface on field emission from diamond films. , 0, , .		0
252	Field emission from diamond-like carbon films. , 0, , .		1

#	Article	IF	Citations
253	Theoretical Study on Xâ^'H, â^'O, â^'OH, â^'NO, â^'ONO, and â^'NO2 (X = CH3, t-C4H9, C13H21). Journal of Physic	cal	10
	Chemistry A, 1998, 102, 2002-2008.		
254	Femtosecond Two-Photon Laser Photoelectron Microscopy. Journal of Physical Chemistry A, 1998, 102, 4148-4153.	2.5	7
255	Electron Emission from CVD-Diamond Cold Cathodes. , 1998, , 281-303.		2
256	CVD Diamond in the 21st Century. , 1998, , 363-379.		0
257	Electron affinity and Schottky barrier height of metal–diamond (100), (111), and (110) interfaces. Journal of Applied Physics, 1998, 83, 2072-2082.	2.5	105
258	The effect of diamond surface termination species upon field emission properties. Diamond and Related Materials, 1998, 7, 671-676.	3.9	39
259	Electron affinity at aluminum nitride surfaces. Applied Physics Letters, 1998, 73, 1346-1348.	3.3	93
260	The influence of film-to-substrate characteristics on the electron field emission behavior of the diamond films. Diamond and Related Materials, 1998, 7, 704-710.	3.9	11
261	Comparison of field electron emission from DLC films produced by four different deposition techniques. Diamond and Related Materials, 1998, 7, 802-806.	3.9	25
262	Mechanisms of field emission from diamond coated Mo emitters. Diamond and Related Materials, 1998, 7, 636-639.	3.9	22
263	Characteristics of metal-polycrystalline diamond contact field emitters. Diamond and Related Materials, 1998, 7, 677-681.	3.9	12
264	Effect of N doping on the electron emission properties of diamondlike carbon film on a 2-in. Mo field emitter array panel. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1998, 16, 705.	1.6	11
265	High-resolution surface-sensitive C1score-level spectra of clean and hydrogen-terminated diamond (110) and (111) surfaces. Physical Review B, 1998, 57, 12397-12409.	3.2	121
266	Electron transport and emission properties of diamond. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1998, 16, 913-918.	2.1	22
267	Low-Field Electron Emission from Undoped Nanostructured Diamond. , 1998, 282, 1471-1473.		379
268	Electron emission from nanocrystalline boron nitride films synthesized by plasma-assisted chemical vapor deposition. Diamond and Related Materials, 1998, 7, 632-635.	3.9	21
269	Negative electron affinity mechanism for diamond surfaces. Applied Physics Letters, 1998, 72, 2574-2576.	3.3	54
270	Hydrogen Diffusion in Boron Doped Diamond: Evidence of Hydrogen-Boron Interactions. Materials Research Society Symposia Proceedings, 1998, 510, 169.	0.1	6

		CITATION REPORT	
#	Article	IF	CITATIONS
271	The Road to Commercialization of Vapor-Phase-Grown Diamond. MRS Bulletin, 1998, 23, 61-64.	3.5	12
272	Highly Efficient Electron Emission Diode of Single-Crystalline Chemical-Vapor-Deposition Diamond. Japanese Journal of Applied Physics, 1998, 37, L1011-L1013.	1.5	10
273	Internal Electron Emission in Phosphorus-Doped Polycrystalline Diamond Field Emitters. Japanese Journal of Applied Physics, 1998, 37, L413-L416.	1.5	7
274	Structural, Optical, and Field Emission Properties of Hydrogenated Amorphous Carbon Films Grown by Helical Resonator Plasma Enhanced Chemical Vapor Deposition. Japanese Journal of Applied Phys 1998, 37, 440-444.	ics, 1.5	29
275	Extremely High Quantum Photoyield from Cesiated Polycrystalline Diamond Films. Japanese Journal Applied Physics, 1998, 37, L1531-L1533.	of 1.5	12
276	Electron emission characteristics of boron nitride films synthesized by plasma-assisted chemical vapor deposition. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1998, 16, 1211.	1.6	8
277	Influence of defects on electron emission from diamond films. Journal of Applied Physics, 1998, 84, 6351-6354.	2.5	35
278	Modification on the electron field emission properties of diamond films: The effect of bias voltage applied in situ. Journal of Applied Physics, 1998, 84, 3890-3894.	2.5	40
279	Highly efficient electron emission from diode-type plane emitters using chemical-vapor-deposited single-crystalline diamond. Applied Physics Letters, 1998, 73, 3739-3741.	3.3	33
280	Fine structure in the secondary electron emission peak for diamond crystal with (100) negative electron affinity surface. Applied Physics Letters, 1998, 73, 3727-3729.	3.3	13
281	Hydrogen-induced surface structuring of a cubic boron nitride (100) face studied by low-energy electron diffraction and electron spectroscopic techniques. Physical Review B, 1998, 57, 7266-7274	. 3.2	22
282	Electron injection into conduction bands of the diamond (100) surface by nitrogen impurities. Physical Review B, 1998, 57, 6527-6533.	3.2	3
283	Thermal stability of the negative electron affinity condition on cubic boron nitride. Applied Physics Letters, 1998, 72, 3023-3025.	3.3	34
284	Hole injection from diamond into conducting polymer. Journal of Applied Physics, 1998, 84, 5635-50	638. 2. 5	17
285	Band bending and field penetration on surfaces of ultrawide band gap semiconductors: Diamond an aluminum nitride. Journal of Applied Physics, 1998, 83, 4303-4308.	.d 2.5	2
286	Secondary electron emission patterning of diamond with hydrogen and oxygen plasmas. Applied Physics Letters, 1998, 72, 2580-2582.	3.3	9
287	Field emission mapping of low-temperature diamond and DLC films. , 0, , .		0
288	Field emission characteristics of patterned free-standing diamond films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1998, 16, 922-925.	2.1	0

#	Article	IF	CITATIONS
289	Temperature dependence of field emission characteristics of phosphorus-doped polycrystalline diamond films. Applied Physics Letters, 1998, 73, 268-270.	3.3	15
290	Characterization of copper-diamond (100), (111), and (110) interfaces: Electron affinity and Schottky barrier. Physical Review B, 1998, 58, 1643-1654.	3.2	28
291	Stable anionic sites on hydrogenated (111) surfaces of cubic boron nitride resulting from hydrogen atom removal under chemical vapor deposition conditions. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1998, 16, 3438-3442.	2.1	3
292	Development and characterization of diamond film and compound metal surface high current photocathodes. , 0, , .		0
293	Ab initiocalculation of electron affinities of diamond surfaces. Physical Review B, 1998, 57, 9241-9245.	3.2	151
294	Negative electron affinity of cesiated p-GaN(0001) surfaces. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1998, 16, 2224.	1.6	62
295	A Free Electron Laser–Photoemission Electron Microscope System (FEL–PEEM). Surface Review and Letters, 1998, 05, 1257-1268.	1.1	59
296	Electron Emission from Diamond Films. Israel Journal of Chemistry, 1998, 38, 113-120.	2.3	1
297	Diamond Electronic Devices—The End of a Dream?. Israel Journal of Chemistry, 1998, 38, 121-133.	2.3	3
298	Effect of N-Doped Hydrogen-Free DLC Coating on Mo-Tip FEAs. Digest of Technical Papers SID International Symposium, 1998, 29, 597.	0.3	1
299	Uniform and rapid nucleation of diamond via bias-assisted hot filament chemical vapor deposition. Journal of Materials Research, 1998, 13, 126-130.	2.6	5
300	Mechanism of Field Emission in Diamond and Diamond-Like Carbon. Materials Research Society Symposia Proceedings, 1998, 508, 185.	0.1	3
301	Relationship of Field Emission Characteristics on Process Gas Nitrogen Content in Nitrogen Doped Diamond Films. Materials Research Society Symposia Proceedings, 1998, 508, 191.	0.1	0
302	Characterization of Secondary Electron Emission from Materials with Low or Negative Electron Affinity. Materials Research Society Symposia Proceedings, 1998, 509, 125.	0.1	2
303	Morphology of Low Temperature Carbon Films Prepared by VHF CVD: Correlation with Field Emission. Materials Research Society Symposia Proceedings, 1998, 509, 149.	0.1	0
304	Electron Emission Properties of Diamond and III-V Nitrides. Materials Research Society Symposia Proceedings, 1998, 509, 35.	0.1	3
305	Electron Emission from Nano-Structured Diamond. Materials Research Society Symposia Proceedings, 1998, 509, 53.	0.1	9
306	Simultaneous Field Emission and Photoemission Characterization of N-Doped CVD Diamond. Materials Research Society Symposia Proceedings, 1998, 509, 59.	0.1	2

#	Article	IF	CITATIONS
307	Electron Emission from Gated Diamond Emitter Array. Materials Research Society Symposia Proceedings, 1998, 509, 77.	0.1	0
308	Mechanism of Field Emission in Diamond and Diamondlike Carbon. Materials Research Society Symposia Proceedings, 1998, 509, 83.	0.1	14
309	Relationship of Field Emission Characteristics on Process Gas Nitrogen Content in Nitrogen Doped Diamond Films. Materials Research Society Symposia Proceedings, 1998, 509, 95.	0.1	1
310	Electron field emission from diamond-like carbon film under pulsed DC supply. , 0, , .		0
311	Electron Emission from a Heteroepitaxial Diamond Planar Emitter. Japanese Journal of Applied Physics, 1999, 38, L902-L903.	1.5	4
312	Electron Affinity and Effect of Annealing on Heavily Boron-Doped Diamond Films. Japanese Journal of Applied Physics, 1999, 38, 791-794.	1.5	3
313	The polycrystalline diamond (100)/amorphous carbon heterostructure. Europhysics Letters, 1999, 47, 633-639.	2.0	1
314	Growth model of textured diamond (111) film in CH 4 /O 2 /H 2 atmosphere. Acta Physica Sinica (overseas Edition), 1999, 8, 932-937.	0.1	Ο
315	Electron field emission from a patterned diamondlike carbon flat cathode. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1999, 17, 311.	1.6	9
316	Elucidation of field emission characteristics of phosphorous-doped diamond films. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1999, 17, 723.	1.6	6
317	Study on improved electron emission characteristics of micropatterned diamond-like carbon films. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1999, 17, 690.	1.6	13
318	Enhanced electron field emission properties of diamond-like carbon films using a titanium intermediate layer. Journal Physics D: Applied Physics, 1999, 32, 1570-1577.	2.8	10
319	Electron Field Emission from Nitrogen Ion Implantation Diamond-Like Carbon Film. Chinese Physics Letters, 1999, 16, 608-609.	3.3	5
320	Electron Field Emission from Different <i>sp</i> ³ Content Diamond-Like Carbon Films. Chinese Physics Letters, 1999, 16, 152-154.	3.3	6
321	Field emission properties of BN coated Si tips by pulsed ArF laser deposition. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1999, 17, 237.	1.6	11
322	Preparation of N-doped hydrogen-free diamondlike carbon and its application to field emitters. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1999, 17, 241.	1.6	4
323	Enhancement of emission characteristics for field emitters by N-doped hydrogen-free diamond-like-carbon coating. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1999, 17, 246.	1.6	1
324	Emission stability of a diamond-like carbon coated metal-tip field emitter array. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1999, 17, 486.	1.6	5

#	Article	IF	Citations
325	Planar field emitters fabricated by sulfur-doped boron nitride. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1999, 17, 642.	1.6	11
326	Effects of nitrogen addition on the structure and field emission properties of amorphous carbon. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1999, 17, 728.	1.6	5
327	Enhancement of electron emission from silicon tips by nitrogen doped amorphous carbon coating. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1999, 17, 731.	1.6	7
328	Field emission spectroscopy from discharge activated chemical vapor deposition diamond. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1999, 17, 1064.	1.6	33
329	Field emission properties of nanocrystalline chemically vapor deposited-diamond films. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1999, 17, 1970.	1.6	75
330	Electron diffusion length and escape probabilities for cesiated and hydrogenated polycrystalline diamond photocathodes. Applied Physics Letters, 1999, 75, 3533-3535.	3.3	6
331	Field emission from phosphorus-doped polycrystalline diamond films. Journal of Applied Physics, 1999, 86, 4635-4642.	2.5	21
332	Field-emission studies of smooth and nanostructured carbon films. Applied Physics Letters, 1999, 75, 1228-1230.	3.3	39
333	Field emission characteristics of SiC capped Si tip array by ion beam synthesis. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1999, 17, 2109-2112.	2.1	13
334	Effect of oxygen plasma treatment on field emission characteristics of boron–nitride films. Applied Physics Letters, 1999, 74, 889-891.	3.3	25
335	Defect structure and electron field-emission properties of boron-doped diamond films. Applied Physics Letters, 1999, 75, 2857-2859.	3.3	41
336	Negative electron affinity at the Cs/AlN(0001) surface. Applied Physics Letters, 1999, 74, 1433-1435.	3.3	28
337	Laser-induced modification of electron field emission from nanocrystalline diamond films. Journal of Applied Physics, 1999, 85, 8436-8440.	2.5	15
338	Electron field emission from diamond-like carbon films deposited by electrolysis of methanol liquid. Applied Physics Letters, 1999, 75, 2331-2333.	3.3	45
339	Electronic Properties of Nanocrystalline Layers of Wide-Band-Gap Materials fn1 fn1Communicated by Prof Mitura Chaos, Solitons and Fractals, 1999, 10, 2099-2152.	5.1	9
340	Field emission from diamond and related films. Ultramicroscopy, 1999, 79, 59-72.	1.9	29
341	Effects of the surface treatment of silicon substrate on the field emission characteristic of a silicon and amorphous diamond cold cathode emitter. Ultramicroscopy, 1999, 79, 89-93.	1.9	6
342	UV laser induced interfacial synthesis of CN–BCN layers on diamond films in borazine and ammonia. Applied Surface Science, 1999, 138-139, 359-363.	6.1	8

# 343	ARTICLE Lowering of work function induced by deposition of ultra-thin rubidium fluoride layer on polycrystalline diamond surface. Applied Surface Science, 1999, 140, 144-149.	IF 6.1	CITATIONS
344	Effect of plasma-to-film interaction on electron field emission properties of pulsed laser deposited diamond-like-carbon films. Applied Surface Science, 1999, 142, 490-493.	6.1	0
345	Field emission characteristics of boron-doped diamond films prepared by MPE-CVD. Applied Surface Science, 1999, 142, 516-520.	6.1	6
346	Annealing effect on the electron field emission characteristics of pulsed laser deposited diamond-like carbon films on glass substrates. Applied Surface Science, 1999, 142, 510-515.	6.1	8
347	Boron-doping effect on the field emission behavior of pulse laser deposited diamond-like carbon films. Applied Surface Science, 1999, 142, 504-509.	6.1	20
348	Modification on the band structure and the related emission characteristics of defective diamond films doped with boron. Applied Surface Science, 1999, 142, 494-498.	6.1	0
349	Enhancement on diamondlike carbon coated planar electron field emission array using Au-precoating. Applied Surface Science, 1999, 142, 499-503.	6.1	2
350	Interpretation of low-energy feature in energy spectra measured from surfaces with low or negative electron affinity. Applied Surface Science, 1999, 143, 219-222.	6.1	7
351	Field emission characteristics of phosphorus-doped homoepitaxial diamond films. Applied Surface Science, 1999, 146, 295-298.	6.1	5
352	Imaging electron emission from diamond and Ill–V nitride surfaces with photo-electron emission microscopy. Applied Surface Science, 1999, 146, 287-294.	6.1	11
353	Characterization of electron emission from N-doped diamond using simultaneous field emission and photoemission technique. Applied Surface Science, 1999, 146, 274-279.	6.1	31
354	Formation of backcontacts on diamond electron emitters. Applied Surface Science, 1999, 146, 245-250.	6.1	3
355	Fabrication of boron nitride planar field emitters. Applied Surface Science, 1999, 146, 193-197.	6.1	6
356	Field emission from tetrahedrally bonded amorphous carbon. Applied Surface Science, 1999, 146, 262-268.	6.1	17
357	Properties of nitrogen-doped diamond-like-carbon films prepared by a laser ablation. Applied Surface Science, 1999, 146, 269-273.	6.1	8
358	Electron stimulated desorption on diamond (100) as a negative hydrogen source. Applied Surface Science, 1999, 147, 107-113.	6.1	15
359	Energy distributions of electrons emitted from a diamond film under the action of a strong field. Technical Physics Letters, 1999, 25, 612-614.	0.7	0
360	Electron field emission from diamond and diamond-like carbon for field emission displays. Carbon, 1999, 37, 759-763.	10.3	38

#	Article	IF	CITATIONS
361	Electronic properties of single crystalline diamond surfaces. Carbon, 1999, 37, 793-799.	10.3	23
362	Effect of interface layers on electron field emission properties of amorphous diamond films. Science in China Series D: Earth Sciences, 1999, 42, 479-484.	0.9	0
363	Poly-diamond gated field-emitter display cells. IEEE Transactions on Electron Devices, 1999, 46, 787-791.	3.0	13
364	Electron emission from diamond having negative electron affinity. Electronics and Communications in Japan, 1999, 82, 42-52.	0.2	0
365	Field Emission Characteristics of Phosphorus-Doped Diamond Films. Physica Status Solidi A, 1999, 174, 145-154.	1.7	10
366	Electronic states at aluminum nitride (0001)-1×1 surfaces. Applied Physics Letters, 1999, 74, 546-548.	3.3	65
367	Mechanisms of electron field emission from diamond, diamond-like carbon, and nanostructured carbon. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1999, 17, 659.	1.6	197
368	Electron emission and NEA from differently terminated, doped and oriented diamond surfaces. Diamond and Related Materials, 1999, 8, 743-747.	3.9	19
369	Electron affinity and band bending of single crystal diamond (111) surface. Diamond and Related Materials, 1999, 8, 748-753.	3.9	24
370	Negative electron affinity on polycrystalline diamond surface induced by lithium fluoride deposition. Diamond and Related Materials, 1999, 8, 1885-1890.	3.9	22
371	Field emission properties of nitrogen-doped diamond films. Journal of Applied Physics, 1999, 86, 3973-3982.	2.5	91
372	Phase transitions in physisorbed ethane investigated by positron-annihilation spectroscopy. Physical Review B, 1999, 60, 2057-2063.	3.2	3
373	Electron field emission from nitrogen-containing diamond-like carbon films deposited by filtered arc deposition. Materials Letters, 1999, 41, 117-121.	2.6	9
374	Electronic properties of diamond/nondiamond carbon heterostructures. Physical Review B, 1999, 60, 15772-15781.	3.2	24
375	Refining the application of Fowler–Nordheim theory. Ultramicroscopy, 1999, 79, 11-23.	1.9	120
376	NEA peak of the differently terminated and oriented diamond surfaces. Surface Science, 1999, 424, L314-L320.	1.9	45
377	Amines and thiols on diamond surfaces. Surface Science, 1999, 439, 21-33.	1.9	67
378	Effect of surface treatment and back contact material on field emission from tetrahedral amorphous carbon. Diamond and Related Materials, 1999, 8, 809-813.	3.9	22

ARTICLE IF CITATIONS # Fabrication and emission properties of diode- and triode-type diamond field emitter array based on the 379 3.9 8 transfer mold technique. Diamond and Related Materials, 1999, 8, 89-93. Behavior of electron emission from phosphorus-doped epitaxial diamond films. Diamond and Related Materials, 1999, 8, 759-762. Electron field emission from filtered arc deposited diamond-like carbon films using Au and Ti layers. 381 3.9 16 Diamond and Related Materials, 1999, 8, 52-55. Grain boundary field electron emission from CVD diamond films. Diamond and Related Materials, 1999, 3.9 8,763-767. Secondary electron emission measurements on synthetic diamond films. Diamond and Related 383 3.9 20 Materials, 1999, 8, 1033-1038. Towards improving the quality of semiconducting diamond layers doped with large atoms. Diamond and Related Materials, 1999, 8, 1635-1641. 384 Fabrication of nano-size conic diamond arrays by bias assisted PCVD. Diamond and Related Materials, 385 3.9 28 1999, 8, 772-780. Highly-efficient flat electron emitter of single-crystalline CVD diamond. Diamond and Related 386 3.9 14 Materials, 1999, 8, 754-758. Electronic states and effective negative electron affinity at cesiated p-GaN surfaces. Journal of Applied 387 2.5 104 Physics, 1999, 86, 3209-3212. Dehydrogenation and the surface phase transition on diamond (111): Kinetics and electronic 3.2 structure. Physical Review B, 1999, 59, 5847-5856. Properties of Electron Emitting Diode Fabricated with Single-Crystalline Diamond. Materials Research 389 0 0.1 Society Symposia Proceedings, 1999, 558, 105. Field Emission from Carbon Films Deposited by Controlled-Low-Energy Beams and CVD Sources. 0.1 Materials Research Society Symposia Proceedings, 1999, 585, 271. Field Emission and Nanostructure of Carbon Films. Materials Research Society Symposia Proceedings, 391 0.1 2 1999, 593, 221. The growth of boron doped (100) textured diamond films by three-step process. EPJ Applied Physics, 394 2000, 11, 3-8. <title>Polycrystalline diamond films as prospective UV photocathodes</title>., 2000, 4139, 16. 395 14 Electron field emission from polycrystalline diamond films. Journal of Materials Research, 2000, 15, 212-217. Thermionic FEEM, PEEM and I/V Measurements of N-Doped CVD Diamond Surfaces. Materials Research 397 0.11 Society Symposia Proceedings, 2000, 621, 651. Synthesis, Characterization and Application of Thin Film Carbon Nanotube Material. Materials 398 0.1 Research Society Symposia Proceedings, 2000, 633, 1311.

#	Article	IF	CITATIONS
399	Low-Field Electron Emission Properties from Intrinsic and S-Incorporated Nanocrystalline Carbon Thin Films Grown by Hot- Filament CVD. Materials Research Society Symposia Proceedings, 2000, 638, 1.	0.1	0
400	Scanning Tunneling Microscopy and Spectroscopy of Non-Doped, Hydrogen Terminated CVD Diamond. Physica Status Solidi A, 2000, 181, 77-81.	1.7	5
401	Field emission characteristic studies of chemical vapor deposited diamond films. Solid-State Electronics, 2000, 44, 1733-1741.	1.4	8
402	Thermally stimulated exoelectronic emission of CVD diamond films. Thin Solid Films, 2000, 359, 150-153.	1.8	5
403	Characterization of GaS-deposited CVD diamond films by AES and XPS. Applied Surface Science, 2000, 159-160, 588-593.	6.1	3
404	Negative electron affinity and electron emission at cesiated GaN and AlN surfaces. Applied Surface Science, 2000, 162-163, 250-255.	6.1	77
405	The microwave photoconductivity of electrons flying over natural diamond. Technical Physics, 2000, 45, 1325-1330.	0.7	1
406	Dependence of the electron affinity of homoepitaxially grown CVD diamond on the amount of surface oxygen. Applied Surface Science, 2000, 162-163, 457-463.	6.1	18
407	The characterization of nitrogen content, diamond-like carbon field emission arrays using a magnetic filtered arc method. Thin Solid Films, 2000, 377-378, 326-330.	1.8	6
408	Diamond thin films: a 21st-century material. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2000, 358, 473-495.	3.4	573
409	n-type semiconducting diamond by means of oxygen-ion implantation. Physical Review B, 2000, 61, 7191-7194.	3.2	68
410	Field-Emission Characteristics of Hydrogenated Amorphous Carbon Films Prepared by Surface Wave Plasma. Japanese Journal of Applied Physics, 2000, 39, L929-L932.	1.5	39
411	Electron field emission from a patterned diamond-like carbon flat thin film using a Ti interfacial layer. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2000, 18, 2420.	1.6	13
412	Electron field emission from amorphous carbon nitride synthesized by electron cyclotron resonance plasma. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2000, 18, 1840.	1.6	26
413	Enhancement in field emission of silicon microtips by bias-assisted carburization. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2000, 18, 2722.	1.6	19
414	Influence of diamond film thickness on field emission characteristics. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2000, 18, 2710.	1.6	6
415	Electron emission performance of nitrogen-doped hydrogen-free diamond-like carbon coating on Mo-Tip field emitter arrays. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2000, 18, 933.	1.6	10
416	Electron emission process of phosphorus-doped homoepitaxial diamond films. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2000, 18, 1024.	1.6	7

#	Article	IF	CITATIONS
417	Effects of substrate bias on the structural and field emission properties of diamond films. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2000, 18, 1040.	1.6	6
418	Electron emission from C[sub 60]/C[sub 70]+Pd films containing Pd nanocrystals. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2000, 18, 1064.	1.6	11
419	Field emission characteristics of boron nitride films. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2000, 18, 1089.	1.6	21
420	Nanofabrication on Hydrogen-Terminated Diamond Surfaces by Atomic Force Microscope Probe-Induced Oxidation. Japanese Journal of Applied Physics, 2000, 39, 4631-4632.	1.5	44
421	Holographic Encoding of Permanent Gratings Embedded in Diamond by Two Beam Interference of a Single Femtosecond Near-Infrared Laser Pulse. Japanese Journal of Applied Physics, 2000, 39, L767-L769.	1.5	48
422	Micropatterning of Chemical-Vapor-Deposited Diamond Films in Electron Beam Lithography. Japanese Journal of Applied Physics, 2000, 39, 4532-4535.	1.5	12
423	Effects of Redox Treatment on Diamondlike Carbon Coated Mo Substrates. Japanese Journal of Applied Physics, 2000, 39, L76-L78.	1.5	0
424	Comparison of Structure and Electron-Field-Emission Behavior of Chemical-Vapor-Deposited Diamond and Pulsed-Laser-Deposited Diamond-Like Carbon Films. Japanese Journal of Applied Physics, 2000, 39, 1866-1871.	1.5	3
425	Field emission properties of nanocomposite carbon nitride films. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2000, 18, 2698.	1.6	15
426	Study of field electron emission from nanocrystalline diamond thin films grown from a N2/CH4microwave plasma. Journal Physics D: Applied Physics, 2000, 33, 1572-1575.	2.8	9
427	Microstructure and its effect on field electron emission of grain-size-controlled nanocrystalline diamond films. Journal of Applied Physics, 2000, 88, 2967-2974.	2.5	85
428	Pretreatment effects by aqua-regia solution on field emission of diamond film. Applied Physics Letters, 2000, 76, 3694-3696.	3.3	7
429	Comparison of the effect of boron and nitrogen incorporation on the nucleation behavior and electron-field-emission properties of chemical-vapor-deposited diamond films. Applied Physics Letters, 2000, 77, 1277-1279.	3.3	12
430	Codeposition on diamond film surface during reactive ion etching in SF6 and O2 plasmas. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2000, 18, 2779-2784.	2.1	6
431	Potential profile between boron-doped diamond electron emitter and anode electrode. Applied Physics Letters, 2000, 76, 1297-1299.	3.3	27
432	Electron field emission from Ti-containing tetrahedral amorphous carbon films deposited by filtered cathodic vacuum arc. Journal of Applied Physics, 2000, 88, 6842-6847.	2.5	23
433	Scanning tunneling microscope study of diamond films for electron field emission. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2000, 18, 76.	1.6	12
434	Hydrogen Atoms Cause Long-Range Electronic Effects on Graphite. Physical Review Letters, 2000, 84, 4910-4913.	7.8	158

#	Article	IF	CITATIONS
435	Mechanism of field emission from chemical vapor deposited undoped polycrystalline diamond films. Journal of Applied Physics, 2000, 87, 7508-7518.	2.5	21
436	Field Emission from Carbon Systems. Materials Research Society Symposia Proceedings, 2000, 621, 111.	0.1	9
437	A Critical Review of Chemical Vapor-Deposited (CVD) Diamond for Electronic Applications. Critical Reviews in Solid State and Materials Sciences, 2000, 25, 163-277.	12.3	44
438	A novel form of carbon nitrides: Well-aligned carbon nitride nanotubes and their characterization. Journal of Materials Research, 2000, 15, 502-510.	2.6	16
439	Electron field emission from amorphous carbon nitride nanotips. Materials Letters, 2000, 44, 304-308.	2.6	20
440	Field emission controlled by the substrate/CVD diamond interface. Diamond and Related Materials, 2000, 9, 1218-1221.	3.9	8
441	Interface formation between GaS and CVD diamond films. Surface Science, 2000, 448, 1-10.	1.9	1
442	Field emission studies of diamond-like films grown by RFCVD. Journal of Non-Crystalline Solids, 2000, 265, 230-237.	3.1	16
443	Annealing effect on electron field-emission properties of diamond-like nanocomposite films. Journal of Applied Physics, 2000, 88, 5087-5092.	2.5	8
444	Secondary electron emission characteristics of single-crystal and polycrystalline diamond. Journal of Applied Physics, 2000, 87, 8103-8112.	2.5	83
445	A physics-based empirical pseudopotential model for calculating band structures of simple and complex semiconductors. , 0, , .		0
446	Field emission from nanostructured carbon materials. Diamond and Related Materials, 2000, 9, 1190-1195.	3.9	51
447	Field-emission properties of diamond grains grown on textured Fe/Si substrates. Journal of Applied Physics, 2000, 87, 2026-2030.	2.5	6
448	Uniform electron emission from a nitrogen-doped diamond-based electron emitter fabricated by the sintering technique. IEEE Electron Device Letters, 2000, 21, 531-533.	3.9	0
449	Thermionic Emission from Cold Electride Films. Chemistry of Materials, 2000, 12, 3642-3647.	6.7	15
450	Field emission characteristics of boron carbon nitride films synthesized by plasma-assisted chemical vapor deposition. Diamond and Related Materials, 2000, 9, 1233-1237.	3.9	47
451	Recent advances in electrochemistry of diamond. Diamond and Related Materials, 2000, 9, 384-389.	3.9	119
452	Nitrogen-doped diamond films selected-area deposition by the plasma-enhanced chemical vapor deposition process. Diamond and Related Materials, 2000, 9, 358-363.	3.9	2

#	Article	IF	CITATIONS
453	Effect of nitrogen doping on the electron field emission properties of chemical vapor deposited diamond films. Diamond and Related Materials, 2000, 9, 1591-1599.	3.9	32
454	Electron field emission from diamond-like carbon films after dielectric breakdown and from diamond films after the activation process. Diamond and Related Materials, 2000, 9, 1209-1212.	3.9	8
455	Modification of emission properties of diamond films due to surface treatment process. Diamond and Related Materials, 2000, 9, 1574-1581.	3.9	14
456	Measurement of field emission from nitrogen-doped diamond films. Diamond and Related Materials, 2000, 9, 1569-1573.	3.9	8
457	Recent studies on diamond surfaces. Diamond and Related Materials, 2000, 9, 1582-1590.	3.9	49
458	Homoepitaxial growth on fine columns of single crystal diamond for a field emitter. Diamond and Related Materials, 2000, 9, 290-294.	3.9	24
459	Highly efficient electron emitting diode fabricated with single-crystalline diamond. Diamond and Related Materials, 2000, 9, 1561-1568.	3.9	21
460	Electronic properties of diamond surfaces — blessing or curse for devices?. Diamond and Related Materials, 2000, 9, 1129-1137.	3.9	73
461	Electron stimulated desorption from oxygenated and hydrogenated synthetic diamond films. Diamond and Related Materials, 2000, 9, 1238-1244.	3.9	16
462	Effect of annealing on electron field emission properties of hydrogen-free amorphous carbon films. Diamond and Related Materials, 2000, 9, 1876-1880.	3.9	11
463	Effect of work function and surface microstructure on field emission of tetrahedral amorphous carbon. Journal of Applied Physics, 2000, 88, 6002-6010.	2.5	111
464	Diamond/sp2-bonded carbon structures: quantum well field electron emission?. Diamond and Related Materials, 2001, 10, 840-846.	3.9	51
465	Synchrotron studies of carbon surfaces. Journal of Physics Condensed Matter, 2001, 13, 11229-11248.	1.8	13
466	Formation of a conducting layer by high energy metal ion implantation into diamond. Diamond and Related Materials, 2001, 10, 606-609.	3.9	1
467	Electron field emission properties of nanodiamonds synthesized by the chemical vapor deposition process. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2001, 19, 975.	1.6	12
468	Secondary electron emission from diamond: Physical modeling and application to scanning electron microscopy. Journal of Applied Physics, 2001, 89, 689-696.	2.5	40
469	Electron affinity of plasma-hydrogenated and chemically oxidized diamond (100) surfaces. Physical Review B, 2001, 64, .	3.2	400
470	Electron field emission properties of as-deposited and nitrogen implanted tetrahedral amorphous carbon films. Journal of Non-Crystalline Solids, 2001, 291, 181-186.	3.1	7

#	Article	IF	CITATIONS
471	Analysis of diamond nucleation on molybdenum by biased hot filament chemical vapor deposition. Diamond and Related Materials, 2001, 10, 383-387.	3.9	13
472	Recovery treatments for ion-induced defects in high-quality homoepitaxial CVD diamond. Diamond and Related Materials, 2001, 10, 322-326.	3.9	6
473	Nano-structured nitrogenated carbon films — morphology and field emission. Diamond and Related Materials, 2001, 10, 1962-1967.	3.9	10
474	Microscopic study of field emission from diamond particles. Diamond and Related Materials, 2001, 10, 818-823.	3.9	7
475	Effect of non-diamond carbon etching on the field emission property of highly sp2 bonded nanocrystalline diamond films. Diamond and Related Materials, 2001, 10, 847-851.	3.9	12
476	Spatial variation of field emission current on nitrogen-doped diamond-like carbon surfaces by scanning probe method. Diamond and Related Materials, 2001, 10, 863-867.	3.9	4
477	Energy distribution of thermally emitted negative particles from type Ia diamond (100). Diamond and Related Materials, 2001, 10, 496-499.	3.9	1
478	Anisotropic etching of a fine column on a single crystal diamond. Diamond and Related Materials, 2001, 10, 1732-1735.	3.9	11
479	Field emission properties of diamond and carbon nanotubes. Diamond and Related Materials, 2001, 10, 1709-1713.	3.9	34
480	Electron field emission from carbon films grown from pyrolysis of kerosene. Diamond and Related Materials, 2001, 10, 883-888.	3.9	3
481	Imaging electron emission from diamond film surfaces: N-doped diamond vs. nanostructured diamond. Diamond and Related Materials, 2001, 10, 1714-1718.	3.9	21
482	Supermagnetron plasma chemical vapor deposition and qualitative analysis of electrically conductive diamond-like amorphous carbon films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2001, 19, 1577-1581.	2.1	6
483	Effects of Sulfur Concentration on the Electron Field Emission Properties of Nanocrystalline Carbon Thin Films. Materials Research Society Symposia Proceedings, 2001, 675, 1.	0.1	1
484	In situ observation of atomic hydrogen etching on diamond-like carbon films produced by pulsed laser deposition. Applied Surface Science, 2001, 174, 251-256.	6.1	6
485	Diamond-like carbon films prepared by filtered arc deposition for electron field emission application. Surface and Coatings Technology, 2001, 137, 1-5.	4.8	13
486	Electron field emission from nanostructured diamond and carbon nanotubes. Solid-State Electronics, 2001, 45, 921-928.	1.4	55
487	Band gap structure and electron emission property of chemical-vapor-deposited diamond films. Solid-State Electronics, 2001, 45, 915-919.	1.4	7
488	Properties and characterization of chemical vapor deposition diamond field emitters. Solid-State Electronics, 2001, 45, 929-944.	1.4	50

#	Article	IF	CITATIONS
489	Field emission displays: a critical review. Solid-State Electronics, 2001, 45, 963-976.	1.4	256
490	Polycrystalline diamond and Nd-doped diamond photoemitters. Optics Communications, 2001, 187, 179-184.	2.1	2
491	Intrinsic limitations to the doping of wide-gap semiconductors. Physica B: Condensed Matter, 2001, 302-303, 123-134.	2.7	314
492	Reversible Switching of the Surface Conductance of Hydrogenated CVD Diamond Films. Physica Status Solidi A, 2001, 186, 235-240.	1.7	14
493	Effect of sp2/sp3 Ratio on Electron Emission Properties of Nitrogen-Doped Diamond Electron Emitter. Physica Status Solidi A, 2001, 186, 257-262.	1.7	4
494	Morphology and field emission properties of nano-structured nitrogenated carbon films produced by plasma enhanced hot filament CVD. Carbon, 2001, 39, 1723-1730.	10.3	20
495	Title is missing!. Journal of Materials Science, 2001, 36, 5801-5804.	3.7	11
496	Photoemission properties and surface structures of homoepitaxially grown CVD diamond(1 0 0) surfaces. Applied Surface Science, 2001, 175-176, 474-479.	6.1	4
497	Chemical purity of diamond-like films produced by ion-beam deposition. Technical Physics, 2001, 46, 1303-1306.	0.7	1
498	Field electron emission in graphite-like films. Technical Physics, 2001, 46, 1437-1443.	0.7	15
499	Rehybridization of the atomic orbitals and the field electron emission from nanostructured carbon. Journal of Experimental and Theoretical Physics, 2001, 93, 846-852.	0.9	7
500	High aspect ratio silicon tips field emitter array. Microelectronic Engineering, 2001, 57-58, 613-619.	2.4	7
501	Porous field emission devices based on polyimide membranes using diode and triode configurations. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2001, 19, 537.	1.6	4
502	Fabrication and electrical characterization of high aspect ratio silicon field emitter arrays. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2001, 19, 916.	1.6	27
503	Choice of boron–carbon–nitrogen coating material for electron emission based on photoelectric yield measurements during x-ray absorption studies. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2001, 19. 1358.	1.6	7
504	Low-field electron emission of diamond/pyrocarbon composites. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2001, 19, 965.	1.6	35
505	Effect of Oxygen Coverage on Electron Emission from Boron-Doped Polycrystalline Diamond. Japanese Journal of Applied Physics, 2001, 40, L829-L831.	1.5	1
506	Surface properties and field emission characteristics of chemical vapor deposition diamond grown on Fe/Si substrates. Journal of Applied Physics, 2001, 89, 8253-8258.	2.5	14

#	Article	IF	Citations
507	Empirical pseudopotential band structure of3C,4H,and6HSiC using transferable semiempirical Si and C model potentials. Physical Review B, 2001, 64, .	3.2	32
508	Secondary electron emission characteristics of C(111) and the observation of double-peaked emission spectra. Journal of Applied Physics, 2001, 90, 3057-3064.	2.5	4
509	Mechanisms and dynamics of electron-stimulated desorption ofDâ^'from deuterated diamond surfaces: Surface versus subsurface stimulated desorption. Physical Review B, 2001, 63, .	3.2	11
510	Study of the electron field emission and microstructure correlation in nanocrystalline carbon thin films. Journal of Applied Physics, 2001, 89, 5671-5675.	2.5	35
511	Effect of average grain size on the work function of diamond films. Applied Physics Letters, 2001, 79, 2835-2837.	3.3	25
512	Effect of surface roughness on field emission from chemical vapor deposited polycrystalline diamond. Applied Physics Letters, 2001, 79, 1288-1290.	3.3	19
513	Bistable characteristic and current jumps in field electron emission of nanocrystalline diamond films. Journal of Applied Physics, 2001, 90, 4810-4814.	2.5	19
514	Large-scale well aligned carbon nitride nanotube films: Low temperature growth and electron field emission. Journal of Applied Physics, 2001, 89, 5939-5943.	2.5	72
515	Mechanism of low-energy electron stimulated desorption of Oâ^' from hydrogenated and hydrogen-free diamond surfaces exposed to activated oxygen. Journal of Chemical Physics, 2002, 117, 346-352.	3.0	2
516	Electron field emission from diamond-like carbon films and a patterned array by using a Ti interfacial layer. Journal of Applied Physics, 2002, 91, 3918-3921.	2.5	21
517	Decay of secondary electron emission and charging of hydrogenated and hydrogen-free diamond film surfaces induced by low energy electrons. Journal of Applied Physics, 2002, 91, 4726-4732.	2.5	16
518	Electron emission from N-doped homoepitaxially grown diamond. Journal of Applied Physics, 2002, 92, 2194-2197.	2.5	4
519	Enhancement of secondary electron emission by annealing and microwave hydrogen plasma treatment of ion-beam-damaged diamond films. Journal of Applied Physics, 2002, 91, 2481-2486.	2.5	6
520	Investigations of the electron field emission properties and microstructure correlation in sulfur-incorporated nanocrystalline carbon thin films. Journal of Applied Physics, 2002, 91, 10088.	2.5	21
521	Electron field emission from boron-nitride nanofilms. Applied Physics Letters, 2002, 80, 3602-3604.	3.3	96
522	Field emission characteristics of carbon nanofiber improved by deposition of boron nitride nanocrystalline film. Applied Physics Letters, 2002, 80, 3808-3810.	3.3	29
523	PREPARATION OF NANOCRYSTALLINE DIAMOND FIELD EMITTERS USING POROUS SILICON AS HOST MATRIXES. International Journal of Modern Physics B, 2002, 16, 998-1002.	2.0	1
524	Growth and electron field emission characteristics of nanodiamond films deposited in N[sub 2]/CH[sub 4]/H[sub 2] microwave plasma-enhanced chemical vapor deposition. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena. 2002. 20. 1982.	1.6	9

#	Article	IF	CITATIONS
525	Field emission from chemical vapor deposition diamond surface with graphitic patches. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2002, 20, 238.	1.6	14
526	Electron field emission from hydrogen-free amorphous carbon-coated ZnO tip array. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2002, 20, 278.	1.6	12
527	Oxygen Adsorption on (111)-Oriented Diamond:Â A Study with Ultraviolet Photoelectron Spectroscopy, Temperature-Programmed Desorption, and Periodic Density Functional Theory. Journal of Physical Chemistry B, 2002, 106, 5230-5240.	2.6	65
528	Periodic Submicrocylinder Diamond Surfaces Using Two-Dimensional Fine Particle Arrays. Langmuir, 2002, 18, 8282-8287.	3.5	50
529	Thin Film Carbon Nanotube Cathodes for Field Emission Flat Panel Display and Light Source Application. , 2002, , 67-81.		0
530	Electron Field Emission from Sulfur Ion Implanted Homoepitaxial Diamond Films. Japanese Journal of Applied Physics, 2002, 41, 3924-3925.	1.5	4
531	Surface vibrations on clean, deuterated, and hydrogenated single crystal diamond(100) surfaces studied by high-resolution electron energy loss spectroscopy. Diamond and Related Materials, 2002, 11, 365-370.	3.9	45
532	CVD growth and field emission properties of nanostructured carbon films. Journal Physics D: Applied Physics, 2002, 35, 357-362.	2.8	59
533	Efficient GaN photocathodes for low-level ultraviolet signal detection. IEEE Journal of Quantum Electronics, 2002, 38, 333-335.	1.9	52
534	Influence of annealing on the electronic properties of chemical vapor deposited diamond films studied by high vacuum scanning tunneling microscopy and spectroscopy. Diamond and Related Materials, 2002, 11, 212-217.	3.9	6
535	Growth of homoepitaxial diamond doped with nitrogen for electron emitter. Diamond and Related Materials, 2002, 11, 257-261.	3.9	10
536	Diagnostics of plasma ball formed in high pressure microwave plasma for diamond film synthesis. Diamond and Related Materials, 2002, 11, 562-566.	3.9	11
537	Field emission and Raman spectroscopy studies of atomic hydrogen etching on boron and nitrogen doped DLC films. Diamond and Related Materials, 2002, 11, 804-808.	3.9	16
538	A spectroscopic study of the negative electron affinity of cesium oxide-coated diamond (111) and theoretical calculation of the surface density-of-states on oxygenated diamond (111). Diamond and Related Materials, 2002, 11, 1379-1384.	3.9	27
539	The effect of nitrogen addition to Ar/CH4 plasmas on the growth, morphology and field emission of ultrananocrystalline diamond. Diamond and Related Materials, 2002, 11, 43-48.	3.9	121
540	Electron emission from hydrogenated and oxidized heteroepitaxial diamond doped with boron. Diamond and Related Materials, 2002, 11, 780-783.	3.9	10
541	Temperature dependence of surface band bending and field emission for boron-doped diamond and diamond-like films. New Journal of Physics, 2002, 4, 79-79.	2.9	16
542	Cold plasma processes in surface science and technology. , 2002, , 219-260.		2

#	Article	IF	CITATIONS
543	Amorphous carbon thin films. , 2002, , 403-506.		16
544	Surface versus Sub-Surface D? Electron Stimulated Desorption from Diamond Surfaces. Physica Status Solidi A, 2002, 193, 494-501.	1.7	0
545	Electron Field Emission Properties of Nano-, Submicro- and Micro-Diamond Films. Physica Status Solidi A, 2002, 193, 546-551.	1.7	28
546	Interaction of Thermally Activated and Molecular Oxygen with Hydrogenated and Hydrogen-Free Diamond Film Surfaces: Chemical Reactivity and Electron Emission Properties. Physica Status Solidi A, 2002, 193, 552-562.	1.7	3
547	Formation of carbon cluster on the surface of diamond films for improving electron field emission properties. Physica B: Condensed Matter, 2002, 323, 161-164.	2.7	1
548	Diamond-like amorphous carbon. Materials Science and Engineering Reports, 2002, 37, 129-281.	31.8	5,220
549	Electron transmission studies of diamond films. Applied Surface Science, 2002, 191, 52-60.	6.1	18
550	Field emission of nanostructured amorphous SiCN films deposited by reactive magnetron sputtering of SiC in CH4/N2 atmosphere. Thin Solid Films, 2002, 416, 85-91.	1.8	24
551	Electron field emission characteristics of electrochemical etched Si tip array. Solid State Communications, 2002, 123, 205-207.	1.9	25
552	Electrical characteristics of thin film cubic boron nitride. Solid-State Electronics, 2002, 46, 203-222.	1.4	87
553	Nucleation and growth of crystalline diamond particles on silicon tips. Crystallography Reports, 2002, 47, S159-S168.	0.6	3
554	Anomalous field emission from Al2O3 coated Si tips. Applied Surface Science, 2002, 191, 20-25.	6.1	6
555	Formation of diamond and nanocrystalline diamond films by microwave plasma CVD. Thin Solid Films, 2002, 407, 18-25.	1.8	27
556	Electrochemical studies of moderately boron doped polycrystalline diamond in non-aqueous solvent. Electrochimica Acta, 2002, 47, 2589-2595.	5.2	36
557	Ion implantation of diamond for electronic applications. Semiconductor Science and Technology, 2003, 18, S27-S33.	2.0	47
558	Photoemission from diamond films illuminated by intense Nd:YAG laser harmonics. Applied Physics A: Materials Science and Processing, 2003, 77, 805-809.	2.3	0
559	Influence of surface morphology on the field emission properties of planar SiC/Si heterostructures formed by ion beam synthesis. Solid State Communications, 2003, 128, 435-439.	1.9	9
560	Field emission characteristics of high-energy ion-irradiated polycrystalline diamond thin films. Vacuum, 2003, 72, 297-305.	3.5	12

		CITATION REPORT	
#	Article	IF	CITATIONS
561	Field emission studies of CVD diamond thin films: effect of acid treatment. Vacuum, 2003, 72, 3	321-326. 3.5	15
562	Ion-implanted, shallow-energy, donor centres in diamond: the effect of negative electron affinity Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 514, 69-78.	1.6	1
563	The mechanism of autoelectron emission in carbon nanostructures. Solid State Communication 2003, 126, 495-498.	s, 1.9	28
564	Interaction of thermally activated and molecular oxygen with hydrogenated polycrystalline diam surfaces studied by synchrotron radiation techniques. Surface Science, 2003, 522, L1-L8.	1.9	17
565	Electron field emission properties of electro-deposited diamond-like carbon coatings. Vacuum, 2 70, 543-549.	2003, 3.5	15
566	Dependence of field-emission threshold in diamond-like carbon films grown by various techniqu Vacuum, 2003, 72, 183-192.	es. 3.5	23
567	Electron field emission enhancement effects of nano-diamond films. Surface and Coatings Technology, 2003, 167, 143-147.	4.8	57
568	Nanocarbonaceous materials synthesized by microwave CVD and their characteristics of electro field emission. Microelectronic Engineering, 2003, 66, 2-9.	n 2.4	5
569	Nano-carbon materials for cold cathode applications. Microelectronic Engineering, 2003, 69, 40	15-411. 2.4	9
570	Field emission characteristics of nanostructured thin film carbon materials. Applied Surface Scie 2003, 215, 214-221.	nce, 6.1	41
571	Field emission from diamond particles studied by scanning field emission microscopy. Ultramicroscopy, 2003, 95, 145-151.	1.9	2
572	The mechanism of field emission for diamond films studied by scanning tunneling microscopy. F Letters, Section A: General, Atomic and Solid State Physics, 2003, 313, 436-441.	hysics 2.1	6
573	Electronic behaviour and field emission of metal–semiconductor–insulator–metal (MSIM heterostructures based on a-C:H films. Applied Surface Science, 2003, 206, 294-299.	6.1	3
574	Hydrogen-related structural changes on CVD diamond (1 0 0) surfaces by ultra-high-vacuum annealing. Applied Surface Science, 2003, 216, 59-64.	6.1	3
575	Formation and structure of a-C/nanodiamond composite films by prolonged bias enhanced nucl Diamond and Related Materials, 2003, 12, 1640-1646.	eation. 3.9	15
576	Fabrication and properties of lateral p–i–p structures using single-crystalline CVD diamond for high electric field applications. Diamond and Related Materials, 2003, 12, 1563-1568. 	layers 3.9	19
577	Electron field emission properties of carbon nanostructure synthesized by catalyst assisted solid-state growth process. Diamond and Related Materials, 2003, 12, 450-455.	3.9	8
578	BN-carbon and SiO2-carbon nanocomposites as low-field electron emitters. Diamond and Relate Materials, 2003, 12, 1698-1704.	ed 3.9	2

		CITATION REPORT		
#	Article		IF	CITATIONS
579	Electron emissions from CVD diamond surfaces. Diamond and Related Materials, 2003	, 12, 434-441.	3.9	20
580	Secondary electron emission from CVD diamond films. Diamond and Related Materials 2208-2218.	, 2003, 12,	3.9	23
581	Influence of adsorbates on electron emission from amorphous carbon under electron a heavy ion bombardment. EPJ Applied Physics, 2003, 21, 9-16.	ınd swift	0.7	1
582	Amorphous selenium photodetector driven by diamond cold cathode. IEEE Electron De 2003, 24, 16-18.	wice Letters,	3.9	21
583	Structural features of diamond layers photo-emitting at sub-band gap energies. Diamo Materials, 2003, 12, 2186-2194.	nd and Related	3.9	3
584	Transmission of low-energy electrons in boron-doped nanocrystalline diamond films. Jo Applied Physics, 2003, 93, 3082-3089.	urnal of	2.5	25
585	Nanomaterials from Light-Element Composites. , 2003, , 1251-1296.			0
586	Influence of sulfur incorporation on field-emission properties of microcrystalline diamo films. Journal of Materials Research, 2003, 18, 2708-2716.	nd thin	2.6	4
587	Design and Experiments on Improved Cathode Configuration for Diamond Planar Field Display Elements. Japanese Journal of Applied Physics, 2003, 42, 274-279.	Emission	1.5	0
588	Role of electronic band structure and resonances on electron reflectivity and vibration functions: The case of hydrogenated diamond. Physical Review B, 2003, 68, .	al excitation	3.2	16
589	Pulsed laser ultrahigh vacuum deposited silicon in the presence of excess cesium and c with x-ray photoelectron spectroscopy and atomic force microscopy. Journal of Vacuur Technology A: Vacuum, Surfaces and Films, 2003, 21, 874-880.	xygen studied n Science and	2.1	1
590	Clarification of oxygen bonding on diamond surfaces by low energy electron stimulate and high resolution electron energy loss spectroscopy. Journal of Chemical Physics, 20 1794-1799.	d desorption 03, 119,	3.0	26
591	Surface band bending and surface conductivity of hydrogenated diamond. Physical Rev	view B, 2003, 68, .	3.2	88
592	The diamondÂvacuum interface: I. A model of the interface between an n-type semicor negative electron affinity, and the vacuum. Semiconductor Science and Technology, 20	nductor, with 003, 18, S125-S130.	2.0	6
593	Fundamental Aspects and Applications of Low Field Electron Emission from Nanocarbc Engineering, 2003, 19, 429-436.	ns. Surface	2.2	4
594	Oxidized porous diamond/pyrocarbon nanocomposites as improved field electron emit and Related Materials, 2003, 12, 1710-1716.	ters. Diamond	3.9	4
595	Current image tunneling spectroscopy of chemical vapor deposited diamond films. Jou Science & Technology an Official Journal of the American Vacuum Society B, Microelec Processing and Phenomena, 2003, 21, 608.	rnal of Vacuum tronics	1.6	1
596	Effects of the interface and surface nanostructures on field emission of amorphous dia Journal of Vacuum Science & Technology an Official Journal of the American Vacuum S Microelectronics Processing and Phenomena, 2003, 21, 581.	mond film. ociety B,	1.6	5

#	Article	IF	CITATIONS
597	Dielectric-carbon composites for field electron emitters. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2003, 21, 597.	1.6	7
598	Influence of the optimal etching conditions of silicon substrates on field-electron emission from amorphous-diamond films. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2003, 21, 618.	1.6	0
599	Improvement on electron field emission properties of nanocrystalline diamond films by co-doping of boron and nitrogen. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2003, 21, 1074.	1.6	8
600	Electron field emission properties of carbon nanotubes converted from nanodiamonds. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2003, 21, 1688.	1.6	4
601	Fabrication and Characteristics of Amorphous Carbon Films Grown in Pure Methane Plasma by using Radio Frequency Plasma Enhanced Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2003, 42, 1744-1748.	1.5	10
602	The diamondÂvacuum interface: II. Electron extraction from n-type diamond: evidence for superconduction at room temperature. Semiconductor Science and Technology, 2003, 18, S131-S140.	2.0	8
604	Generation of Micro-Scale Reactive Plasmas and Development of Their New Applications - Present and Future of Research and Development on Microplasmas - 2.Generation of Microplasmas. Journal of Plasma and Fusion Research, 2004, 80, 827-834.	0.4	1
605	Strong Electron Field Emission from Nano-CdS Modified Porous Silicon. Chinese Physics Letters, 2004, 21, 2049-2050.	3.3	4
606	Electron emission from heavily nitrogen-doped heteroepitaxial chemical vapor deposition diamond. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2004, 22, 1327.	1.6	2
607	Electron field-emission mechanism in nanostructured carbon films: A quest. Journal of Applied Physics, 2004, 95, 8314-8320.	2.5	23
608	Chapter 2 Structural and electronic properties of diamond surfaces. Semiconductors and Semimetals, 2004, 77, 37-96.	0.7	6
609	Electron flow enhancement with a diamond membrane. Technical Physics, 2004, 49, 108-113.	0.7	8
610	Thin carbon films: II. Structure and properties. Technical Physics, 2004, 49, 619-622.	0.7	10
611	Energy distributions of electrons emitted from tungsten tips covered by diamond-like films. Technical Physics, 2004, 49, 623-629.	0.7	2
612	Electron-emission from nano- and micro-crystalline diamond films: the effects of nitrogen and oxygen additives. Thin Solid Films, 2004, 447-448, 212-216.	1.8	19
613	Application of Diamond in High Technology. Inorganic Materials, 2004, 40, S50-S70.	0.8	22
614	Oxidation improvement of field electron emission from diamond nanomaterials. Surface and Interface Analysis, 2004, 36, 455-460.	1.8	2
615	Interaction of water vapor with bare and hydrogenated diamond film surfaces. Surface Science, 2004, 551, 99-105.	1.9	55

ARTICLE IF CITATIONS # Field emission characteristics of diamond-like carbon films synthesized by electrodeposition 6.1 16 616 technique. Applied Surface Science, 2004, 236, 426-434. Field emission from camphor–pyrolyzed carbon nanotubes. Chemical Physics Letters, 2004, 385, 161-165. 2.6 Electron Field Emission from Self-Organized Micro-Emitters of sp3-Bonded 5H Boron Nitride with Very 618 2.6 22 High Current Density at Low Electric Field. Journal of Physical Chemistry B, 2004, 108, 5182-5184. Nanostructured diamond and diamond-like materials for application in field-emission devices. Nanotechnology, 2004, 15, S678-S683. Synthesis and electron field emission properties of nanodiamond films. Diamond and Related 620 3.9 21 Materials, 2004, 13, 2100-2104. Field emission energy distributions of electrons from tungsten tip emitters coated with diamond-like film prepared by ion-beam deposition. Diamond and Related Materials, 2004, 13, 125-132. New etching process for device fabrication using diamond. Diamond and Related Materials, 2004, 13, 622 3.9 62 2207-2210. Electron transport mechanisms in thin boron-doped diamond films. Journal of Applied Physics, 2004, 2.5 20 96, 446-453. 624 Low-field electron emission from nano-carbons. Diamond and Related Materials, 2004, 13, 1044-1049. 3.9 20 Electron field emission from nitrogen and sulfur-doped diamond-like carbon films deposited by simple 2.6 39 electrochemical route. Materials Letters, 2004, 58, 3920-3924. Interface characterization between large area freestanding diamond films and molybdenum 626 6.1 4 substrates. Applied Surface Science, 2005, 246, 90-95. Oxidization process of CVD diamond (100):H 2Ã-1 surfaces. Applied Surface Science, 2005, 244, 301-304. 6.1 Nanoscale structural characteristics and electron field emission properties of transition 628 1.7 3 metalâ€"fullerene compound TiC60 films. Microelectronics Reliability, 2005, 45, 137-142. TEM and HREM of diamond crystals grown on Si tips: structure and results of ion-beam-treatment. 2.2 Micron, 2005, 36, 81-88. Novel cold cathode materials and applications. Materials Science and Engineering Reports, 2005, 48, 630 31.8 525 47-189. High negative ion yield from light molecule scattering. Nuclear Instruments & Methods in Physics Research B, 2005, 230, 330-339. Field emission characteristics of chemical vapor deposited diamond thin films with SnO2 as overlayer 632 1.8 5 on silicon. Thin Solid Films, 2005, 474, 275-278. Role of electronic band structure and resonances on electron-scattering. The case of the hydrogenated polycrystalline diamond. Surface Science, 2005, 587, 134-141.

#	Article	IF	CITATIONS
634	Field electron emission from amorphous carbon thin films grown by RF magnetron sputtering. Current Applied Physics, 2005, 5, 387-391.	2.4	12
635	Transmissive diamond photocathodes. Carbon, 2005, 43, 2106-2111.	10.3	2
636	Influence of hydrogen and oxygen plasma treatment on field emission characteristics of boron nitride thin films. Applied Surface Science, 2005, 242, 207-211.	6.1	3
637	Effect of nitrogen surface doping on the work function and field emission of hydrogenated amorphous carbon films. Applied Physics A: Materials Science and Processing, 2005, 80, 123-126.	2.3	10
638	Influence of sp3 fraction on the field emission properties of tetrahedral amorphous carbon films formed by magnetic filtered plasma stream. Applied Physics A: Materials Science and Processing, 2005, 80, 1573-1578.	2.3	6
639	Negative electron affinity on hydrogen terminated diamond. Physica Status Solidi A, 2005, 202, 2098-2103.	1.7	21
640	Electron emission mechanism of diamond characterized by combined XPS/UPS/FES. Materials Research Society Symposia Proceedings, 2005, 891, 1.	0.1	0
641	Heterojunction, Vacuum-Glass Field Effect Transistors. Materials Research Society Symposia Proceedings, 2005, 891, 1.	0.1	0
642	Field Emission Characteristics of Bn Films Treated with H 2 and O 2 Plasma. Chinese Physics Letters, 2005, 22, 981-983.	3.3	0
643	Current image tunneling spectroscopy of boron-doped nanodiamonds. Journal of Applied Physics, 2005, 97, 044312.	2.5	14
644	Thermionic field emission from nanocrystalline diamond-coated silicon tip arrays. Physical Review B, 2005, 72, .	3.2	35
645	Effect of material properties on low-energy electron transmission in thin chemical-vapor deposited diamond films. Journal of Applied Physics, 2005, 97, 093717.	2.5	7
646	Direct observation of negative electron affinity in hydrogen-terminated diamond surfaces. Applied Physics Letters, 2005, 86, 152103.	3.3	148
647	Field emission mechanism of oxidized highly phosphorus-doped homoepitaxial diamond (111). Applied Physics Letters, 2005, 87, 234107.	3.3	24
648	Gunn effect in field-emission phenomena. Journal of Applied Physics, 2005, 97, 044911.	2.5	16
649	Effect of processing parameters on the nucleation behavior of nano-crystalline diamond film. Diamond and Related Materials, 2005, 14, 296-301.	3.9	13
650	Selective area growth of carbon nanostructure synthesized by catalyst-assisted conversion of nanodiamond films. Diamond and Related Materials, 2005, 14, 825-830.	3.9	1
651	Total photoyield experiments on hydrogen terminated n-type diamond. Diamond and Related Materials, 2005, 14, 2019-2022.	3.9	10

#	Article	IF	CITATIONS
652	Self-aligned fabrication of single crystal diamond gated field emitter array. Diamond and Related Materials, 2005, 14, 2047-2050.	3.9	9
653	Electron-Transfer Doping on a (001) Surface of Diamond:Â Quantum Mechanical Study. Journal of Physical Chemistry B, 2005, 109, 22426-22431.	2.6	17
654	Electron Emission from Diamondoids: A Diffusion Quantum Monte Carlo Study. Physical Review Letters, 2005, 95, 096801.	7.8	154
655	Photochemical Functionalization of Hydrogen-Terminated Diamond Surfaces:Â A Structural and Mechanistic Study. Journal of Physical Chemistry B, 2005, 109, 20938-20947.	2.6	127
656	Surface Conductivity of Diamond: A Novel Doping Mechanism. Advances in Science and Technology, 2006, 48, 93-102.	0.2	1
657	Photoelectron emission properties of hydrogen terminated intrinsic diamond. Journal of Applied Physics, 2006, 99, 086102.	2.5	22
658	Electronic properties of plasma hydrogenated diamond surfaces: A microscopic study. Diamond and Related Materials, 2006, 15, 1374-1377.	3.9	31
659	Structure, electronics, and interaction of hydrogen and oxygen on diamond surfaces. Physical Review B, 2006, 73, .	3.2	221
660	Secondary photoelectron emission experiments on p-, intrinsic, and n-type diamond. Diamond and Related Materials, 2006, 15, 698-702.	3.9	16
661	Electron Transport and the Potential of Ultrananocrystalline Diamond as a Thermoelectric Material. , 2006, , 157-184.		3
662	Title is missing!. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2006, 57, 9-17.	0.2	0
663	Photoelectron emission from diamond. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 3100-3106.	1.8	29
664	Influence of high energy ion irradiation on the field emission characteristics of CVD diamond films. Nuclear Instruments & Methods in Physics Research B, 2006, 244, 217-220.	1.4	15
665	Conversion surfaces for neutral particle imaging detectors. Advances in Space Research, 2006, 38, 664-671.	2.6	22
666	Atomic-scale studies of hydrogenated semiconductor surfaces. Progress in Surface Science, 2006, 81, 1-51.	8.3	68
667	Diamond surface modification following thermal etching of Si supported hydrogenated diamond films by DBr. Surface Science, 2006, 600, 847-850.	1.9	5
668	Direct observation of surface potential change due to hydrogen termination of CVD diamond surface by metastable-induced electron spectroscopy. Surface Science, 2006, 600, 3659-3662.	1.9	1
669	Synthesis, structure, and field emission properties of sulfur-doped nanocrystalline diamond. Journal of Materials Science: Materials in Electronics, 2006, 17, 443-451.	2.2	37

# 670	ARTICLE Transfer doping of diamond: Buckminsterfullerene on hydrogenated, hydroxylated, and oxygenated diamond surfaces. Journal of Materials Science: Materials in Electronics, 2006, 17, 459-465.	IF 2.2	Citations 6
671	Surface science of diamond: Familiar and amazing. Surface Science, 2006, 600, 3677-3689.	1.9	101
672	Deposition of potassium–oxygen on silicon surfaces by pulsed laser ablation of potassium superoxide: Study of work function changes. Surface Science, 2006, 600, 1518-1525.	1.9	1
673	Field emission characteristics of microcrystalline diamond films: Effect of surface coverage and thickness. Thin Solid Films, 2006, 515, 1963-1969.	1.8	12
674	Paramagnetic defects in diamond films synthesized by the hot filament chemical vapour deposition. Crystal Research and Technology, 2006, 41, 535-540.	1.3	12
675	Formation of conducting nanochannels in diamond-like carbon films. Semiconductor Science and Technology, 2006, 21, 1326-1330.	2.0	21
676	Electron Emission Mechanism of Doped CVD Diamond Characterized Using Combined XPS/UPS/FES System. Materials Research Society Symposia Proceedings, 2006, 956, 1.	0.1	0
677	Photoelectron Emission Mechanism From Hydrogen Terminated Nano-Crystalline Diamond. Materials Research Society Symposia Proceedings, 2006, 956, 1.	0.1	3
678	DMC Study of the Optoelectronic Properties of Diamondoids. Materials Research Society Symposia Proceedings, 2006, 958, 1.	0.1	0
679	Sub-bandgap photoenhancement of electron emission and discharging of hydrogenated and hydrogen-free diamond surfaces. Physical Review B, 2006, 73, .	3.2	10
680	Large area field-emission for screen-printing nanocrystalline diamond films. , 2006, , .		1
681	Density-of-states effect on surface and lattice vibrational modes in hydrogenated polycrystalline diamond. Physical Review B, 2006, 73, .	3.2	31
682	Field emission from amorphous carbon films grown by electrochemical deposition using methanol liquid. Journal of Applied Physics, 2006, 99, 094903.	2.5	8
683	Electron emission mechanism of diamond characterized using combined x-ray photoelectron spectroscopy/ultraviolet photoelectron spectroscopy/field emission spectroscopy system. Applied Physics Letters, 2006, 88, 202101.	3.3	21
684	Angle-Resolved Photoemission as a Tool for the Study of Surfaces. Advances in Chemical Physics, 2007, , 533-656.	0.3	488
685	Current-voltage and electron emission characteristics of diamond particles. Journal of Vacuum Science & Technology B, 2007, 25, 540.	1.3	1
686	Electron emission degradation of nano-structured sp 2 -bonded amorphous carbon films. Chinese Physics B, 2007, 16, 843-847.	1.3	5
687	Considerations for a high-performance thermionic energy conversion device based on a negative electron affinity emitter. Physical Review B, 2007, 76, .	3.2	28

#	Article	IF	CITATIONS
688	On the enhancement of field emission performance of ultrananocrystalline diamond coated nanoemitters. Applied Physics Letters, 2007, 91, 063117.	3.3	27
689	Oxidation of diamond films by atomic oxygen: High resolution electron energy loss spectroscopy studies. Journal of Applied Physics, 2007, 102, .	2.5	24
690	Phosphorus Doped Diamond Electron Emitter Devices. Materials Research Society Symposia Proceedings, 2007, 1039, 1.	0.1	0
691	The Origin of Field-induced Electron Emission from N-doped CVD Diamond Characterized by Combined XPS/UPS/FES System. Materials Research Society Symposia Proceedings, 2007, 1039, 1.	0.1	0
692	Field-emission properties of sulphur doped nanocrystalline diamonds. Journal of Physics: Conference Series, 2007, 61, 66-70.	0.4	1
693	Surface potential change by oxidation of the chemical vapor deposited diamond (001) surface. Journal of Physics: Conference Series, 2007, 61, 327-331.	0.4	5
694	Low work-function cathodes from Schottky to field-induced ballistic electron emission: Self-consistent numerical approach. Physical Review B, 2007, 75, .	3.2	23
695	Hydrogen incorporation in diamond films. Diamond and Related Materials, 2007, 16, 845-850.	3.9	28
696	Improved field emission properties from metal-coated diamond films. Diamond and Related Materials, 2007, 16, 650-653.	3.9	13
697	Diamond as a unique high-tech electronic material: difficulties and prospects. Journal Physics D: Applied Physics, 2007, 40, 6467-6478.	2.8	91
698	Structure and Field Emission Study of Hot Filament Chemical Vapor Deposited Nanocrystalline Diamond Films. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2007, 37, 481-484.	0.6	1
699	Direct electrical detection of antigen–antibody binding on diamond and silicon substrates using electrical impedance spectroscopy. Analyst, The, 2007, 132, 296-306.	3.5	59
700	Monochromatic Electron Photoemission from Diamondoid Monolayers. Science, 2007, 316, 1460-1462.	12.6	248
701	Direct Photopatterning and SEM Imaging of Molecular Monolayers on Diamond Surfaces:  Mechanistic Insights into UV-Initiated Molecular Grafting. Langmuir, 2007, 23, 11623-11630.	3.5	31
702	Surface defect states analysis on diamond by photoelectron emission yield experiments. Diamond and Related Materials, 2007, 16, 823-825.	3.9	18
703	Field emission from diamond and diamond-like carbon films. Journal of Superhard Materials, 2007, 29, 189.	1.2	4
704	Quasiparticle self-consistent <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:mi>G</mml:mi><mml:mi>W</mml:mi></mml:mrow></mml:math> method: A basis for the independent-particle approximation. Physical Review B, 2007, 76, .	3.2	364
705	Electron field emission from boron doped microcrystalline diamond. Applied Surface Science, 2007, 253, 7381-7386.	6.1	14

#	Article	IF	CITATIONS
706	Electrochemical generation of solvated electrons from nanostructured carbon. Electrochemistry Communications, 2007, 9, 2364-2369.	4.7	22
707	Electrostatic force microscopy study of electrical conductivity of hydrogenâ€ŧerminated CVD diamond films. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 2915-2919.	1.8	0
708	Cold Cathode of p-Type Semiconducting Diamond Films for Gas Discharge. Plasma Processes and Polymers, 2007, 4, S942-S945.	3.0	1
709	Electron injection from nanostructured carbon electrodes at moderate cathodic potentials. Russian Journal of Electrochemistry, 2007, 43, 1123-1126.	0.9	2
710	Work function of hydrogen-terminated diamond surfaces under ion impact. Surface Science, 2007, 601, 5732-5735.	1.9	9
711	Carbon cone arrays by double-bias assisted hot filament plasma chemical vapor deposition. Thin Solid Films, 2008, 516, 2981-2986.	1.8	3
712	The electronic properties and electron affinity of the hydrogenated nanodiamonds with surface reconstructions. Applied Surface Science, 2008, 255, 2623-2626.	6.1	7
713	Water-Induced Negative Electron Affinity on Diamond (100). Journal of Physical Chemistry C, 2008, 112, 2487-2491.	3.1	35
714	Electrical and photoelectrical characterization of undoped and S-doped nanocrystalline diamond films. Journal of Applied Physics, 2008, 103, .	2.5	12
715	The surface properties of nanocrystalline diamond and nanoparticulate diamond powder and their suitability as cell growth support surfaces. Biomaterials, 2008, 29, 4275-4284.	11.4	96
716	Effects of pretreatment and post-annealing on the field emission property of diamond-like carbon grown on a titanium/silicon substrate. New Carbon Materials, 2008, 23, 209-215.	6.1	4
717	Development of an evaluation system for electron emission characteristics and generation of X-rays using a needle type semiconductor diamond electron emitter. Diamond and Related Materials, 2008, 17, 764-767.	3.9	3
718	Electron emission mechanism of hydrogenated natural type IIb diamond (111). Diamond and Related Materials, 2008, 17, 162-166.	3.9	5
719	Surface properties and field emission of boron nitride. Diamond and Related Materials, 2008, 17, 1764-1769.	3.9	3
720	Electron field emission properties on UNCD coated Si-nanowires. Diamond and Related Materials, 2008, 17, 753-757.	3.9	8
721	Electron field emission properties on ultra-nano-crystalline diamond coated silicon nanowires. Diamond and Related Materials, 2008, 17, 1817-1820.	3.9	10
722	Electron field emission from the 2D hole gas in hydrogen terminated, polycrystalline diamond. Diamond and Related Materials, 2008, 17, 336-339.	3.9	6
723	Electron field emission from nanostructured cubic boron nitride islands. Applied Physics Letters, 2008, 92, 013115.	3.3	34

#	Article	IF	CITATIONS
724	Electron emission mechanism of diamond characterised by combined XPS/UPS/FES. , 2008, , .		1
725	A 3D tomographic EBSD analysis of a CVD diamond thin film. Science and Technology of Advanced Materials, 2008, 9, 035013.	6.1	13
726	Investigation of low-resistivity from hydrogenated lightly B-doped diamond by ion implantation. Science and Technology of Advanced Materials, 2008, 9, 025014.	6.1	2
727	Combined x-ray photoelectron spectroscopy/ultraviolet photoelectron spectroscopy/field emission spectroscopy for characterization of electron-emission mechanism of diamond. Journal of Vacuum Science & Technology B, 2008, 26, 730-734.	1.3	4
728	Growth and field emission characteristics of diamond films on macroporous silicon substrate. Journal of Applied Physics, 2008, 104, 103524.	2.5	8
729	Field electron emission enhancement of amorphous carbon through a niobium buffer layer. Journal of Applied Physics, 2008, 103, 114314.	2.5	4
730	Electron field emission from patterned nanocrystalline diamond coated a-SiO2 micrometer-tip arrays. Applied Physics Letters, 2008, 92, .	3.3	28
731	Characterization of boron doped nanocrystalline diamonds. Journal of Physics: Conference Series, 2008, 100, 052028.	0.4	1
732	Electron emission from conduction band of diamond with negative electron affinity. Physical Review B, 2009, 80, .	3.2	57
733	Effects of bonding structure from niobium carbide buffer layer on the field electric emission properties of a-C films. Journal of Applied Physics, 2009, 105, 074318.	2.5	1
734	Enhancement in electron field emission in ultrananocrystalline and microcrystalline diamond films upon 100 MeV silver ion irradiation. Journal of Applied Physics, 2009, 105, 083707.	2.5	11
735	Effect of cubic phase evolution on field emission properties of boron nitride island films. Journal of Applied Physics, 2009, 106, 113706.	2.5	15
736	Nano-scale modification and doping of diamond: interesting science and promising technology. International Journal of Nanotechnology, 2009, 6, 691.	0.2	5
737	Stable electron emission from BCN/carbon nanotube field emitter. Journal of Vacuum Science & Technology B, 2009, 27, 744-748.	1.3	7
738	Theory of space charge limited regime of thermionic energy converter with negative electron affinity emitter. Journal of Vacuum Science & Technology B, 2009, 27, 1132-1141.	1.3	35
739	Electronic structure of [121]tetramantane-6-thiol on gold and silver surfaces. Journal of Chemical Physics, 2009, 130, 054705.	3.0	12
740	Field electron emission enhancement of amorphous carbon through a niobium carbide buffer layer. Journal of Applied Physics, 2009, 105, .	2.5	2
741	Microtexture and Grain Boundaries in Freestanding CVD Diamond Films: Growth and Twinning Mechanisms. Advanced Functional Materials, 2009, 19, 3880-3891.	14.9	22

#	Article	IF	CITATIONS
742	Reactivities of the Prism‧haped Diamondoids [1(2)3]Tetramantane and [12312]Hexamantane (Cyclohexamantane). Chemistry - A European Journal, 2009, 15, 3851-3862.	3.3	24
743	Enhanced Field Electron Emission Properties of Hybrid Carbon Nanotubes Synthesized by RFâ€PECVD. Chemical Vapor Deposition, 2009, 15, 291-295.	1.3	3
744	Surface functionalization by low-energy electron processing of molecular ices. Surface Science, 2009, 603, 1873-1877.	1.9	3
745	Electron driven processes in ices: Surface functionalization and synthesis reactions. Progress in Surface Science, 2009, 84, 177-198.	8.3	29
746	Electron affinity study of adamantane on Si(111). Applied Surface Science, 2009, 256, 934-936.	6.1	9
747	Nanographene and Nanodiamond; New Members in the Nanocarbon Family. Chemistry - an Asian Journal, 2009, 4, 796-804.	3.3	50
748	Field electron emission from nanodiamond. Technical Physics Letters, 2009, 35, 249-252.	0.7	11
749	Annealing improvement on the localized states of plasma grown boron nitride film assessed through admittance measurements. Journal of Alloys and Compounds, 2009, 475, 794-803.	5.5	5
750	Development and evaluation of a diamond electron source for electron beam instruments. Diamond and Related Materials, 2009, 18, 854-859.	3.9	5
751	Low-temperature thermionic emission from nitrogen-doped nanocrystalline diamond films on n-type Si grown by MPCVD. Diamond and Related Materials, 2009, 18, 1274-1277.	3.9	35
752	Electron emission characteristics of needle type semiconductor diamond electron emitters by pulsed bias operation and X-ray generation. Diamond and Related Materials, 2009, 18, 287-291.	3.9	1
753	Field emission investigation of boron doped diamond thin films synthesized by microwave plasma chemical vapor deposition: Effect of vacuum annealing. , 2009, , .		0
754	Development of a transmission-mode diamond secondary electron source. , 2009, , .		0
755	Local field electron emission from grain boundaries of CVD diamond film. Diamond and Related Materials, 2009, 18, 229-231.	3.9	6
756	Enhancement of field emission properties in nanocrystalline diamond films upon 100ÂMeV silver ion irradiation. Diamond and Related Materials, 2009, 18, 164-168.	3.9	10
757	First-principles density-functional investigation on the electronic properties and field emission of a hydrogenated nanodiamond. Diamond and Related Materials, 2009, 18, 1310-1315.	3.9	7
758	Detecting sp2 phase on diamond surfaces by atomic force microscopy phase imaging and its effects on surface conductivity. Diamond and Related Materials, 2009, 18, 722-725.	3.9	27
759	Origin of low threshold field emission from nitrogen-incorporated nanocrystalline diamond films. Applied Physics Letters, 2009, 94, .	3.3	53

#	Article	IF	CITATIONS
760	Schottky barrier heights, carrier density, and negative electron affinity of hydrogen-terminated diamond. Physical Review B, 2010, 81, .	3.2	42
761	A review of crystallographic textures in chemical vapor-deposited diamond films. Frontiers of Materials Science in China, 2010, 4, 1-16.	0.5	16
762	Optical and mechanical characterization of ultrananocrystalline diamond films prepared in dual frequency discharges. Surface and Coatings Technology, 2010, 204, 1997-2001.	4.8	2
763	In situ thermal treatment of UV-oxidized diamond hydrogenated surface. Surface Science, 2010, 604, 753-761.	1.9	16
764	Negative-electron-affinity diamondoid monolayers as high-brilliance source for ultrashort electron pulses. Chemical Physics Letters, 2010, 495, 102-108.	2.6	54
765	Electron Field Emission of Silicon-Doped Diamond-Like Carbon Thin Films. Japanese Journal of Applied Physics, 2010, 49, 111301.	1.5	7
766	Resonant field emission from two-dimensional density of state on hydrogen-terminated intrinsic diamond. Journal of Applied Physics, 2010, 107, 013705.	2.5	10
767	Bulk and surface thermal stability of ultra nanocrystalline diamond films with 10–30 nm grain size prepared by chemical vapor deposition. Journal of Applied Physics, 2010, 107, 093521.	2.5	25
768	Field emission from N-doped diamond doped with dimethylurea. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2010, 28, 506-510.	1.2	9
769	Effect of gigaelectron volt Au-ion irradiation on the characteristics of ultrananocrystalline diamond films. Journal of Applied Physics, 2010, 108, 123712.	2.5	9
770	Phonon-mediated desorption of image-bound electrons from dielectric surfaces. Physical Review B, 2010, 81, .	3.2	9
771	Oxygen adsorption on the (1 × 1) and (2 × 1) reconstructed C(111) surfaces: a density functional theory study. Journal of Physics Condensed Matter, 2010, 22, 265007.	1.8	29
772	STUDY OF ELECTRONIC STRUCTURE AND NEGATIVE ELECTRON AFFINITY OF NANODIAMONDS PASSIVATED BY CHn SPECIES. Journal of Theoretical and Computational Chemistry, 2010, 09, 353-363.	1.8	1
773	Diamond growth by chemical vapour deposition. Journal Physics D: Applied Physics, 2010, 43, 374017.	2.8	219
774	Photochemical Grafting of Alkenes onto Carbon Surfaces: Identifying the Roles of Electrons and Holes. Journal of Physical Chemistry C, 2010, 114, 4067-4074.	3.1	38
775	The fascinating physics of carbon surfaces: first-principles study of hydrogen on C(0 0 1), C(1 1â€% graphene. Journal Physics D: Applied Physics, 2010, 43, 374016.	₀1) and 2.8	16
776	9.2: Correlation between low threshold emission and C-N bond in nitrogen-doped diamond. , 2010, , .		0
777	Enhanced thermionic energy conversion and thermionic emission from doped diamond films through methane exposure. Diamond and Related Materials, 2011, 20, 1229-1233.	3.9	39

#	Article	IF	CITATIONS
778	Fabrication and Characterization of Single-crystal CVD Diamond Current Amplifier. Materials Research Society Symposia Proceedings, 2011, 1282, 129.	0.1	0
779	Contribution of steps to optical properties of vicinal diamond (100):H surfaces. Physical Review B, 2011, 83, .	3.2	7
780	Secondary electron amplification using single-crystal CVD diamond film. Diamond and Related Materials, 2011, 20, 798-802.	3.9	22
781	Field emission property of arrayed nanocrystalline diamond. Diamond and Related Materials, 2011, 20, 314-317.	3.9	5
782	Microstructure evolution and the modification of the electron field emission properties of diamond films by gigaelectron volt Au-ion irradiation. AIP Advances, 2011, 1, .	1.3	2
783	Structure of diamond nanoparticles grown by chemical vapor deposition. Physica B: Condensed Matter, 2011, 406, 4170-4174.	2.7	3
784	σ/σ- and π/π-Interactions Are Equally Important: Multilayered Graphanes. Journal of the American Chemical Society, 2011, 133, 20036-20039.	13.7	75
785	Growth and field emission properties of nanotip arrays ofÂamorphous carbon with embedded hexagonal diamond nanoparticles. Applied Physics A: Materials Science and Processing, 2011, 103, 59-65.	2.3	28
786	Enhanced field emission characteristics of boron doped diamond films grown by microwave plasma assisted chemical vapor deposition. Applied Surface Science, 2011, 257, 1854-1858.	6.1	13
787	Application of printed nanocrystalline diamond film for electron emission cathode. Applied Surface Science, 2011, 257, 5185-5189.	6.1	8
788	Effect of annealing on field emission properties of nanodiamond coating. Physica B: Condensed Matter, 2011, 406, 1124-1128.	2.7	7
789	Diamond film growth on the Mo–Re alloy foil. Journal of Crystal Growth, 2011, 314, 58-61.	1.5	3
790	Correlation between low threshold emission and C–N bond in nitrogen-doped diamond films. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2011, 29, 02B119.	1.2	8
791	Charge-transfer doped intrinsic diamond electrochemical electrodes. Materials Research Society Symposia Proceedings, 2011, 1362, 1.	0.1	1
792	Growth and Field Emission Properties of Boron Nitride Island Films by Low-energy Ion-assisted Deposition. Materials Research Society Symposia Proceedings, 2011, 1307, 1.	0.1	0
793	High-Voltage Vacuum Switch with a Diamond p–i–n Diode Using Negative Electron Affinity. Japanese Journal of Applied Physics, 2012, 51, 090113.	1.5	17
794	Low threshold field emission from high-quality cubic boron nitride films. Journal of Applied Physics, 2012, 111, 093728.	2.5	20
795	Analysis of field-emission from a diamond-metal-vacuum triple junction. Journal of Applied Physics, 2012, 112, 066102.	2.5	6

#	Article	IF	CITATIONS
796	The effect of hydrogen desorption kinetics on thermionic emission from polycrystalline chemical vapor deposited diamond. Applied Physics Letters, 2012, 101, .	3.3	11
797	Direct observation and mechanism of increased emission sites in Fe-coated microcrystalline diamond films. Journal of Applied Physics, 2012, 111, .	2.5	7
798	Resolution, masking capability and throughput for direct-write, ion implant mask patterning of diamond surfaces using ion beam lithography. Journal of Micromechanics and Microengineering, 2012, 22, 055005.	2.6	14
799	Comparative Studies on Field Emission Properties of Diamond and Diamond /Ti Films. Advanced Materials Research, 0, 586, 177-180.	0.3	2
800	The 3D-tomography of the nano-clusters formed by Fe-coating and annealing of diamond films for enhancing their surface electron field emitters. AIP Advances, 2012, 2, 032153.	1.3	1
801	Nanostructure TEM analysis of diamond cold cathode field emitters. Diamond and Related Materials, 2012, 22, 29-32.	3.9	10
802	The role of nano-graphite phase on the enhancement of electron field emission properties of ultrananocrystalline diamond films. Diamond and Related Materials, 2012, 24, 126-133.	3.9	14
803	Diamond nanowire – a challenge from extremes. Nanoscale, 2012, 4, 5293.	5.6	34
804	Development of a diamond transmitted secondary electron source. , 2012, , .		0
805	Electronic Structure of Diamond Surfaces Functionalized by Ru(tpy) ₂ . Journal of Physical Chemistry C, 2012, 116, 13877-13883.	3.1	21
806	Characterization of diamond films deposited on Re substrate by magnetic field-assisted hot filament chemical vapor deposition. Applied Surface Science, 2012, 258, 2117-2120.	6.1	4
807	The preparation of Al-containing amorphous carbon nanotip arrays and their excellent field emission properties. Applied Surface Science, 2012, 258, 7918-7921.	6.1	5
808	Chemical vapor deposited diamonds on Re substrate for the application of field emission. Surface and Coatings Technology, 2012, 207, 1-4.	4.8	5
809	Fabrication and structural property of diamond nano-platelet arrays on {111} textured diamond film. Diamond and Related Materials, 2012, 25, 155-158.	3.9	8
810	Electron surface layer at the interface of a plasma and a dielectric wall. Physical Review B, 2012, 85, .	3.2	49
811	Potential of diamond power devices. , 2013, , .		5
812	Long-term stabilization of sprayed zinc oxide thin film transistors by hexafluoropropylene oxide self assembled monolayers. Journal of Applied Physics, 2013, 114, .	2.5	6
813	Cold cathode array coated with cubic boron nitride. , 2013, , .		0

#	Article	IF	CITATIONS
814	Design of solar cell materials via soft X-ray spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 2013, 190, 2-11.	1.7	15
815	Photo-illuminated diamond as a solid-state sourceÂof solvated electrons in water for nitrogenÂreduction. Nature Materials, 2013, 12, 836-841.	27.5	834
816	<i>Ab initio</i> dynamics of field emission from diamond surfaces. Applied Physics Letters, 2013, 103, .	3.3	8
817	Microplasma enhancement via the formation of a graphite-like phase on diamond cathodes. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2013, 31, .	1.2	6
818	Diamond Surfaces with Airâ€Stable Negative Electron Affinity and Giant Electron Yield Enhancement. Advanced Functional Materials, 2013, 23, 5608-5614.	14.9	58
819	The induction of nanographitic phase on Fe coated diamond films for the enhancement in electron field emission properties. Journal of Applied Physics, 2013, 113, .	2.5	7
822	Direct observation of phonon emission from hot electrons: spectral features in diamond secondary electron emission. Journal of Physics Condensed Matter, 2014, 26, 395008.	1.8	4
823	Observation of negative electron affinity in low-voltage discharging boron-doped polycrystalline diamond. Japanese Journal of Applied Physics, 2014, 53, 05FP09.	1.5	4
824	Negative-ion production on carbon materials in hydrogen plasma: influence of the carbon hybridization state and the hydrogen content on H ^{â^'} yield. Journal Physics D: Applied Physics, 2014, 47, 085201.	2.8	32
825	Tuning the Electron Transfer Properties of Entire Nanodiamond Ensembles. Journal of Physical Chemistry C, 2014, 118, 30209-30215.	3.1	13
826	Role of deuterium desorption kinetics on the thermionic emission properties of polycrystalline diamond films with respect to kinetic isotope effects. Journal of Applied Physics, 2014, 115, 234904.	2.5	3
827	Thermally enhanced photoinduced electron emission from nitrogen-doped diamond films on silicon substrates. Physical Review B, 2014, 90, .	3.2	34
828	Field emission characteristics from graphene on hexagonal boron nitride. Applied Physics Letters, 2014, 104, .	3.3	28
829	On the role of graphite in ultrananocrystalline diamond films used for electron field emitter applications. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 2223-2237.	1.8	4
830	Direct first-principles simulation of a high-performance electron emitter: Lithium-oxide-coated diamond surface. Journal of Applied Physics, 2014, 116, .	2.5	6
831	Selective Photoelectrochemical Reduction of Aqueous CO ₂ to CO by Solvated Electrons. Angewandte Chemie - International Edition, 2014, 53, 9746-9750.	13.8	90
832	Electron emission from nitrogen-containing diamond with narrow-gap coplanar electrodes. Japanese Journal of Applied Physics, 2014, 53, 05FP08.	1.5	0
833	CHAPTER 20. Electron Field Emission from Diamond. RSC Nanoscience and Nanotechnology, 2014, , 499-515.	0.2	0

#	Article	IF	CITATIONS
834	Thermionic and Photon-Enhanced Emission from CVD Diamond: Influence of Nanostructure, Doping, and Substrate. Advances in Science and Technology, 0, , .	0.2	6
836	Low-temperature synthesis of diamond films by photoemission-assisted plasma-enhanced chemical vapor deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2014, 32, 02B110.	2.1	7
837	Diamond Nanowires: Fabrication, Structure, Properties, and Applications. Angewandte Chemie - International Edition, 2014, 53, 14326-14351.	13.8	54
838	Origin of graphitic filaments on improving the electron field emission properties of negative bias-enhanced grown ultrananocrystalline diamond films in CH4/Ar plasma. Journal of Applied Physics, 2014, 116, .	2.5	7
839	Boron Doped diamond films as electron donors in photovoltaics: An X-ray absorption and hard X-ray photoemission study. Journal of Applied Physics, 2014, 116, .	2.5	7
840	CVD diamond—Research, applications, and challenges. MRS Bulletin, 2014, 39, 490-494.	3.5	108
841	Photoelectron emission from lithiated diamond. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 2209-2222.	1.8	30
843	The impact of surface hydrogenation on the thermionic electron emission from polycrystalline diamond films. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 2238-2243.	1.8	3
844	Ultrananocrystalline Diamond-Decorated Silicon Nanowire Field Emitters. ACS Applied Materials & Interfaces, 2014, 6, 13815-13822.	8.0	20
845	Photoemission from diamond films and substrates into water: dynamics of solvated electrons and implications for diamond photoelectrochemistry. Faraday Discussions, 2014, 172, 397-411.	3.2	27
846	Direct Observation and Mechanism for Enhanced Electron Emission in Hydrogen Plasma-Treated Diamond Nanowire Films. ACS Applied Materials & Interfaces, 2014, 6, 8531-8541.	8.0	34
847	Synthesis of cubic boron nitride films on Si tips via chemical vapor deposition and the field emission properties. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2014, 32, 02B102.	1.2	0
848	First Principles Calculation Study on Surfaces and Water Interfaces of Boron-Doped Diamond. Journal of Physical Chemistry C, 2014, 118, 22040-22052.	3.1	29
849	Transfer doping of single isolated nanodiamonds, studied by scanning probe microscopy techniques. Nanotechnology, 2014, 25, 385702.	2.6	19
850	Interface and interlayer barrier effects on photo-induced electron emission from low work function diamond films. Diamond and Related Materials, 2014, 44, 123-128.	3.9	9
851	Enhanced Electron Field Emission Properties of Conducting Ultrananocrystalline Diamond Films after Cu and Au Ion Implantation. ACS Applied Materials & amp; Interfaces, 2014, 6, 4911-4919.	8.0	16
852	Diamond electron emission. MRS Bulletin, 2014, 39, 533-541.	3.5	21
853	High quantum efficiency ultrananocrystalline diamond photocathode for photoinjector applications. Applied Physics Letters, 2014, 105, .	3.3	42

#	Article	IF	CITATIONS
855	DFT study of electron affinity of alkali metal termination on clean and oxygenated β-Si3N4. Diamond and Related Materials, 2015, 58, 214-220.	3.9	7
857	Extremely high negative electron affinity of diamond via magnesium adsorption. Physical Review B, 2015, 92, .	3.2	34
858	Electron affinity of cubic boron nitride terminated with vanadium oxide. Journal of Applied Physics, 2015, 118, .	2.5	10
862	Trapâ€assisted photonâ€enhanced thermionic emission from polycrystalline diamond films. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 2583-2588.	1.8	9
863	Diamond Nanowires: Fabrication, Structure, Properties and Applications. Topics in Applied Physics, 2015, , 123-164.	0.8	1
864	Diamond PN/PIN Diode Type Electron Emitter with Negative Electron Affinity and Its Potential for the High Voltage Vacuum Power Switch. Topics in Applied Physics, 2015, , 237-272.	0.8	0
865	Observation of carbon growth and interface structures in methanol solution. Japanese Journal of Applied Physics, 2015, 54, 115502.	1.5	0
866	Experimental assessment of efficiency of water electrolysis products in the controlled adjustment of diamond surface charge. Journal of Mining Science, 2015, 51, 398-406.	0.6	1
867	Physical properties of materials derived from diamondoid molecules. Reports on Progress in Physics, 2015, 78, 016501.	20.1	31
868	Quantum Unfolding: A program for unfolding electronic energy bands of materials. Computer Physics Communications, 2015, 189, 213-219.	7.5	16
869	DFT study of electron affinity of hydrogen terminated β-Si3N4. Diamond and Related Materials, 2015, 53, 52-57.	3.9	16
870	Light Metals on Oxygen-Terminated Diamond (100): Structure and Electronic Properties. Chemistry of Materials, 2015, 27, 1306-1315.	6.7	26
871	Nanodiamonds for field emission: state of the art. Nanoscale, 2015, 7, 5094-5114.	5.6	70
872	Enhancing electrical conductivity and electron field emission property of free standing diamond films by employing embedded Ag nanoparticles. Materials Letters, 2015, 139, 322-324.	2.6	11
873	Fabrication and field emission characteristic of microcrystalline diamond/carbon nanotube double-layered pyramid arrays. Thin Solid Films, 2015, 584, 330-335.	1.8	14
874	High-frequency electrical transport in nitrogen incorporated nano-crystalline diamond films in the GHz regime. Europhysics Letters, 2015, 109, 67002.	2.0	0
875	Experimental Study of High-Current Cathodes Based on Diamond Films as Elements of High-Power Compressors of Microwave Pulses. Radiophysics and Quantum Electronics, 2015, 57, 711-719.	0.5	3
876	Band alignment at interfaces of few-monolayer MoS2 with SiO2 and HfO2. Microelectronic Engineering, 2015, 147, 294-297.	2.4	31

		CITATION RE	PORT	
# 877	ARTICLE In situ photoelectron spectroscopic characterization of c-BN films deposited via plasma chemical vapor deposition employing fluorine chemistry. Diamond and Related Material	enhanced s, 2015, 56,	IF 3.9	CITATIONS
878	Dissociative adsorption of molecular deuterium and thermal stability onto hydrogenated ion beam damaged poly- and single crystalline diamond surfaces. Surface Science, 2015	d, bare and , 642, 16-21.	1.9	3
879	Performance of field emission cathodes prepared from diamond nanoparticles. Thin Soli 574, 10-14.	d Films, 2015,	1.8	5
880	Engineered carbon nanotube field emission devices. , 2015, , 125-186.			15
881	Secondary Electron Emission Materials for Transmission Dynodes in Novel Photomultiple Review. Materials, 2016, 9, 1017.	iers: A	2.9	52
882	Sub-band gap photo-enhanced secondary electron emission from high-purity single-crys chemical-vapor-deposited diamond. Journal of Applied Physics, 2016, 119, 055703.	tal	2.5	3
883	Enhanced electron field emission of Cu implanted microcrystalline diamond films after a Vacuum, 2016, 134, 141-149.	nnealing.	3.5	12
884	Enhanced field electron emission from aligned diamond-like carbon nanorod arrays prep reactive ion beam etching. Journal Physics D: Applied Physics, 2016, 49, 195304.	ared by	2.8	8
885	Based on the Internet of things a self-cleaning solar power system of the household mic 2016, , .	ro-grid. ,		3
886	Single Crystal Diamond Needle as Point Electron Source. Scientific Reports, 2016, 6, 35	260.	3.3	32
887	Atmosphericâ€pressure photoelectron emission from Hâ€terminated and aminoâ€term Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 2069-2074.	inated diamond.	1.8	2
888	Surprising stability of neutral interstitial hydrogen in diamond and cubic BN. Journal of F Condensed Matter, 2016, 28, 06LT01.	hysics	1.8	7
889	Amino-terminated diamond surfaces: Photoelectron emission and photocatalytic proper Science, 2016, 650, 295-301.	ties. Surface	1.9	26
890	Plasma post-treatment process for enhancing electron field emission properties of ultrananocrystalline diamond films. Diamond and Related Materials, 2016, 63, 197-204.		3.9	7
891	Enhanced electron field emission properties of diamond/microcrystalline graphite comp synthesized by thermal catalytic etching. Applied Surface Science, 2016, 367, 473-479.	osite films	6.1	21
892	Photocatalytic reduction of nitrogen to ammonia on diamond thin films grown on meta substrates. Diamond and Related Materials, 2016, 64, 34-41.	llic	3.9	20
893	Evidence for D2 dissociative chemisorption and electron affinity changes of bare and ior damaged polycrystalline diamond surfaces. Diamond and Related Materials, 2016, 63, 2	ו beam 6-29.	3.9	1
894	Electronic, Optical, and Mechanical Properties of Diamond Nanowires Encapsulated in C Nanotubes: A First-Principles View. Journal of Physical Chemistry C, 2017, 121, 3661-36	arbon 72.	3.1	3

#	Article	IF	CITATIONS
895	The Tynode: A new vacuum electron multiplier. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2017, 847, 148-161.	1.6	14
896	Comparison between photoemitting and colloidal properties of nanodiamond particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 532, 493-500.	4.7	6
897	Unoccupied surface state induced by ozone and ammonia on H-terminated diamond electrodes for photocatalytic ammonia synthesis. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2017, 35, 04D102.	2.1	5
898	Probing the flat band potential and effective electronic carrier density in vertically aligned nitrogen doped diamond nanorods via electrochemical method. Electrochimica Acta, 2017, 246, 68-74.	5.2	15
899	<i>Ab initio</i> determination of electron affinity of polar nitride surfaces, clean and under Cs coverage. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2017, 35, .	2.1	19
900	The effect of Cu ion implantation and post-annealing on surface morphology and electron field emission in ultrananocrystalline diamond. Journal of Alloys and Compounds, 2017, 709, 8-15.	5.5	5
901	Visible sub-band gap photoelectron emission from nitrogen doped and undoped polycrystalline diamond films. Applied Surface Science, 2017, 410, 414-422.	6.1	5
902	Surface Structure-Dependent Low Turn-On Electron Field Emission from Polypyrrole/Tin Oxide Hybrid Cathodes. ACS Omega, 2017, 2, 7515-7524.	3.5	14
903	Self-consistent solution of Hedin's equations: Semiconductors and insulators. Physical Review B, 2017, 95, .	3.2	54
904	Photocatalytic reduction of CO2 to CO by diamond nanoparticles. Diamond and Related Materials, 2017, 78, 24-30.	3.9	38
905	Photoemission and photoionization time delays and rates. Structural Dynamics, 2017, 4, 061502.	2.3	39
906	Work function and surface stability of tungsten-based thermionic electron emission cathodes. APL Materials, 2017, 5, .	5.1	52
907	Preparation of charge injection layer by electrophoresis of diamond nanoparticles. Molecular Crystals and Liquid Crystals, 2017, 653, 200-206.	0.9	0
908	Linearized self-consistent quasiparticle GW method: Application to semiconductors and simple metals. Computer Physics Communications, 2017, 219, 407-414.	7.5	34
909	UV photocathodes based on nanodiamond particles: Effect of carbon hybridization on the efficiency. Diamond and Related Materials, 2017, 76, 1-8.	3.9	20
910	Field emission from n-type diamond NEA surface and graphene/n-type diamond junction. , 2017, , .		0
911	Electron field emission from Q-carbon. Diamond and Related Materials, 2018, 86, 71-78.	3.9	35
912	Predicting the impact of structural diversity on the performance of nanodiamond drug carriers. Nanoscale, 2018, 10, 8893-8910.	5.6	25

#	ARTICLE	IF	CITATIONS
913	Enhanced Photocatalytic Activity of Diamond Thin Films Using Embedded Ag Nanoparticles. ACS Applied Materials & Interfaces, 2018, 10, 5395-5403.	8.0	17
914	Negative electron affinity from aluminium on the diamond (1 0 0) surface: a theoretical study. Journal of Physics Condensed Matter, 2018, 30, 235002.	1.8	15
915	Self-organized multi-layered graphene–boron-doped diamond hybrid nanowalls for high-performance electron emission devices. Nanoscale, 2018, 10, 1345-1355.	5.6	57
916	Ultrawideâ€Bandgap Semiconductors: Research Opportunities and Challenges. Advanced Electronic Materials, 2018, 4, 1600501.	5.1	839
917	Key technologies for device fabrications and materials characterizations. , 2018, , 219-294.		2
918	Evolution of Granular Structure and the Enhancement of Electron Field Emission Properties of Nanocrystalline and Ultrananocrystalline Diamond Films Due to Plasma Treatment Process. ACS Applied Materials & Interfaces, 2018, 10, 28726-28735.	8.0	9
919	Field Emission Characteristics of Metal-Coated Nanocrystalline Diamond Films. ECS Journal of Solid State Science and Technology, 2018, 7, P369-P373.	1.8	3
920	Electron affinity of undoped and boron-doped polycrystalline diamond films. Diamond and Related Materials, 2018, 87, 208-214.	3.9	14
921	Diamond surface functionalization: from gemstone to photoelectrochemical applications. Journal of Materials Chemistry C, 2019, 7, 10134-10165.	5.5	62
922	sp ² /sp ³ Framework from Diamond Nanocrystals: A Key Bridge of Carbonaceous Structure to Carbocatalysis. ACS Catalysis, 2019, 9, 7494-7519.	11.2	86
923	Using electrostatic energy analyzer of a plane of symmetry for recording field emission spectra from carbon nanotube array. Journal of Physics: Conference Series, 2019, 1236, 012007.	0.4	0
924	Femtosecond Laser-Induced Electron Emission from Nanodiamond-Coated Tungsten Needle Tips. Physical Review Letters, 2019, 123, 146802.	7.8	22
925	Electronic Structure Tunability of Diamonds by Surface Functionalization. Journal of Physical Chemistry C, 2019, 123, 4168-4177.	3.1	20
926	Electron Emission Mechanism of Heavily Phosphorusâ€Doped Diamond with Oxidized Surface. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1801025.	1.8	0
927	Formation of nanocrystalline diamond cones by reactive ion etching in microwave plasma for enhancing field emission. Japanese Journal of Applied Physics, 2019, 58, 016003.	1.5	5
928	Diamond Nanowires: Theoretical Simulation and Experiments. Topics in Applied Physics, 2019, , 313-362.	0.8	1
929	Electron-affinity and surface-stability of aluminium-oxide terminated diamond surfaces. Diamond and Related Materials, 2019, 94, 137-145.	3.9	11
930	Oxygen ion implanted grains dominantly contributed electron field emission of nanocrystalline diamond films. Carbon, 2019, 145, 187-194.	10.3	9

#	Article	IF	CITATIONS
931	Electrical contact considerations for diamond electron emission diodes. Diamond and Related Materials, 2020, 101, 107607.	3.9	8
932	Structure and property study by first-principles calculations: Two-dimensional semi-hydrogenated-semi-oxidized bilayer BN (111)-oriented nanosheets. Diamond and Related Materials, 2020, 102, 107666.	3.9	8
933	Epitaxial Combination of Two-Dimensional Hexagonal Boron Nitride with Single-Crystalline Diamond Substrate. ACS Applied Materials & Interfaces, 2020, 12, 46466-46475.	8.0	13
934	Resistive switching in diamondoid thin films. Scientific Reports, 2020, 10, 19009.	3.3	2
935	Emittance evaluation of electron beams produced by photoemission. Nuclear Instruments & Methods in Physics Research B, 2020, 471, 100-104.	1.4	0
936	Geometric and electromagnetic characterization of electron beams produced by nanodiamond photocathodes. Journal of Instrumentation, 2020, 15, C04017-C04017.	1.2	0
937	Laser-Inscribed Diamond Waveguide Resonantly Coupled to Diamond Microsphere. Molecules, 2020, 25, 2698.	3.8	2
938	Electron emission from H-terminated diamond enhanced by polypyrrole grafting. Carbon, 2021, 176, 642-649.	10.3	8
939	A single crystal chemical vapour deposition diamond soft X-ray spectrometer. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 989, 164950.	1.6	5
940	Hard X-ray and <mml:math <br="" display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML">id="d1e445" altimg="si198.svg"><mml:mi>13</mml:mi></mml:math> -ray spectroscopy at high temperatures using a COTS SiC photodiode. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators. Spectrometers. Detectors and Associated Equipment. 2021. 985, 164663.	1.6	18
941	Dual Role of Adsorbent and Non-monotonic Transfer p-Doping of Diamond. ACS Applied Materials & Interfaces, 2021, 13, 4676-4681.	8.0	2
942	Negative electron affinity of adamantane on Cu(111). Journal of Physics Condensed Matter, 2021, 33, 135001.	1.8	1
943	Surface transfer doping of diamond: A review. Progress in Surface Science, 2021, 96, 100613.	8.3	80
944	Low-Defect Nanodiamonds and Graphene Nanoribbons Enhanced Electron Field Emission Properties in Ultrananocrystalline Diamond Films. ACS Applied Electronic Materials, 2021, 3, 1648-1655.	4.3	5
945	Experimental Studies of Electron Affinity and Work Function from Aluminium on Oxidized Diamond (110) and (111) Surfaces. Physica Status Solidi (B): Basic Research, 2021, 258, 2100027.	1.5	5
946	Tuning the Electronic Properties of Graphane via Hydroxylation: An Ab Initio Study. Journal of Physical Chemistry C, 2021, 125, 16316-16323.	3.1	3
948	Theory of Exchange-Correlation Effects in the Electronic Single- and Two-Particle Excitations of Covalent Crystals. , 1983, , 289-360.		4
949	Passive Diamond Electronic Devices. , 1995, , 371-442.		10

#	Article	IF	CITATIONS
950	Surfaces and Interfaces of Diamond. , 1995, , 31-60.		5
951	Electrical Contacts to Diamond. , 1995, , 319-348.		5
952	Physical data. Data in Science and Technology, 1991, , 5-159.	0.1	4
953	Physical data. , 1996, , 5-298.		8
954	Exploration into the Valence Band Structures of Organic Semiconductors by Angle-Resolved Photoelectron Spectroscopy. , 2015, , 367-404.		1
955	HYDROGEN-TERMINATED SURFACES OF HOMOEPITAXIAL DIAMONDS AND THEIR METAL CONTACT PROPERTIES. , 1994, , 161-166.		2
956	Fabrication of nano-sized platinum particles self-assembled on and in CVD diamond films. Applied Surface Science, 2004, 237, 489-494.	6.1	7
957	Electron beams produced by innovative photocathodes based on nanodiamond layers. Physical Review Accelerators and Beams, 2019, 22, .	1.6	6
958	Novel Nanostructured Carbon Nanotube Electron Sources. , 2012, , .		1
959	High-Voltage Vacuum Switch with a Diamond p–i–n Diode Using Negative Electron Affinity. Japanese Journal of Applied Physics, 2012, 51, 090113.	1.5	22
960	Detection of Aqueous Solvated Electrons Produced by Photoemission from Solids Using Transient Absorption Measurements. ACS Measurement Science Au, 2022, 2, 46-56.	4.4	8
961	Influence of Interface Metal on Field Emission from Carbon Film Hyomen Kagaku, 2000, 21, 502-506.	0.0	0
962	Field emission from Nanocomposite Carbon. , 2001, , 287-307.		0
963	Thin Film Carbon Nanotube Cathodes for Field Emission Flat Panel Display and Light Source Application. , 2002, , 67-81.		0
964	Recent Developments of Field-Emission Research. Highly Efficient Electron Emission from Chemical-Vapor-Deposited Single-Crystalline Diamond Hyomen Kagaku, 2002, 23, 31-37.	0.0	0
965	Industrial applications of diamond. Ganseki Kobutsu Kagaku, 2004, 33, 106-113.	0.1	0
966	Interface and Junction Properties. , 2006, , 189-214.		0
967	Effects of Slow Highly Charged Ion Impact Upon Highly Oriented Pyrolytic Graphite-Nanoscale Modification of Electronic States of Graphite Surface IEEJ Transactions on Electronics, Information and Systems, 2007, 127, 1329-1333.	0.2	0

#	Article	IF	Citations
968	Development of a Diamond Electron Source for Electron Optics Instruments and Evaluation of Energy Spread using the Source. Hyomen Kagaku, 2008, 29, 187-192.	0.0	0
969	Fe -INDUCED CHANGE OF ELECTRON AFFINITY AND SECONDARY ELECTRON YIELD ON DIAMOND. Advances in Synchrotron Radiation, 2008, 01, 59-65.	0.0	0
970	Very Strong Lattice Coupling in Diamond at Photon Energies up to 1.5 eV above the Bandgap. , 1985, , 1181-1184.		0
971	Diamond Particles on Silicon Tips: Preparation, Structure, and Field Emission Properties. , 1995, , 53-62.		0
972	Formation of Carbonaceous Layer on cBN Single Crystal Surface Utilizing Diamond CVD Conditions and Characterization of the Electron Emission Property. IEEJ Transactions on Fundamentals and Materials, 1995, 115, 82-86.	0.2	0
973	Electronic and Sensing Properties of Diamond. , 1995, , 143-160.		0
974	Advanced Applications of Diamond Electronics. , 1995, , 207-217.		0
975	Interpretation of secondary electron contrast from negative electron affinity diamond surfaces. Proceedings Annual Meeting Electron Microscopy Society of America, 1995, 53, 120-121.	0.0	0
976	ELECTRICAL PROPERTY AND STRUCTURE OF DIAMOND LIKE CARBON FILMS PREPARED BY IBAD. , 1996, , 757-760.		0
977	Electron Emitter Device of Semiconductor Diamond Thin Film. IEEJ Transactions on Fundamentals and Materials, 1997, 117, 233-238.	0.2	0
978	Cathodoluminescence measurement of CVD diamond surface. IEEJ Transactions on Fundamentals and Materials, 1998, 118, 1011-1014.	0.2	0
979	Emission Characteristics of Nitrogen-Doped Nanostructure Diamond Coating Synthesized in Glow Discharge Plasma. Metallofizika I Noveishie Tekhnologii, 2016, 37, 1487-1501.	0.5	0
981	Silicon nanowires as electron field emitters. Series in Materials Science and Engineering, 2017, , 435-454.	0.1	0
982	Investigation of ã€^100〉-oriented etching pattern on diamond coated with Ni and Cu. International Journal of Modern Physics B, 2020, 34, 2050155.	2.0	1
983	Capacitive effect in ultrafast laser-induced emission from low conductance diamond nanotips. New Journal of Physics, 2020, 22, 083055.	2.9	1
984	Negative electron affinity opens quantum well in MgO layers on Ag(100). Journal of Physics Condensed Matter, 2022, 34, 045001.	1.8	0
985	2.1.2 C (diamond phase). , 0, , 12-15.		1
986	Full versus quasiparticle self-consistency in vertex-corrected GW approaches. Physical Review B, 2022, 105, .	3.2	7

#	Article	IF	CITATIONS
988	Enhancement of Field Emission Properties in Ultra-Nano-Crystalline Diamond Films Upon 100 Kev Nickel Ion Implantation. SSRN Electronic Journal, 0, , .	0.4	0
989	Effective Work Functions of the Elements. Progress in Surface Science, 2022, 97, 100583.	8.3	38
990	Diamond—the ultimate material for exploring physics of spin-defects for quantum technologies and diamondtronics. Journal Physics D: Applied Physics, 2022, 55, 333002.	2.8	4
991	Normally-Off Oxidized Si-Terminated (111) Diamond MOSFETs via ALD-Al ₂ O ₃ Gate Insulator With Drain Current Density Over 300 mA/mm. IEEE Transactions on Electron Devices, 2022, 69, 4144-4152.	3.0	5
992	Capacitance–voltage characterization of metal–insulator–semiconductor capacitors formed on wide-bandgap semiconductors with deep dopants such as diamond. Journal of Applied Physics, 2022, 132, .	2.5	2
993	Experimental studies of electron affinity and work function from titanium on oxidised diamond (100) surfaces. Functional Diamond, 2022, 2, 103-111.	3.8	2
994	Plasma Postâ€Treatment Processâ€Induced Grain Coalescence to Improve the Electron Fieldâ€Emission Properties of Ultrananocrystalline Diamond Films. Physica Status Solidi (A) Applications and Materials Science, 2022, 219, .	1.8	2
995	Diamond p-FETs using two-dimensional hole gas for high frequency and high voltage complementary circuits. Journal Physics D: Applied Physics, 2023, 56, 053001.	2.8	2
996	Secondary electron emission and vacuum electronics. Journal of Applied Physics, 2023, 133, .	2.5	3
997	Anomalous intense coherent secondary photoemission from a perovskite oxide. Nature, 2023, 617, 493-498.	27.8	6
998	Work Function: Fundamentals, Measurement, Calculation, Engineering, and Applications. Physical Review Applied, 2023, 19, .	3.8	14
999	Electronic states of carbon materials. , 2024, , 702-715.		0
1000	Tubular Diamond as an Efficient Electron Field Emitter. ACS Applied Electronic Materials, 2023, 5, 3592-3602	4.3	1