Bacteriorhodopsin in liposomes. II. Experimental evider model

Biochimica Et Biophysica Acta - Bioenergetics 547, 561-582 DOI: 10.1016/0005-2728(79)90034-3

Citation Report

#	Article	IF	CITATIONS
1	Bacteriorhodopsin in liposomes. I. A description using irreversible thermodynamics. Biochimica Et Biophysica Acta - Bioenergetics, 1979, 547, 544-560.	1.0	42
2	Kinetic and Steady-State Investigations of Solute Accumulation in Bacterial Membranes by Continuously Monitoring the Radioactivity in the Effluent of Flow-Dialysis Experiments. FEBS Journal, 1980, 106, 431-437.	0.2	39
3	Linear relation between rate and thermodynamic force in enzyme-catalyzed reactions. Biochimica Et Biophysica Acta - Bioenergetics, 1980, 591, 488-493.	1.0	91
4	Control of the photocycle in bacteriorhodopsin by electrochemical gradients. FEBS Letters, 1980, 117, 8-12.	2.8	39
5	Quantitative agreement between the values for the light-induced ΔpH in Rhodopseudomonas sphaeroides measured with automated flow-dialysis and 31 P NMR. FEBS Letters, 1981, 123, 319-323.	2.8	41
6	The effect of ionophores and light intensity on the initial rate of proton uptake into bacteriorhodopsin liposomes can be quantitatively described by mosaic non-equilibrium thermodynamics. Biochimica Et Biophysica Acta - Bioenergetics, 1981, 637, 69-79.	1.0	14
7	Linear relations between proton current and pH gradient in bacteriorhodopsin liposomes. Biochemistry, 1981, 20, 5114-5123.	2.5	33
8	Mosaic nonequilibrium thermodynamics describes biological energy transduction Proceedings of the United States of America, 1981, 78, 3554-3558.	7.1	38
9	The Electrochemical Proton Gradient Generated by the Fumarate-Reductase System inEscherichia coli and Its Bioenergetic Implications. FEBS Journal, 1981, 113, 369-374.	0.2	24
10	Clarification of Factors Influencing the Nature and Magnitude of the Protonmotive Force in Bovine Heart Submitochondrial Particles. FEBS Journal, 1981, 116, 341-346.	0.2	17
11	MOLECULAR ASPECTS OF LIGHT-INDUCED UPTAKE AND RELEASE OF PROTONS BY PURPLE MEMBRANES. Photochemistry and Photobiology, 1981, 33, 579-585.	2.5	13
12	Bacteriorhodopsin in liposomes: Quantitative evaluation of ΔpH changes induced by variations of light intensity and conductivity parameters. Journal of Membrane Biology, 1981, 60, 95-104.	2.1	17
13	Effects of the medium composition on the components of the electrochemical proton gradient in Rhodopseudomonas sphaeroides. Archives of Microbiology, 1981, 130, 357-361.	2.2	16
14	THe proton-per-electron stoicheiometry of †site 1' of oxidative phosphorylation at high protonmotive force is close to 1.5. Biochemical Journal, 1982, 204, 515-523.	3.1	30
15	Compartmental analysis of light-induced proton movement in reconstituted bacteriorhodopsin vesicles. Biochemistry, 1982, 21, 3643-3650.	2.5	15
16	Membrane potential in a potassium transport-negative mutant of Escherichia coli K-12. The distribution of rubidium in the presence of valinomycin indicates a higher potential than that of the tetraphenylphosphonium cation. Biochimica Et Biophysica Acta - Bioenergetics, 1982, 681, 474-483.	1.0	68
17	The effect of â€~probe binding' on the quantitative determination of the proton-motive force in bacteria. Biochimica Et Biophysica Acta - Bioenergetics, 1982, 681, 85-94.	1.0	143
18	Thermodynamics of growth non-equilibrium thermodynamics of bacterial growth the phenomenological and the Mosaic approach. Biochimica Et Biophysica Acta - Reviews on Bioenergetics, 1982, 683, 181-220.	0.2	124

#	Article	IF	CITATIONS
19	A study of bacteriorhodopsin-containing proteoliposome incorporation into bimolecular lipid membranes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1983, 156, 327-346.	0.1	1
20	A study of bacteriorhodopsin-containing proteoliposome incorporation into bimolecular lipid membranes. Bioelectrochemistry, 1983, 11, 327-346.	1.0	11
21	Incorporation of bacteriorhodopsin into large unilamellar liposomes by reverse phase evaporation. Biochemical and Biophysical Research Communications, 1983, 111, 373-382.	2.1	110
22	Proton movement in reconstituted purple membrane of Halobacteria: Effects of pH and ionic composition of the medium. Archives of Biochemistry and Biophysics, 1983, 222, 464-472.	3.0	11
23	Phloretin - an uncoupler and an inhibitor of mitochondrial oxidative phosphorylation. Biochimica Et Biophysica Acta - Bioenergetics, 1983, 722, 219-225.	1.0	37
24	(5-demethyl)-Bacteriorhodopsin analogue: its formation and light-driven proton pump action. FEBS Letters, 1983, 154, 180-184.	2.8	14
25	Determination of the Proton Electrochemical Gradient across Biological Membranes. Current Topics in Bioenergetics, 1984, , 1-77.	2.7	117
26	membrane reconstitution of the enrgy-conserving enzymes of oxidative phosphorylation. Biochimica Et Biophysica Acta - Reviews on Bioenergetics, 1984, 768, 319-347.	0.2	62
27	Two (completely) rate-limiting steps in one metabolic pathway? The resolution of a paradox using bacteriorhodopsin liposomes and the control theory. Bioscience Reports, 1984, 4, 23-31.	2.4	19
28	Bacteriorhodopsins with chromophores modified at the beta-ionone site. Formation and light-driven action of the proton pump. FEBS Journal, 1984, 140, 173-176.	0.2	33
29	Keeping a light-driven proton pump under control. Trends in Biochemical Sciences, 1984, 9, 112-117.	7.5	49
30	Factors defining the functional coupling of bacteriorhodopsin and ATP synthase in liposomes. Biochimica Et Biophysica Acta - Bioenergetics, 1984, 767, 87-101.	1.0	25
31	Nigericin-induced transient changes in rat-liver mitochondria. Biochimica Et Biophysica Acta - Bioenergetics, 1984, 767, 231-239.	1.0	28
32	Chapter 11 Bacteriorhodopsin and related light-energy converters. New Comprehensive Biochemistry, 1984, 9, 315-350.	0.1	20
33	Chapter 1 Thermodynamic aspects of bioenergetics. New Comprehensive Biochemistry, 1984, , 1-27.	0.1	1
34	pH and salt effects on the slow intermediates of the bacteriorhodopsin photocycle. European Biophysics Journal, 1985, 12, 223.	2.2	6
35	Coupling between the bacteriorhodopsin photocycle and the protonmotive force in Halobacterium halobium cell envelope vesicles. III. Time-resolved increase in the transmembrane electric potential and modeling of the associated ion fluxes. Biophysical Journal, 1985, 48, 709-719.	0.5	12
36	Differential effects of triphenyltin and 8-azido-ATP on the ATP synthesis, ATP-Pi exchange, and ATP hydrolysis in liposomes containing ATP synthase and bacteriorhodopsin. Archives of Biochemistry and Biophysics, 1985, 241, 461-471.	3.0	21

CITATION REPORT

	CITATION REP	CITATION REPORT	
#	Article	IF	CITATIONS
37	A polyvinylchloride-membrane based anion selective electrode for continuous registration of ΔpH (interior alkaline) with salicylate as the indicator probe. Journal of Proteomics, 1985, 11, 83-93.	2.4	13
38	Use of the fluorescent pH probe pyranine to detect heterogeneous directions of proton movement in bacteriorhodopsin reconstituted large liposomes. FEBS Letters, 1985, 188, 101-106.	2.8	52
39	Analysis of passive and light-driven ion movements in large bacteriorhodopsin liposomes reconstituted by reverse-phase evaporation. 2. Influence of passive permeability and back-pressure effects upon light-induced proton uptake. Biochemistry, 1986, 25, 6723-6730.	2.5	33
40	Analysis of passive and light-driven ion movements in large bacteriorhodopsin liposomes reconstituted by reverse-phase evaporation. 1. Factors governing the passive proton permeability of the membrane. Biochemistry, 1986, 25, 6716-6722.	2.5	33
41	Comparison of ATP synthesis efficiencies in ATPase proteoliposomes of different complexities. Bioelectrochemistry, 1986, 16, 167-180.	1.0	8
42	The effect of trypsin treatment on the incorporation and energy-transducing properties of bacteriorhodopsin in liposomes. Biochimica Et Biophysica Acta - Bioenergetics, 1987, 891, 165-176.	1.0	4
43	Reaction centers fromRhodopseudomonas sphaeroides in reconstituted phospholipid vesicles. II. Light-induced proton translocation. Journal of Bioenergetics and Biomembranes, 1987, 19, 225-238.	2.3	5
44	Variation of efficiency with free-energy dissipation in models of biological energy transduction. Biophysical Chemistry, 1987, 28, 21-34.	2.8	17
45	Mechanisms of membrane protein insertion into liposomes during reconstitution procedures involving the use of detergents. 2. Incorporation of the light-driven proton pump bacteriorhodopsin. Biochemistry, 1988, 27, 2677-2688.	2.5	251
46	Structure and function of bacteriorhodopsin. Advances in Biophysics, 1988, 24, 123-175.	0.5	49
47	8,16―And 8,18â€methanobacteriorhodopsin. Synthesis and spectroscopy of 8,16―and 8,18â€methanoretinal and their interaction with bacterioopsin. Recueil Des Travaux Chimiques Des Pays-Bas, 1989, 108, 83-93.	0.0	19
48	On the evaluation of data from flow-dialysis experiments. Journal of Proteomics, 1989, 18, 53-64.	2.4	4
49	23Na-nuclear magnetic resonance study of ionophore-mediated cation exchange between two populations of liposomes. Biophysical Journal, 1993, 64, 1445-1455.	0.5	9
50	A monitoring system for energy transduction by bacteriorhodopsin liposomes. Journal of Proteomics, 1996, 33, 89-104.	2.4	2
51	Functional reconstitution of photosystem I reaction center from cyanobacteriumSynechocystis sp PCC6803 into liposomes using a new reconstitution procedure. Journal of Bioenergetics and Biomembranes, 1996, 28, 503-515.	2.3	17
52	Modelling the interrelation between the transmembrane potential and pH difference across membranes with electrogenic proton transport upon build-up of the proton-motive force. Bioelectrochemistry, 1998, 45, 181-192.	1.0	9
53	On the kinetics of voltage formation in purple membranes ofHalobacterium salinarium. FEBS Journal, 2000, 267, 5879-5890.	0.2	13
54	Pumping capacity of bacterial reaction centers and backpressure regulation of energy transduction. FEBS Journal, 2001, 268, 958-970.	0.2	11

ARTICLE IF CITATIONS # Improved purification for thermophilic F1F0 ATP synthase using n-dodecyl Î²-d-maltoside. Archives of 55 3.0 42 Biochemistry and Biophysics, 2002, 407, 117-124. Simplicity in complexity: the photosynthetic reaction center performs as a simple 0.2 V battery. FEBS Letters, 2002, 510, 105-107. 2.8 A new framework for the estimation of control parameters in metabolic pathways using lin-log 57 0.2 65 kinetics. FEBS Journal, 2004, 271, 3348-3359. The Influence of a Transmembrane pH Gradient on Protonation Probabilities of Bacteriorhodopsin: 58 The Structural Basis of the Back-Pressure Effect. Journal of Molecular Biology, 2004, 339, 571-589. Generation of an Electrochemical Proton Gradient by Lactate Efflux in Membrane Vesicles of 59 0.2 92 <i>Escherichia coli</i>. FEBS Journal, 1980, 111, 59-66. Artificial Organelle:Â ATP Synthesis from Cellular Mimetic Polymersomes. Nano Letters, 2005, 5, 9.1 2538-2542 Biosynthesis within a bubble architecture. Nanotechnology, 2006, 17, 2198-2202. 61 2.6 29 Electrogenic Proton-Pumping Capabilities of the M-Fast and M-Slow Photocycles of 2.5 Bacteriorhodopsin. Biochemistry, 2008, 47, 5396-5405. Analysis of light-induced transmembrane ion gradients and membrane potential in Photosystem I 63 2.8 10 protéoliposomes. Biophysical Chemistry, 2010, 146, 13-24. A description of biological energy transduction by "mechanistic thermodynamicsâ€, Recueil Des 64 Travaux Chimiques Des Pays-Bas, 1980, 99, 329-333. Potential applications of bacteriorhodopsin mutants. Bioengineered, 2012, 3, 326-328. 65 3.2 18 Bioelectronic Lightâ€Gated Transistors with Biologically Tunable Performance. Advanced Materials, 21.0 2015, 27, 831-836. Electrical properties, substrate specificity and optogenetic potential of the engineered light-driven 67 3.3 43 sodium pump eKR2. Scientific Reports, 2018, 8, 9316. Biomimetic Membranes with Transmembrane Proteins: State-of-the-Art in Transmembrane Protein 4.1 24 Applications. International Journal of Molecular Sciences, 2019, 20, 1437. Recent advances in bacteriorhodopsin-based energy harvesters and sensing devices. Nano Energy, 2021, 69 16.0 18 79, 105482. Thermodynamic Analysis of Biomembrane Energy Transduction., 1982, , 341-348. Reaction Centers from Rhodopseudomonas Sphaeroides in Reconstituted Phospholipid Vesicles. 71 3 Structural Properties and Light-Dependent Proton Translocation., 1984, , 367-370. Reconstitution of delipidated bacteriorhodopsin with endogenous polar lipids.. Journal of Biological Chemistry, 1981, 256, 8298-8305.

CITATION REPORT

	CITATION	tion Report		
#	Article	IF	CITATIONS	
73	Effect of ionophores on ruminal fermentation. Applied and Environmental Microbiology, 1989, 55, 1-6.	3.1	470	
74	Energy coupling of facilitated transport of inorganic ions in Rhodopseudomonas sphaeroides. Journal of Bacteriology, 1982, 150, 1183-1191.	2.2	33	
75	Electrochemical proton gradient and lactate concentration gradient in Streptococcus cremoris cells grown in batch culture. Journal of Bacteriology, 1982, 152, 682-686.	2.2	111	
76	Halophiles: Pharmaceutical Potential and Biotechnological Applications. , 2016, , 111-140.		3	
77	Light Induced Generation of a Proton Motive Force and Ca++-Transport in Membrane Vesicles of Streptococcus Cremoris Fused with Bacteriorhodopsin Proteoliposomes. , 1985, , 439-462.		1	