Noâ€Tillage Maize Production in Chemically Suppresse

Agronomy Journal 71, 101-105

DOI: 10.2134/agronj1979.00021962007100010026x

Citation Report

#	Article	IF	CITATIONS
1	Effects of cover crops on soil structure and on yield of subsequent arable crops grown under strip tillage on an eroded alfisol. Soil and Tillage Research, 1982, 2, 233-250.	5.6	90
2	Vegetative Techniques for Reducing Water Erosion of Cropland in the Southeastern United States. Advances in Agronomy, 1984, , 155-181.	5.2	19
3	The effect of reduced soil tillage on maize (Zea mays L.) grain yield in Eastern Crotia (Yugoslavia). Soil and Tillage Research, 1986, 7, 19-28.	5.6	7
4	Intercropping Corn in Perennial Cool-Season Grass on Irrigated Sandy Soil. Journal of Production Agriculture, 1989, 2, 42-46.	0.4	6
5	Conservation Tillage for Sustainable Agriculture: Tropics Versus Temperate Environments. Advances in Agronomy, 1989, 42, 85-197.	5.2	203
6	No-Tillage Corn Production in an Alfalfa-Grass Sod. Journal of Production Agriculture, 1990, 3, 71-76.	0.4	12
7	Effects of Corn Row Pattern and Intercropping with Legumes on Silage Corn. Journal of Production Agriculture, 1990, 3, 545-551.	0.4	5
8	Herbaceous Legumes as Nutrient Sources and Cover Crops in the Rwandan Highlands. Biological Agriculture and Horticulture, 1990, 7, 1-15.	1.0	10
9	Managing white clover living mulch for sweet corn production with partial rototilling. Renewable Agriculture and Food Systems, 1990, 5, 4-12.	0.5	42
10	Triazine herbicide fate in a no-tillage corn (Zea mays L.)-Crownvetch (Coronilla varia L.) "Living mulch―system. Agriculture, Ecosystems and Environment, 1990, 30, 281-293.	5.3	9
11	Nitrogen availability from alfalfa suppressed or killed for noâ€till production. Communications in Soil Science and Plant Analysis, 1991, 22, 1527-1535.	1.4	5
12	Broccoli Growth, Yield and Level of Aphid Infestation in Leguminous Living Mulches. Biological Agriculture and Horticulture, 1994, 10, 207-222.	1.0	35
13	Multiyear Use of Killed Strips for Forage and Grain Sorghum Production in a Tall Fescue Pasture. Journal of Production Agriculture, 1995, 8, 354-359.	0.4	4
14	Nitrogen requirements of corn (Zea mays L.) as affected by monocropping and intercropping with Alfalfa (Medicago sativa). Nutrient Cycling in Agroecosystems, 1996, 47, 149-156.	2.2	9
15	RUNOFF, EROSION, AND SOIL QUALITY CHARACTERISTICS OF A FORMER CONSERVATION RESERVE PROGRAM SITE IN SOUTHWESTERN OKLAHOMA. Applied Engineering in Agriculture, 1997, 13, 617-622.	0.7	16
16	Yield and quality components of silage maize in killed and live cover crop sods. European Journal of Agronomy, 1997, 6, 179-190.	4.1	38
17	No-till alfalfa stand termination strategies: Alfalfa control and wheat and barley production. Canadian Journal of Plant Science, 1999, 79, 71-83.	0.9	18
18	Tropical Eggplant (<i>Solanum melongena</i> L.) Production with a Buffelgrass (<i>Pennisetum) Tj ETQq1 1 0.78</i>	4314 rgBT	 Qverlock

#	Article	IF	CITATIONS
19	Living Mulch Forage Yield and Botanical Composition in a Corn-Soybean-Forage Rotation. Agronomy Journal, 2009, 101, 1249-1257.	1.8	13
20	Maize Water Use in Living Mulch Systems with Stover Removal. Crop Science, 2012, 52, 327-338.	1.8	12
21	Response of Continuous Maize with Stover Removal to Living Mulches. Agronomy Journal, 2012, 104, 917-925.	1.8	23
22	Living Mulch for Sustainable Maize Stover Biomass Harvest. Crop Science, 2017, 57, 3273-3290.	1.8	11
23	Regenerating Agricultural Landscapes with Perennial Groundcover for Intensive Crop Production. Agronomy, 2019, 9, 458.	3.0	34
24	Reduced herbicide rates for control of living mulch and weeds in fresh market tomato. Weed Technology, 2020, 34, 55-63.	0.9	7
25	Perennial cover crop influences on soil C and N and maize productivity. Nutrient Cycling in Agroecosystems, 2020, 116, 135-150.	2.2	6
26	Modeling perennial groundcover effects on annual maize grain crop growth with the Agricultural Production Systems slMulator. Agronomy Journal, 2020, 112, 1895-1910.	1.8	13
27	Integrated management of living mulches for weed control: A review. Weed Technology, 2021, 35, 856-868.	0.9	31
28	Living Mulches For Organic Farming Systems. HortTechnology, 2000, 10, 692-698.	0.9	28
29	Use of Herbicides and Plant Growth Regulators to Suppress Italian Ryegrass Growth. HortTechnology, 2000, 10, 773-776.	0.9	1
30	Effect of Tillage System and Fertilizer Type on the Forage Yield and Quality of Italian Ryegrass. Journal of the Korean Society of Grassland and Forage Science, 2009, 29, 313-320.	0.4	1
32	Evaluating Strip and No-Till Maintenance of Perennial Groundcovers for Annual Grain Production. Crops, 2022, 2, 268-286.	1.4	0
33	Evaluating Chemical Suppression Treatments to Alter the Red: Far-Red Ratio in Perennial Groundcovers for Maize Production. Agronomy, 2022, 12, 1854.	3.0	1