Effects of Municipal Wastewater Effluent and Cutting M Yield of Eight Perennial Forages 1

Agronomy Journal 71, 650-658

DOI: 10.2134/agronj1979.00021962007100040032x

Citation Report

#	Article	IF	CITATIONS
1	Biomass yield, fiber composition and persistence of cool-season perennial grasses. Bioresource Technology, 1986, 10, 175-186.	0.3	16
2	Glyceria maxima for wastewater nutrient removal and forage production. Biological Wastes, 1989, 27, 29-42.	0.2	15
3	The Potential of Quackgrass for Forage Production. Journal of Production Agriculture, 1990, 3, 256-259.	0.4	17
4	Drought Effects on Yield and Quality of Perennial Grasses in the North Central United States. Journal of Production Agriculture, 1992, 5, 556-561.	0.4	56
5	Harvest Management Effects on Dry Matter Yield, Forage Quality, and Economic Return of Four Cool-Season Grasses. Journal of Production Agriculture, 1998, 11, 252-255.	0.4	7
6	Reed Canarygrass Yield, Crude Protein, and Nitrate N Response to Fertilizer N. Journal of Production Agriculture, 1999, 12, 465-471.	0.4	18
7	Seasonal Yield Distribution of Coolâ€Season Grasses following Winter Defoliation. Agronomy Journal, 2000, 92, 974-980.	1.8	33
8	Cutting frequency and stubble height of reed canary grass (Phalaris arundinacea L.): influence on quality and quantity of biomass for biogas production. Grass and Forage Science, 2002, 57, 389-394.	2.9	31
9	Growth of Phragmites australis and Phalaris arundinacea in constructed wetlands for wastewater treatment in the Czech Republic. Ecological Engineering, 2005, 25, 606-621.	3.6	146
10	Chemical composition and response to dilute-acid pretreatment and enzymatic saccharification of alfalfa, reed canarygrass, and switchgrass. Biomass and Bioenergy, 2006, 30, 880-891.	5.7	440
11	Reed Canarygrass Forage Yield and Nutrient Uptake on a Yearâ€round Wastewater Application Site. Journal of Agronomy and Crop Science, 2008, 194, 465-469.	3.5	11
13	Biomass Yield of Naturalized Populations and Cultivars of Reed Canary Grass. Bioenergy Research, 2009, 2, 165-173.	3.9	31
14	The potential use of reed canarygrass (<i>Phalaris arundinacea</i> L.) as a biofuel crop. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2009, 59, 1-18.	0.6	24
15	The Benefits of Harvesting Wetland Invaders for Cellulosic Biofuel: An Ecosystem Services Perspective. Restoration Ecology, 2010, 18, 789-795.	2.9	25
16	Heavy metals inPhalaris arundinaceagrowing in a constructed wetland treating municipal sewage. International Journal of Environmental Analytical Chemistry, 2011, 91, 753-767.	3.3	6
18	Genetic Variability for Biofuel Traits in a Circumglobal Reed Canarygrass Collection. Crop Science, 2013, 53, 524-531.	1.8	5
19	Bluegrasses. Agronomy, 0, , 665-690.	0.2	8
20	Reed Canarygrass and Other Phalaris Species. Agronomy, 0, , 569-604.	0.2	20

#	Article	IF	CITATIONS
21	Designing Selection Criteria for Use of Reed Canarygrass as a Bioenergy Feedstock. Crop Science, 2015, 55, 2130-2137.	1.8	1
22	Bromegrasses. Agronomy, 0, , 535-567.	0.2	41
23	Plant Secondary Metabolites in Alfalfa, Birdsfoot Trefoil, Reed Canarygrass, and Tall Fescue Unaffected by Two Different Nitrogen Sources. Crop Science, 2017, 57, 964-970.	1.8	10
24	Treatment of a small stream impacted by agricultural drainage in a semi-constructed wetland. Science of the Total Environment, 2018, 643, 52-62.	8.0	23
26	Improvement of Perennial Forage Species as Feedstock for Bioenergy., 2008,, 347-376.		15
27	Impact of Harvest Management on Forage Production and Nutrient Removal by Smooth Bromegrass on a Vegetated Treatment Area. American Journal of Plant Sciences, 2015, 06, 1550-1559.	0.8	1
28	The effect of aboveground biomass harvesting on nutrients removal in a constructed wetland treating municipal sewage. Ecological Engineering, 2023, 190, 106918.	3.6	2