Cyclic Change in Late Triassic Lacustrine Communities

Science 201, 729-733 DOI: 10.1126/science.201.4357.729

Citation Report

#	Article	IF	CITATIONS
1	Insect Pollination: A Paleontological Perspective. BioScience, 1979, 29, 102-108.	4.9	72
2	Eocene lake environments: Depth and distance-from-shore variation in fish, insect, and plant assemblages. Palaeogeography, Palaeoclimatology, Palaeoecology, 1980, 32, 21-44.	2.3	64
3	Lower Eocene alluvial paleosols (Willwood Formation, Northwest Wyoming, U.S.A.) and their significance for paleoecology, paleoclimatology, and basin analysis. Palaeogeography, Palaeoclimatology, Palaeoecology, 1981, 34, 1-30.	2.3	151
4	A radiometric time scale of the Triassic. Journal of the Geological Society of Australia, 1981, 28, 107-121.	0.6	28
5	Zooplankton Fecal Pellets Link Fossil Fuel and Phosphate Deposits. Science, 1981, 212, 931-933.	12.6	67
7	Late Triassic—Liassic paleoclimatology of the photo-central North Atlantic rift system. Palaeogeography, Palaeoclimatology, Palaeoecology, 1982, 40, 13-30.	2.3	64
8	Some Notable Fossils in Virginia. Rocks and Minerals, 1985, 60, 171-178.	0.1	0
9	Palaeoecology and sedimentology of the Achanarras fish bed of the Middle Old Red Sandstone, Scotland. Transactions of the Royal Society of Edinburgh: Earth Sciences, 1986, 77, 21-46.	0.7	100
10	The Paleobiological and Paleoenvironmental Importance of Dinosaur Footprints. Palaios, 1986, 1, 37.	1.3	87
11	A 40-Million-Year Lake Record of Early Mesozoic Orbital Climatic Forcing. Science, 1986, 234, 842-848.	12.6	348
12	Ichnology: Sedimentological use of dinosaurs. Nature, 1986, 321, 732-732.	27.8	9
13	Lakes as Laboratories of Evolution: Endemic Fishes and Environmental Cyclicity. Palaios, 1987, 2, 446.	1.3	20
14	Dinosaur tracks symposium signals a renaissance in vertebrate ichnology. Paleobiology, 1987, 13, 246-252.	2.0	15
15	Evolution of the freshwater ecosystem: The fossil record. Palaeogeography, Palaeoclimatology, Palaeoecology, 1988, 62, 1-214.	2.3	164
16	The historical ecology of aquatic insects: An overview. Palaeogeography, Palaeoclimatology, Palaeoecology, 1988, 62, 477-492.	2.3	68
17	Paleoecology and sedimentology of a late triassic lake, culpeper basin, Virginia, U.S.A. Palaeogeography, Palaeoclimatology, Palaeoecology, 1988, 62, 593-608.	2.3	21
18	Reconstruction of ancient lake environments using both autochthonous and allochthonous fossils. Palaeogeography, Palaeoclimatology, Palaeoecology, 1988, 62, 609-623.	2.3	57
19	Paleontology and paleoecology of the Newark Supergroup (early Mesozoic, eastern North America). Developments in Geotectonics, 1988, 22, 185-230.	0.3	37

ATION RED

ARTICLE IF CITATIONS # Mesozoic history and neontology of Lepidoptera in relation to Trichoptera, Mecoptera, and 20 0.8 17 angiosperms. Journal of Paleontology, 1988, 62, 251-258. The implications of function on the origin and homologies of the dipterous wing. Systematic 106 Entomology, 1989, 14, 507-520. A review of the taphonomy of plant remains in lacustrine sediments. Review of Palaeobotany and 22 1.5 48 Palynology, 1989, 58, 33-46. Toward a model for open- and closed-basin deposition in ancient lacustrine sequences: The Newark Supergroup (Triassic-Jurassic), Eastern North America. Palaeogeography, Palaeoclimatology, Palaeoecology, 1989, 70, 29-51. EVOLUTIONARY NOVELTY AND ATAVISM IN THE <i>SEMIONOTUS</i>COMPLEX: RELAXED SELECTION DURING COLONIZATION OF AN EXPANDING LAKE. Evolution; International Journal of Organic Evolution, 1990, 24 2.3 25 44, 71-85. Evolutionary Novelty and Atavism in the Semionotus Complex: Relaxed Selection During Colonization 2.3 of an Expanding Lake. Evolution; International Journal of Organic Evolution, 1990, 44, 71. The Princeton chert: Evidence for in situ aquatic plants. Review of Palaeobotany and Palynology, 1991, 26 1.5 54 70, 173-185. Morphology of the<i>Semionotus elegans</i>species group from the Early Jurassic part of the Newark Supergroup of eastern North America with comments on the Family Semionotidae (Neopterygii). 1.0 Journal of Vertebrate Paleontology, 1991, 11, 269-292. Angiosperm-like pollen from the ammonite-dated Oxfordian (Upper Jurassic) of France. Review of 28 1.5 35 Palaeobotany and Palynology, 1992, 71, 269-294. Grazing trails formed by soldier fly larvae (Diptera: Stratiomyidae) and their paleoenvironmental and paleoecological implications for the fossil record. Ichnos, 1996, 4, 163-167. Biogeographic and stratigraphic evidence for rapid speciation in semionotid fishes. Paleobiology, 1996, 30 2.0 35 22, 34-48. A Triassic LagerstÃtte from eastern North America. Nature, 1996, 380, 615-619. STRATIGRAPHIC RECORD OF THE EARLY MESOZOIC BREAKUP OF PANGEA IN THE LAURASIA-GONDWANA RIFT 32 11.0 263 SYSTEM. Annual Review of Earth and Planetary Sciences, 1997, 25, 337-401. INSECT MOUTHPARTS: Ascertaining the Paleobiology of Insect Feeding Strategies. Annual Review of Ecology, Evolution, and Systematics, 1997, 28, 153-193. 34 6.7 228 Evolution and Phylogeny of the Diptera: A Molecular Phylogenetic Analysis Using 28S rDNA 35 100 5.6 Sequences. Systematic Biology, 1997, 46, 674-698. Upper Triassic Pacific vicariance as a test of geological theories. Journal of Biogeography, 1998, 25, 203-211. Using fish taphonomy to reconstruct the environment of ancient Shanwang Lake. Advances in 37 7 2.7 Ecological Research, 2000, , 483-496. Surijoka Lutevensis nov. sp.: The first glosselytrodea (insecta) from the upper permian of France 38 1.4

CITATION REPORT

(Lodà ve basin). Geobios, 2001, 34, 405-413.

CITATION REPORT

#	Article	IF	CITATIONS
39	Sedimentation through time. Neoproterozoic-Cambrian Tectonics, Global Change and Evolution: A Focus on South Western Gondwana, 2004, , 593-680.	0.2	4
40	MESOZOIC THRIPS AND EARLY EVOLUTION OF THE ORDER THYSANOPTERA (INSECTA). Journal of Paleontology, 2004, 78, 941-952.	0.8	49
41	The structure and phylogenetic significance of the conifer Pseudohirmerella delawarensis nov. comb. from the Upper Triassic of North America. Review of Palaeobotany and Palynology, 2004, 129, 251-263.	1.5	22
42	Animal-substrate interactions in freshwater environments: applications of ichnology in facies and sequence stratigraphic analysis of fluvio-lacustrine successions. Geological Society Special Publication, 2004, 228, 311-333.	1.3	76
44	QUANTITATIVE TAPHONOMY OF A TRIASSIC REPTILE TANYTRACHELOS AHYNIS FROM THE COW BRANCH FORMATION, DAN RIVER BASIN, SOLITE QUARRY, VIRGINIA. Palaios, 2007, 22, 598-611.	1.3	12
45	Invertebrate Ichnology of Continental Freshwater Environments. , 2007, , 285-323.		55
46	How Time Flies for Flies: Diverse Diptera from the Triassic of Virginia and Early Radiation of the Order. American Museum Novitates, 2007, 3572, 1-39.	0.6	99
47	Insects of the Crato Formation. , 2007, , 142-426.		2
48	Use of fine-scale stratigraphy and chemostratigraphy to evaluate conditions of deposition and preservation of a Triassic Lagerstäte, south-central Virginia. Journal of Paleolimnology, 2010, 44, 645-666.	1.6	14
49	Triassic climates — State of the art and perspectives. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 290, 1-10.	2.3	314
50	A Historical Conspiracy: Competition, Opportunity, and the Emergence of Direction in History. Cliodynamics, 2011, 2, .	0.1	0
52	<i>Leehermania prorova</i> , the Earliest Staphyliniform Beetle, from the Late Triassic of Virginia (Coleoptera: Staphylinidae). American Museum Novitates, 2012, 3761, 1-28.	0.6	44
53	Diverse new microvertebrate assemblage from the Upper Triassic Cumnock Formation, Sanford Subbasin, North Carolina, USA. Journal of Paleontology, 2012, 86, 368-390.	0.8	24
54	Sedimentation patterns during the Precambrian: A unique record?. Marine and Petroleum Geology, 2012, 33, 34-68.	3.3	82
55	Stratigraphy, correlation, depositional environments, and cyclicity of the Early Cretaceous Yixian and ?Jurassic-Cretaceous Tuchengzi formations in the Sihetun area (NE China) based on three continuous cores. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 464, 110-133.	2.3	20
56	The oldest predaceous water bugs (Insecta, Heteroptera, Belostomatidae), with implications for paleolimnology of the Triassic Cow Branch Formation. Journal of Paleontology, 2017, 91, 1166-1177.	0.8	11
57	Profile of Paul E. Olsen. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10611-10613.	7.1	0
58	A Gondwanan record of the extinct genus Cretobibio (Diptera: Bibionidae). Palaeoentomology, 2021, 4,	1.0	1

#	Article	IF	CITATIONS
59	The paleoclimatic context for South American Triassic vertebrate evolution. Journal of South American Earth Sciences, 2021, 110, 103321.	1.4	21
60	Post-Paleozoic activity. , 0, , 319-374.		9
61	Milankovitch Cycles from Fourier Analysis of Logs from Sites 865 and 866. , 0, , .		1
62	Fossil terrestrial ecosystems. , 1998, , 358-396.		0
63	Triassic paleoclimate and paleofloristic trends of southwestern Gondwana (Argentina). Journal of South American Earth Sciences, 2022, 116, 103852.	1.4	5
64	Quantitative Evidence for Arctic Continental Freezing in a High CO ₂ World: Junggar Basin, NW China. Geological Society Special Publication, 2024, 538, .	1.3	0

CITATION REPORT