Oscillatory kinetics of the peroxidase-oxidase reaction is theoretical studies

Biochimica Et Biophysica Acta - Biomembranes 523, 321-334 DOI: 10.1016/0005-2744(78)90035-9

Citation Report

#	Article	IF	CITATIONS
1	The oscillating peroxidase-oxidase reaction in an open system Analysis of the reaction mechanism. Biochimica Et Biophysica Acta - Biomembranes, 1978, 527, 212-220.	2.6	14
2	Intermediate spin-states in one-electron reduction of oxygen-hemoprotein complexes at low temperature. FEBS Letters, 1979, 106, 213-218.	2.8	42
3	BISTABILITY, OSCILLATION, AND CHAOS IN AN ENZYME REACTION. Annals of the New York Academy of Sciences, 1979, 316, 623-637.	3.8	66
4	Hysteresis, Oscillations, and Pattern Formation in Immobilized Enzyme Systems. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1980, 84, 358-362.	0.9	5
5	The formation of hydrogen cyanide from histidine in the presence of amino acid oxidase and peroxidase. Biochimica Et Biophysica Acta - Biomembranes, 1980, 611, 11-26.	2.6	17
6	Horseradish Peroxidase Enzyme Electrodes for Nadh and Nadph. Analytical Letters, 1982, 15, 1479-1491.	1.8	9
7	Interaction of the Superoxide Radical With Peroxidase and with Other Iron Complexes. , 1982, , 733-744.		0
8	Electrical excitability of artificial enzyme membranes. Biophysical Chemistry, 1982, 16, 139-143.	2.8	15
9	Electrical excitability of artificial enzyme membranes. Biophysical Chemistry, 1982, 16, 153-157.	2.8	26
10	Experimental Evidence and Theoretical Discussion for Long-Term Oscillations of Phosphofructokinase in a Compartmentalized System. FEBS Journal, 1983, 131, 183-187.	0.2	14
11	An enzyme reaction with a strange attractor. Physics Letters, Section A: General, Atomic and Solid State Physics, 1983, 94, 454-457.	2.1	71
12	Multiple steady states and oscillatory behavior of a compartmentalized phosphofructokinase system Proceedings of the National Academy of Sciences of the United States of America, 1983, 80, 5455-5459.	7.1	21
13	Computer simulation of sustained oscillations in peroxidase-oxidase reaction. Biophysical Chemistry, 1984, 19, 259-264.	2.8	33
14	TRIPLET ENERGY TRANSFER TO CHLOROPLASTS FROM PEROXIDASEâ€GENERATED EXCITED ALIPHATIC ALIPHATIC ALIPHYDES. Photochemistry and Photobiology, 1984, 40, 127-131.	2.5	25
15	Chaotic phenomena. Bulletin of Mathematical Biology, 1985, 47, 697-738.	1.9	21
16	Enzyme technology and gas phase catalysis: Alcohol dehydrogenase example. Biotechnology Letters, 1986, 8, 783-784.	2.2	47
17	Bistability in chemical reaction networks: Theory and application to the peroxidase–oxidase reaction. Journal of Chemical Physics, 1987, 87, 3461-3470.	3.0	49
18	Multiple steady states, complex oscillations, and the devil's staircase in the peroxidase–oxidase reaction. Journal of Chemical Physics, 1987, 87, 5765-5771.	3.0	39

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
19	[50] Oscillatory phenomena in immobilized enzyme systems. Methods in Enzymology, 1987, 135, 554-569.	1.0	4
20	Free radicals in iron-containing systems. Free Radical Biology and Medicine, 1987, 3, 405-421.	2.9	204
22	Fast–slow variable analysis of the transition to mixedâ€mode oscillations and chaos in the peroxidase reaction. Journal of Chemical Physics, 1988, 89, 6506-6514.	3.0	31
23	Dynamic elements of mixedâ€mode oscillations and chaos in a peroxidase–oxidase model network. Journal of Chemical Physics, 1989, 90, 4168-4175.	3.0	27
24	Theoretical investigation of the peroxidase-oxidase chemical oscillator for quantitative enzyme analysis. Analytica Chimica Acta, 1990, 237, 381-390.	5.4	8
25	A new model for oscillations in the peroxidase-oxidase reaction. Biophysical Chemistry, 1991, 40, 189-195.	2.8	13
26	The quasiperiodic route to chaos in a model of the peroxidase–oxidase reaction. Journal of Chemical Physics, 1991, 94, 1388-1396.	3.0	61
27	Asymptotically stable limit cycles in a model of glycolytic oscillations. Chemical Physics Letters, 1993, 208, 139-142.	2.6	8
28	Nonlinear forecasting of non-uniform chaotic attractors in an enzyme reaction. Philosophical Transactions of the Royal Society: Physical and Engineering Sciences, 1994, 348, 421-430.	1.0	0
29	Inhibition of enzymatic indole-3-acetic acid oxidation by phenols. Phytochemistry, 1994, 36, 263-267.	2.9	14
30	A hydrogen peroxide assay based on the peroxidase-oxidase reaction. Numerical simulation of the reaction mechanism. FEBS Journal, 1994, 223, 489-496.	0.2	6
31	Analytical chemistry of nonlinear systems. Mikrochimica Acta, 1995, 118, 1-42.	5.0	9
32	Mixed-mode oscillations and homoclinic chaos in an enzyme reaction. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 2857.	1.7	63
33	Oscillations in the peroxidase-oxidase reaction: a comparison of different peroxidases. Biochimica Et Biophysica Acta - General Subjects, 1996, 1289, 397-403.	2.4	26
34	Quasiperiodicity in a detailed model of the peroxidase–oxidase reaction. Journal of Chemical Physics, 1996, 105, 10849-10859.	3.0	23
35	Further Refinements of the Peroxidaseâ^'Oxidase Oscillator Mechanism:  Mixed-Mode Oscillations and Chaos. The Journal of Physical Chemistry, 1996, 100, 18924-18930.	2.9	20
36	Oxygen Influence on Complex Oscillations in a Closed Belousovâ^'Zhabotinsky Reaction. The Journal of Physical Chemistry, 1996, 100, 17593-17598.	2.9	33
37	The Peroxidaseâ^'Oxidase Oscillator and Its Constituent Chemistries. Chemical Reviews, 1997, 97, 739-756.	47.7	102

ARTICLE IF CITATIONS # Persistent Behavior in a Phase-shift Sequence of Periodical Biochemical Oscillations. Bulletin of 38 1.9 6 Mathematical Biology, 1998, 60, 689-702. Oscillations in peroxidase-catalyzed reactions and their potential function in vivo. Biophysical 2.8 Chemistry, 1998, 72, 63-72. 40 Routes to chaos in the peroxidase-oxidase reaction., 1999, , 252-272. 3 On the role of methylene blue in the oscillating peroxidase–oxidase reaction. Physical Chemistry Chemical Physics, 2000, 2, 1685-1692. Oscillatory dynamics protect enzymes and possibly cells against toxic substances. Faraday 42 3.2 29 Discussions, 2002, 120, 215-227. The effect of diffusion on the Hopf-bifurcation in a model glycolytic reaction exhibiting oscillations. Chemical Physics Letters, 2002, 357, 341-345. 2.6 Mechanism of protection of peroxidase activity by oscillatory dynamics. FEBS Journal, 2003, 270, 44 0.2 31 2796-2804. Response of the Peroxidase-Oxidase Oscillator to Light Is Controlled by MB+â[°]NADH Photochemistry. 2.6 Journal of Physical Chemistry B, 2003, 107, 8637-8642. Mechanism of melatonin-induced oscillations in the peroxidase–oxidase reaction. Archives of 46 3.0 7 Biochemistry and Biophysics, 2003, 410, 287-295. Human myeloperoxidase catalyzes an oscillating peroxidase–oxidase reaction. Archives of Biochemistry and Biophysics, 2004, 431, 55-62 No music without melody: How to understand biochemical systems by understanding their dynamics. , 48 0 0, , 81-93. Polarographic Measurement of Steady State Kinetics of Oxygen Uptake by Biochemical Samples. 59 Methods of Biochemical Analysis, 2006, 26, 47-77. Biofilm Effects on the Peroxidaseâ[°]Oxidase Reaction. Journal of Physical Chemistry B, 2006, 110, 50 2.6 8 8100-8104. Oscillatory reaction of catalase wrapped by liposome. Biophysical Chemistry, 2006, 124, 100-105. 2.8 Chemical Instabilities. Advances in Chemical Physics, 2007, , 217-268. 52 0.3 20 Design principles of biochemical oscillators. Nature Reviews Molecular Cell Biology, 2008, 9, 981-991. 970 PPARs, Cardiovascular Metabolism, and Function: Near- or Far-from-Equilibrium Pathways. PPAR 54 2.4 24 Research, 2010, 2010, 1-10. Dynamics of the reaction glucose-catalase-glucose oxidase-hydrogen peroxide. Russian Journal of Physical Chemistry A, 2011, 85, 2322-2326.

CITATION REPORT

		CITATION REPORT	
#	Article	IF	Citations
56	Mixed-Mode Oscillations with Multiple Time Scales. SIAM Review, 2012, 54, 211-288.	9.5	431
57	Oscillations in glycolysis in Saccharomyces cerevisiae: The role of autocatalysis and intracellular ATPase activity. Biophysical Chemistry, 2012, 165-166, 39-47.	2.8	10
58	Coupling switches and oscillators as a means to shape cellular signals in biomolecular systems. Chaos, Solitons and Fractals, 2013, 50, 115-126.	5.1	3
59	Effects of Tyramine and 4-Aminophenol on the Oscillating Peroxidase–Oxidase Reaction. Journal of Physical Chemistry B, 2014, 118, 18-25.	2.6	1
60	Multiscale Geometry of the Olsen Model and Non-classical Relaxation Oscillations. Journal of Nonlinear Science, 2015, 25, 583-629.	2.1	29
61	Build to understand: synthetic approaches to biology. Integrative Biology (United Kingdom), 2016, 8, 394-408.	1.3	26
62	Influence of Oscillatory Enzyme Activity on the Reaction Kinetics: Mathematical Model. Journal of Computational Biology, 2017, 24, 1065-1070.	1.6	3
63	Identifying the Oscillatory Mechanism of the Glucose Oxidase–Catalase Coupled Enzyme System. Journal of Physical Chemistry A, 2017, 121, 7518-7523.	2.5	5
64	Evolution of Selfâ€Propelled Objects: From the Viewpoint of Nonlinear Science. Chemistry - A European Journal, 2018, 24, 6308-6324.	3.3	68
65	Systems and synthetic biology approaches in understanding biological oscillators. Quantitative Biology, 2018, 6, 1-14.	0.5	25
66	An appreciation of the prescience of Don Gilbert (1930–2011): master of the theory and experimental unravelling of biochemical and cellular oscillatory dynamics. Cell Biology International, 2020, 44, 1283-1298.	3.0	3
67	Complexity of a peroxidase–oxidase reaction model. Physical Chemistry Chemical Physics, 2021, 23, 1943-1955.	2.8	12
68	Chaos in the peroxidase–oxidase oscillator. Chaos, 2021, 31, 013119.	2.5	12
69	Dynamics of Rössler Prototype-4 System: Analytical and Numerical Investigation. Mathematics, 2021, 9, 352.	2.2	2
70	Patterns of Activity in a Reduced Ionic Model of a Cell from the Rabbit Sinoatrial Node. , 1987, , 5-12.		3
71	Oscillations. Applied Mathematical Sciences (Switzerland), 2015, , 397-430.	0.8	2
72	The Enzyme and the Strange Attractor — Comparisons of Experimental and Numerical Data for an Enzyme Reaction with Chaotic Motion. Springer Series in Synergetics, 1984, , 116-123.	0.4	7
73	ĐœĐ•ĐЕЖЕĐ'Đ•ĐžĐ¡ĐОВЕD Đ £ĐКЦІОĐĐ£Đ'ĐĐĐĐ [~] БІОЛОГІЧĐĐ [~] Đ¥ ĐžĐ¡Đ¦Đ [~] Đ»Đ [~] Đ¢Đ	žĐĐơ ,Đ' â€	:" Đ¢ĐĐ~Đ"Đ

		CITATION REPORT	
#	Article	IF	CITATIONS
74	Complexity in subnetworks of a peroxidase $\hat{a} \in \hat{a}$ oxidase reaction model. Chaos, 2022, 32, .	2.5	4
75	Turing Instabilities and Rotating Spiral Waves in Glycolytic Processes. Bulletin of Mathematical Biology, 2022, 84, .	1.9	1
76	Complex dynamics in an unexplored simple model of the peroxidase–oxidase reaction. Chaos, 20	23, 33, . 2.5	2