Comparing national greenhouse gas budgets reported in atmospheric inversions

Earth System Science Data 14, 1639-1675 DOI: 10.5194/essd-14-1639-2022

Citation Report

#	Article	IF	CITATIONS
2	Quantification of methane emissions from hotspots and during COVID-19 using a global atmospheric inversion. Atmospheric Chemistry and Physics, 2022, 22, 5961-5981.	4.9	11
3	The 2019 methane budget and uncertainties at 1° resolution and each country through Bayesian integration Of GOSAT total column methane data and a priori inventory estimates. Atmospheric Chemistry and Physics, 2022, 22, 6811-6841.	4.9	24
4	Global patterns of daily CO2 emissions reductions in the first year of COVID-19. Nature Geoscience, 2022, 15, 615-620.	12.9	46
5	Quantifying methane emissions from the global scale down to point sources using satellite observations of atmospheric methane. Atmospheric Chemistry and Physics, 2022, 22, 9617-9646.	4.9	62
6	Methane emissions from China: a high-resolution inversion of TROPOMI satellite observations. Atmospheric Chemistry and Physics, 2022, 22, 10809-10826.	4.9	27
7	Toward a long-term atmospheric CO2 inversion for elucidating natural carbon fluxes: technical notes of NISMON-CO2 v2021.1. Progress in Earth and Planetary Science, 2022, 9, .	3.0	4
8	Carbon Monitor Cities near-real-time daily estimates of CO2 emissions from 1500 cities worldwide. Scientific Data, 2022, 9, .	5.3	20
9	Space-based Earth observation in support of the UNFCCC Paris Agreement. Frontiers in Environmental Science, 0, 10, .	3.3	6
10	High-resolution inverse modelling of European CH ₄ emissions using the novel FLEXPART-COSMO TM5 4DVAR inverse modelling system. Atmospheric Chemistry and Physics, 2022, 22, 13243-13268.	4.9	7
11	A carbon-monitoring strategy through near-real–time data and space technology. Innovation(China), 2023, 4, 100346.	9.1	4
12	Toward Highâ€Resolution Global Atmospheric Inverse Modeling Using Graphics Accelerators. Geophysical Research Letters, 2023, 50, .	4.0	4
13	Satellite-based global maps are rarely used in forest reference levels submitted to the UNFCCC. Environmental Research Letters, 2023, 18, 034021.	5.2	5
14	Field-Layer Vegetation and Water Table Level as a Proxy of CO2 Exchange in the West Siberian Boreal Bog. Land, 2023, 12, 566.	2.9	2
15	Decarbonization of the European natural gas grid using hydrogen and methane biologically produced from organic waste: A critical overview. Renewable Energy, 2023, 206, 386-396.	8.9	9
16	Editorial: Science, data and society. Earth System Science Data, 2023, 15, 617-619.	9.9	1
18	National CO ₂ budgets (2015–2020) inferred from atmospheric CO ₂ observations in support of the global stocktake. Earth System Science Data, 2023, 15, 963-1004.	9.9	25
19	Harmonising the land-use flux estimates of global models and national inventories for 2000–2020. Earth System Science Data, 2023, 15, 1093-1114.	9.9	15
20	Integrating terrestrial and aquatic ecosystems to constrain estimates of land-atmosphere carbon exchange. Nature Communications, 2023, 14, .	12.8	13

#	Article	IF	CITATIONS
21	A regional integrated assessment of the impacts of climate change and of the potential adaptation avenues for Quebec's forests. Canadian Journal of Forest Research, 2023, 53, 556-578.	1.7	3
22	CarbonMonitor-Power near-real-time monitoring of global power generation on hourly to daily scales. Scientific Data, 2023, 10, .	5.3	1
23	How good is the data for tracking countries' agricultural greenhouse gas emissions? Making use of multiple national greenhouse gas inventories. Frontiers in Sustainable Food Systems, 0, 7, .	3.9	2
24	Satellite quantification of methane emissions and oil–gas methane intensities from individual countries in the Middle East and North Africa: implications for climate action. Atmospheric Chemistry and Physics, 2023, 23, 5945-5967.	4.9	4
25	Knowledge gaps are making it harder to formulate national climate policies. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	4
26	Continuous atmospheric in-situ measurements of the CH4/CO ratio at the Mt. Cimone station (Italy,) Tj ETQq1 1 2023, 232, 116343.	0.784314 7.5	rgBT /Overlo 0
27	Biome-scale temperature sensitivity of ecosystem respiration revealed by atmospheric CO2 observations. Nature Ecology and Evolution, 2023, 7, 1199-1210.	7.8	1
28	The carbon sink in China as seen from GOSAT with a regional inversion system based on the Community Multi-scale Air Quality (CMAQ) and ensemble Kalman smoother (EnKS). Atmospheric Chemistry and Physics, 2023, 23, 6719-6741.	4.9	3
29	Toward a versatile spaceborne architecture for immediate monitoring of the global methane pledge. Atmospheric Chemistry and Physics, 2023, 23, 5233-5249.	4.9	0
30	Changes in land use and management led to a decline in Eastern Europe's terrestrial carbon sink. Communications Earth & Environment, 2023, 4, .	6.8	8
31	East Asian methane emissions inferred from high-resolution inversions of GOSAT and TROPOMI observations: a comparative and evaluative analysis. Atmospheric Chemistry and Physics, 2023, 23, 8039-8057.	4.9	2
32	Global increase in biomass carbon stock dominated by growth of northern young forests over past decade. Nature Geoscience, 2023, 16, 886-892.	12.9	12
33	Enhancing scientific transparency in national CO2 emissions reports via satellite-based a posteriori estimates. Scientific Reports, 2023, 13, .	3.3	1
34	Ongoing CO2 monitoring verify CO2 emissions and sinks in China during 2018–2021. Science Bulletin, 2023, 68, 2467-2476.	9.0	3
35	Top-down constraints on N2O emissions from Canada. Atmospheric Environment, 2023, 313, 120075.	4.1	0
36	The consolidated European synthesis of CO ₂ emissions and removals for the European Union and United Kingdom: 1990–2020. Earth System Science Data, 2023, 15, 4295-4370.	9.9	0
38	Increased Terrestrial Carbon Export and CO ₂ Evasion From Global Inland Waters Since the Preindustrial Era. Global Biogeochemical Cycles, 2023, 37, .	4.9	3
39	A Gridded Inventory of Annual 2012–2018 U.S. Anthropogenic Methane Emissions. Environmental Science & Technology, 0, , .	10.0	0

CITATION REPORT

#	Article	IF	CITATIONS
40	ROLE OF EXTERNAL FINANCE AND INNOVATION IN ACHIEVING ECO-EFFICIENCY AND SUSTAINABLE DEVELOPMENT GOALS. , 2023, 12, 339-355.		1
41	Assumptions about prior fossil fuel inventories impact our ability to estimate posterior net CO ₂ fluxes that are needed for verifying national inventories. Environmental Research Letters, 2023, 18, 124030.	5.2	2
42	Mind the gap: reconciling tropical forest carbon flux estimates from earth observation and national reporting requires transparency. Carbon Balance and Management, 2023, 18, .	3.2	0
43	Practical Guide to Measuring Wetland Carbon Pools and Fluxes. Wetlands, 2023, 43, .	1.5	2
44	High-resolution assessment of coal mining methane emissions by satellite in Shanxi, China. IScience, 2023, 26, 108375.	4.1	1
45	A top-down estimation of subnational CO ₂ budget using a global high-resolution inverse model with data from regional surface networks. Environmental Research Letters, 2024, 19, 014031.	5.2	0
46	Using Atmospheric Inverse Modelling of Methane Budgets with Copernicus Land Water and Wetness Data to Detect Land Use-Related Emissions. Remote Sensing, 2024, 16, 124.	4.0	0
47	Remotely sensing potential climate change tipping points across scales. Nature Communications, 2024, 15, .	12.8	0
48	A Greenhouse Gas Budget for Mexico During 2000–2019. Journal of Geophysical Research G: Biogeosciences, 2024, 129, .	3.0	0
49	Satellite derived trends and variability of CO2 concentrations in the Middle East during 2014–2023. Frontiers in Environmental Science, 0, 11, .	3.3	0
50	Assessment of methane emissions from oil, gas and coal sectors across inventories and atmospheric inversions. Communications Earth & Environment, 2024, 5, .	6.8	0
51	Greenhouse gas emissions and their trends over the last 3 decades across Africa. Earth System Science Data, 2024, 16, 245-275.	9.9	0
52	Can straw recycling achieve sustainable agriculture at the smallholder level? A case in a semi-arid region. Journal of Cleaner Production, 2024, 439, 140859.	9.3	0
53	Increased nitrous oxide emissions from global lakes and reservoirs since the pre-industrial era. Nature Communications, 2024, 15, .	12.8	0
54	Country-level methane emissions and their sectoral trends during 2009–2020 estimated by high-resolution inversion of GOSAT and surface observations. Environmental Research Letters, 2024, 19, 034007.	5.2	0
55	Constraining biospheric carbon dioxide fluxes by combined top-down and bottom-up approaches. Atmospheric Chemistry and Physics, 2024, 24, 2555-2582.	4.9	0
56	European CH ₄ inversions with ICON-ART coupled to the CarbonTracker Data Assimilation Shell. Atmospheric Chemistry and Physics, 2024, 24, 2759-2782.	4.9	0
57	Methane emissions from landfills differentially underestimated worldwide. Nature Sustainability, 2024, 7, 496-507.	23.7	0

CITATION REPORT

#	Article	IF	CITATIONS
58	Individual coal mine methane emissions constrained by eddy covariance measurements: low bias and missing sources. Atmospheric Chemistry and Physics, 2024, 24, 3009-3028.	4.9	0

CITATION REPORT