Air-pollution prediction in smart city, deep learning app

Journal of Big Data 8, 161

DOI: 10.1186/s40537-021-00548-1

Citation Report

#	Article	IF	CITATIONS
1	Air Quality Forecasting using decision trees algorithms. , 2022, , .		4
2	Urban Ecological Monitoring and Prediction Based on Deep Learning. Wireless Communications and Mobile Computing, 2022, 2022, 1-6.	0.8	1
3	An integrated 3D CNN-GRU deep learning method for short-term prediction of PM2.5 concentration in urban environment. Science of the Total Environment, 2022, 834, 155324.	3.9	41
4	Air Quality Detection using Land Coverage Machine Learning Techniques- CNN. International Journal of Advanced Research in Science, Communication and Technology, 0, , 475-482.	0.0	O
5	Indoor Air Pollution Forecasting Using Deep Neural Networks. Lecture Notes in Computer Science, 2022, , 127-136.	1.0	2
6	Artificial Intelligence Technologies for Forecasting Air Pollution and Human Health: A Narrative Review. Sustainability, 2022, 14, 9951.	1.6	34
7	Prospects for Synthesizing Ecological Risk Models and Big Data Technologies for Marine Ecosystems. Izvestiya, Physics of the Solid Earth, 2022, 58, 534-543.	0.2	O
8	Analyzing perceptions of a global event using CNN-LSTM deep learning approach: the case of Hajj 1442 (2021). PeerJ Computer Science, 0, 8, e1087.	2.7	7
9	Methods used for handling and quantifying model uncertainty of artificial neural network models for air pollution forecasting. Environmental Modelling and Software, 2022, 158, 105529.	1.9	9
10	Improving Air Pollution Prediction System through Multimodal Deep Learning Model Optimization. Applied Sciences (Switzerland), 2022, 12, 10405.	1.3	5
12	Predicting the quality of air with machine learning approaches: Current research priorities and future perspectives. Journal of Cleaner Production, 2022, 379, 134656.	4.6	14
13	Insights into Multi-Model Federated Learning: An Advanced Approach for Air Quality Index Forecasting. Algorithms, 2022, 15, 434.	1.2	4
14	Federated Learning for Air Quality Index Prediction: An Overview. , 2022, , .		1
15	A Deep Learning Based Model to Predict PMâ,â,€ Concentration. , 2022, , .		O
16	Critical Review of Air Quality Prediction using Machine Learning Techniques., 2022,,.		0
17	An Air Quality Modeling and Disability-Adjusted Life Years (DALY) Risk Assessment Case Study: Comparing Statistical and Machine Learning Approaches for PM2.5 Forecasting. Sustainability, 2022, 14, 16641.	1.6	O
18	Enhanced Preprocessing Technique for Air Pollution Forecasting System Using Big Data and Internet of Things. Algorithms for Intelligent Systems, 2023, , 411-417.	0.5	0
19	An embedding-based non-stationary fuzzy time series method for multiple output high-dimensional multivariate time series forecasting in IoT applications. Neural Computing and Applications, 2023, 35, 9407-9420.	3.2	2

#	Article	IF	Citations
20	Predicting next hour fine particulate matter (PM2.5) in the Istanbul Metropolitan City using deep learning algorithms with time windowing strategy. Urban Climate, 2023, 48, 101418.	2.4	14
21	GHG Global Emission Prediction of Synthetic N Fertilizers Using Expectile Regression Techniques. Atmosphere, 2023, 14, 283.	1.0	3
22	Air Quality Index prediction using machine learning for Ahmedabad city. Digital Chemical Engineering, 2023, 7, 100093.	1.2	12
23	AIRO: Development of an Intelligent IoT-based Air Quality Monitoring Solution for Urban Areas. Procedia Computer Science, 2023, 218, 262-273.	1.2	6
24	Air quality prediction for sustainable development using LSTM with weighted distance grey wolf optimizer. Soft Computing, 0, , .	2.1	2
27	A Study on Different Hybrid Deep Learning Approaches to Forecast air Pollution Concentration of Particulate Matter. , 2023, , .		1
32	Machine Learning Based Air Pollution Monitoring and Forecasting System. Lecture Notes in Mechanical Engineering, 2023, , 267-273.	0.3	0
46	Forecasting Air Pollution for Environment and Good Health Using Artificial Intelligence. , 2023, , .		0
48	Deep Learning Method to Analyze the Bi-LSTM Model for Energy Consumption Forecasting in Smart Cities., 2023,,.		0
49	Transformer-Based Model for Multi-Horizon Forecasting Ozone in Marrakech city, Morocco., 2023,,.		0
51	A Decision Support System for Prediction of Air Quality Using Recurrent Neural Network. Algorithms for Intelligent Systems, 2024, , 499-515.	0.5	0
52	Air Quality Prediction using Automated ML., 2023,,.		0
53	Air Quality Prediction in Smart Cities Using Cloud Machine Learning. , 2023, , .		0
54	Air Quality Prediction Using Machine Learning and Deep Learning: An Exploratory Study. , 2023, , .		0
56	Commonalities and Differences in ML-Pipelines for Air Quality Systems. Progress in IS, 2024, , 21-37.	0.5	0