Soft Bioelectronics Based on Nanomaterials

Chemical Reviews 122, 5068-5143

DOI: 10.1021/acs.chemrev.1c00531

Citation Report

#	Article	IF	CITATIONS
1	Bio-Inspired Electronic Eyes and Synaptic Photodetectors for Mobile Artificial Vision. , 2022, 1, 76-87.		8
2	Combining 2D organic and 1D inorganic nanoblocks to develop free-standing hybrid nanomembranes for conformable biosensors. Journal of Nanostructure in Chemistry, 2023, 13, 507-517.	9.1	3
3	A strain-insensitive quantitative pressure sensor on your dynamic tissue. Matter, 2022, 5, 782-784.	10.0	7
4	Skin bioelectronics towards long-term, continuous health monitoring. Chemical Society Reviews, 2022, 51, 3759-3793.	38.1	85
5	Silver nanosheets doped polyvinyl alcohol hydrogel piezoresistive bifunctional sensor with a wide range and high resolution for human motion detection. Advanced Composites and Hybrid Materials, 2022, 5, 1196-1205.	21.1	62
6	Photopatternable Poly(dimethylsiloxane) (PDMS) for an Intrinsically Stretchable Organic Electrochemical Transistor. ACS Applied Materials & Interfaces, 2022, 14, 24840-24849.	8.0	8
7	Materials and design strategies for stretchable electroluminescent devices. Nanoscale Horizons, 2022, 7, 801-821.	8.0	22
8	金⟺电åçš®é,ÿ"ç©¶éį›å±•. Scientia Sinica Chimica, 2022, , .	0.4	0
9	Stretchable conductive nanocomposites and their applications in wearable devices. Applied Physics Reviews, 2022, 9, .	11.3	27
10	Erasable polymer hydrogel wells. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648, 129431.	4.7	1
12	Local Drug Delivery Strategies for Glioblastoma Treatment. Brain Tumor Research and Treatment, 2022, 10, 151.	1.0	9
13	Soft and Stretchable Liquid Metal–Elastomer Composite for Wearable Electronics. ACS Applied Materials & Interfaces, 2022, 14, 38196-38204.	8.0	8
14	Liquid metals: Preparation, surface engineering, and biomedical applications. Coordination Chemistry Reviews, 2022, 471, 214731.	18.8	14
15	Motion Artifactâ€Resilient Zone for Implantable Sensors. Advanced Functional Materials, 2022, 32, .	14.9	5
16	Noninvasive, wireless and real-time bladder pressure monitoring with biomimetic structured devices. Applied Materials Today, 2022, 29, 101635.	4.3	0
18	Roles of Lowâ€Dimensional Nanomaterials in Pursuing Human–Machine–Thing Natural Interaction. Advanced Materials, 2023, 35, .	21.0	4
19	Recent Progress in Advanced Units of Triboelectric Electronic Skin. Advanced Materials Technologies, 2023, 8, .	5.8	8
20	Intrinsically adhesive, conductive organohydrogel with high stretchable, moisture retention, anti-freezing and healable properties for monitoring of human motions and electrocardiogram. Sensors and Actuators B: Chemical, 2023, 377, 133098.	7.8	3

TION RE

#	Article	IF	CITATIONS
21	Balanced Coexistence of Reversible and Irreversible Covalent Bonds in a Conductive Triple Polymeric Network Enables Stretchable Hydrogels with High Toughness and Adhesiveness. ACS Applied Materials & Interfaces, 2022, 14, 56395-56406.	8.0	4
22	Recent advances in electronic skins: material progress and applications. Frontiers in Bioengineering and Biotechnology, 0, 10, .	4.1	6
23	Toward bioelectronic device based on bionanohybrid composed of nanomaterials and biomaterials: From nucleic acid and protein to living cell. Applied Physics Reviews, 2023, 10, .	11.3	3
24	Flexible biosensor based on signal amplification of gold nanoparticles-composite flower clusters for glucose detection in sweat. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 661, 130908.	4.7	9
25	Water-soluble conjugated polymers for bioelectronic systems. Materials Horizons, 2023, 10, 1210-1233.	12.2	16
26	Stretchable Low-Impedance Conductor with Ag–Au–Pt Core–Shell–Shell Nanowires and in Situ Formed Pt Nanoparticles for Wearable and Implantable Device. ACS Nano, 2023, 17, 7550-7561.	14.6	15
27	Nanomaterial-based biohybrid hydrogel in bioelectronics. Nano Convergence, 2023, 10, .	12.1	15
28	Integration of Conductive Nanocomposites and Nanomembranes for Highâ€Performance Stretchable Conductors. Advanced NanoBiomed Research, 2023, 3, .	3.6	3
29	Technology Roadmap for Flexible Sensors. ACS Nano, 2023, 17, 5211-5295.	14.6	238
30	Multifunctional conductive hyaluronic acid hydrogels for wound care and skin regeneration. Biomaterials Science, 2023, 11, 2266-2276.	5.4	16
31	Advanced Electronic Packaging Technology: From Hard to Soft. Materials, 2023, 16, 2346.	2.9	2
32	A Review of Soft Electronic Devices Based on Flexible and Stretchable Materials for Cardiac Monitoring. International Journal of Students Research in Technology & Management, 2023, 11, 15-22.	0.1	0
33	Integrating Ion Channels with Bioelectronics for Biotic–Abiotic Systems. Advanced Intelligent Systems, 2023, 5, .	6.1	2
34	A Review of Functional Hydrogels for Flexible Chemical Sensors. , 2024, 3, .		5
35	Electrospun Nanofiber-Based Bioinspired Artificial Skins for Healthcare Monitoring and Human-Machine Interaction. Biomimetics, 2023, 8, 223.	3.3	3
36	Biocompatible cracked reduced graphene oxide strain sensors: enhancing implantable strain sensing performance and durability. Journal of Materials Chemistry C, 2023, 11, 8405-8412.	5.5	0
37	Wafer-patterned, permeable, and stretchable liquid metal microelectrodes for implantable bioelectronics with chronic biocompatibility. Science Advances, 2023, 9, .	10.3	23
38	Magnetic Manipulation of Locomotive Liquid Electrodes for Wireless Active Cardiac Monitoring. ACS Applied Materials & Interfaces, 2023, 15, 28954-28963.	8.0	4

#	Article	IF	CITATIONS
39	Development and application of nanogenerators in humanoid robotics. , 2023, 3, 100013.		2
40	Achieving tissue-level softness on stretchable electronics through a generalizable soft interlayer design. Nature Communications, 2023, 14, .	12.8	17
41	Soft conductive nanocomposites for recording biosignals on skin. , 0, 3, .		4
42	Galliumâ€Based Liquid–Solid Biphasic Conductors for Soft Electronics. Advanced Functional Materials, 2023, 33, .	14.9	3
43	Highly sensitive piezoresistive and thermally responsive fibrous networks from the in situ growth of PEDOT on MWCNT-decorated electrospun PU fibers for pressure and temperature sensing. Microsystems and Nanoengineering, 2023, 9, .	7.0	2
44	Soft bioelectronics for the management of cardiovascular diseases. , 2024, 2, 8-24.		4
45	Sweat-permeable electronic skin with a pattern of eyes for body temperature monitoring. Micro and Nano Systems Letters, 2023, 11, .	3.7	2
46	Soft Bioelectronics for Therapeutics. ACS Nano, 2023, 17, 17634-17667.	14.6	6
47	A mixed electronic-ionic conductor-based bifunctional sensing layer beyond ionophores for sweat electrolyte monitoring. Science Bulletin, 2023, 68, 3181-3191.	9.0	0
48	Multifunctional wearable electronic textile based on fabric modified by MXene/Ag NWs for pressure sensing, EMI and personal thermal management. Composites Part B: Engineering, 2023, 266, 110999.	12.0	6
49	Computational Modeling as a Tool to Drive the Development of a Novel, Chemical Device for Monitoring the Injured Brain and Body. ACS Chemical Neuroscience, 2023, 14, 3599-3608.	3.5	0
50	Influence of the linkage between long alkyl tails and cationic groups on membrane activity of nano-sized hyperbranched polyquaterniums. Journal of Colloid and Interface Science, 2024, 653, 894-907.	9.4	0
51	Highâ€Performance Pressure Sensors Based on Shaped Gel Droplet Arrays. Small, 2024, 20, .	10.0	1
52	3D Printable Hydrogel Bioelectronic Interfaces for Various Organs. , 2023, , .		0
53	In Situ Nanomechanical Characterization Techniques for Soft Bioelectronic Interfaces and Their Building Blocks. Advanced Materials Technologies, 2023, 8, .	5.8	0
54	Recent progress on performance-enhancing strategies in flexible photodetectors: From structural engineering to flexible integration. Materials Science and Engineering Reports, 2023, 156, 100759.	31.8	6
55	Soft Bioelectronics for Neuroengineering: New Horizons in the Treatment of Brain Tumor and Epilepsy. Advanced Healthcare Materials, 0, , .	7.6	1
56	Emerging Additive Manufacturing Methods for Wearable Sensors: Opportunities to Expand Access to Personalized Health Monitoring. , 2024, 3, .		0

CITATION REPORT

			2
#	Article	IF	CITATIONS
57	Review of Electrochemical Sensors and Biosensors Based on First-Row Transition Metals, Their Oxides, and Noble Metals Nanoparticles. Journal of Analysis and Testing, 0, , .	5.1	1
58	Quantum Semiconductors Based on Carbon Materials for Nanophotonics and Photonics Applications by Electron Shuttle and Near Field Phenomena. Recent Progress in Materials, 2023, 05, 1-1.	0.9	1
59	Lubricantâ€Infused Polymeric Interfaces: A Stretchable and Antiâ€Fouling Surface for Implantable Biomaterials. Advanced Functional Materials, 2024, 34, .	14.9	0
60	Electrochemical and Electrical Biosensors for Wearable and Implantable Electronics Based on Conducting Polymers and Carbon-Based Materials. Chemical Reviews, 2024, 124, 722-767.	47.7	0
61	Hybrid materials approaches for bioelectronics. MRS Bulletin, 2023, 48, 1125-1139.	3.5	0
62	Materials-Driven Soft Wearable Bioelectronics for Connected Healthcare. Chemical Reviews, 2024, 124, 455-553.	47.7	2
63	Phase-separated stretchable conductive nanocomposite to reduce contact resistance of skin electronics. Scientific Reports, 2024, 14, .	3.3	0
64	Flexible and Stretchable Light-Emitting Diodes and Photodetectors for Human-Centric Optoelectronics. Chemical Reviews, 2024, 124, 768-859.	47.7	1
65	Giant electrical conductivity difference enabled liquid metal-hydrogel hybrid printed circuits for soft bioelectronics. Chemical Engineering Journal, 2024, 482, 148951.	12.7	0
66	Real-time in vivo monitoring of intraocular pressure distribution in the anterior chamber and vitreous chamber for diagnosis of glaucoma. Science Advances, 2024, 10, .	10.3	0
67	Porous Conductive Textiles for Wearable Electronics. Chemical Reviews, 2024, 124, 1535-1648.	47.7	0
68	A high-current hydrogel generator with engineered mechanoionic asymmetry. Nature Communications, 2024, 15, .	12.8	0
69	Tough and Strain-Sensitive Organohydrogels Based on MXene and PEDOT/PSS and Their Effects on Mechanical Properties and Strain-Sensing Performance. ACS Applied Materials & Interfaces, 2024, 16, 11914-11929.	8.0	0
70	Al-Si controlled expansion alloys for electronic packaging applications. Progress in Materials Science, 2024, 144, 101268.	32.8	0
71	Nano-hydroxyapatite (nHAp) scaffolds for bone regeneration: Preparation, characterization and biological applications. Journal of Drug Delivery Science and Technology, 2024, 95, 105601.	3.0	0
72	Liquid-based electronic materials for bioelectronics: current trends and challenges. , 0, , .		0

CITATION REPORT