Machine Learning Automated Detection of Large Vessel Computed Tomography Angiography

Stroke

53, 1651-1656

DOI: 10.1161/strokeaha.121.036091

Citation Report

#	Article	IF	CITATIONS
1	Intelligent, mobile stroke imaging. Nature Reviews Neurology, 2022, 18, 66-66.	10.1	0
2	Access to Mechanical Thrombectomy for Stroke: Center Qualifications, Prehospital Management, and Geographic Disparities. Neurosurgery, 2023, 92, 3-9.	1.1	2
3	Segmentation of acute stroke infarct core using image-level labels on CT-angiography. NeuroImage: Clinical, 2023, 37, 103362.	2.7	2
4	Prehospital stroke management and mobile stroke units. Current Opinion in Neurology, 2023, 36, 140-146.	3.6	2
5	Spatial CT perfusion data helpful in automatically locating vessel occlusions for acute ischemic stroke patients. Frontiers in Neurology, 0, 14 , .	2.4	0
7	A brief evaluation on mobile stroke Unit and mobile CT. Clinical EHealth, 2023, 6, 36-37.	7.5	0
8	Artificial intelligence and machine learning in prehospital emergency care: A scoping review. IScience, 2023, 26, 107407.	4.1	1
9	Deep-learning based detection of vessel occlusions on CT-angiography in patients with suspected acute ischemic stroke. Nature Communications, 2023, 14, .	12.8	4
10	Role of artificial intelligence and machine learning in the diagnosis of cerebrovascular disease. Frontiers in Human Neuroscience, 0, 17, .	2.0	0
11	Self-Supervised Learning with Radiology Reports, A Comparative Analysis of Strategies for Large Vessel Occlusion and Brain CTA Images. , 2023, , .		0
12	Invoking AI for diagnosis: Art at the cutting edge of science. Journal of the Neurological Sciences, 2023, 453, 120803.	0.6	1
13	Prehospital identification of acute ischaemic stroke with large vessel occlusion: a retrospective study from western Norway. Emergency Medicine Journal, 2024, 41, 249-254.	1.0	0
14	Machine learning application in ischemic stroke diagnosis, management, and outcome prediction: a narrative review. Journal of Medicine and Life Science, 2023, 20, 141-157.	0.0	0
15	A self-supervised learning approach for registration agnostic imaging models with 3D brain CTA. IScience, 2024, 27, 109004.	4.1	0
16	Use of the SONAS Ultrasound Device for the Assessment of Cerebral Perfusion in Acute Ischemic Stroke. , 2024, 4, .		0