Development of electrolysis technologies for hydrogen steel manufacturing in the Russian Federation

Environmental Technology and Innovation 27, 102517 DOI: 10.1016/j.eti.2022.102517

Citation Report

#	Article	IF	CITATIONS
1	An Econometric Model of the Operation of the Steel Industry in POLAND in the Context of Process Heat and Energy Consumption. Energies, 2022, 15, 7909.	3.1	11
2	The Bio Steel Cycle: 7 Steps to Net-Zero CO2 Emissions Steel Production. Energies, 2022, 15, 8880.	3.1	2
3	Electricity and Heat Demand in Steel Industry Technological Processes in Industry 4.0 Conditions. Energies, 2023, 16, 787.	3.1	9
4	Environmental assessment of hydrogen: does hydrogen matter for environmental efficiency improvement?. Energy Sources, Part B: Economics, Planning and Policy, 2023, 18, .	3.4	5
5	Process of Transformation to Net Zero Steelmaking: Decarbonisation Scenarios Based on the Analysis of the Polish Steel Industry. Energies, 2023, 16, 3384.	3.1	13
6	Forecasting Development of Green Hydrogen Production Technologies Using Component-Based Learning Curves. Energies, 2023, 16, 4338.	3.1	2
7	Nickel-based tungstate supported with different forms of SnS2 to achieve improved photocatalytic performance. Journal of Alloys and Compounds, 2023, 965, 171378.	5.5	2
8	Reserves for Reducing Costs for the Production of Water Transport Products. Lecture Notes in Networks and Systems, 2023, , 458-468.	0.7	0
9	A comprehensive review of the promising clean energy carrier: Hydrogen production, transportation, storage, and utilization (HPTSU) technologies. Fuel, 2024, 355, 129455.	6.4	24
10	ESTUDO TEÓRICO APLICADO DA ELETRÓLISE PARA GERAÇÃO DE HIDROGÊNIO. Revista Foco, 2023, 16, e27	2 0. 0	0
11	Perspective under uncertainty and risk in green hydrogen investments: A stochastic approach using Monte Carlo simulation. International Journal of Hydrogen Energy, 2024, 49, 385-404.	7.1	1
12	A comprehensive review on environmental and economic impacts of hydrogen production from traditional and cleaner resources. Journal of Environmental Chemical Engineering, 2023, 11, 111187.	6.7	2
13	Hydrogen role in energy transition: A comparative review. Chemical Engineering Research and Design, 2024, 184, 1069-1093.	5.6	0