Per- and polyfluoroalkyl substances (PFAS) in river disc and downstream of a PFAS manufacturing plant in the Carolina

Science of the Total Environment 831, 154763

DOI: 10.1016/j.scitotenv.2022.154763

Citation Report

#	Article	IF	CITATIONS
1	Simplifying Nontargeted Analysis of PFAS in Complex Food Matrixes. Journal of AOAC INTERNATIONAL, 2022, 105, 1280-1287.	1.5	11
2	Swimming with PFAS in public and private pools. Chemosphere, 2023, 310, 136765.	8.2	2
3	Improved export coefficient model for identification of watershed environmental risk areas. Environmental Science and Pollution Research, 2023, 30, 34649-34668.	5.3	3
4	Embryonic exposure to PFAS causes long-term, compound-specific behavioral alterations in zebrafish. Neurotoxicology and Teratology, 2023, 97, 107165.	2.4	4
5	Environmental and health impacts of PFAS: Sources, distribution and sustainable management in North Carolina (USA). Science of the Total Environment, 2023, 878, 163123.	8.0	21
6	Verification of In Vivo Estrogenic Activity for Four Per- and Polyfluoroalkyl Substances (PFAS) Identified as Estrogen Receptor Agonists via New Approach Methodologies. Environmental Science & Technology, 2023, 57, 3794-3803.	10.0	15
7	Directly Fluorinated Containers as a Source of Perfluoroalkyl Carboxylic Acids. Environmental Science and Technology Letters, 2023, 10, 350-355.	8.7	10
8	70 analyte PFAS test method highlights need for expanded testing of PFAS in drinking water. Science of the Total Environment, 2023, 876, 162978.	8.0	15
9	Locomotion and brain gene expression exhibit sex-specific non-monotonic dose-response to HFPO-DA during Drosophila melanogaster lifespan. NeuroToxicology, 2023, 96, 207-221.	3.0	2
10	A field-validated equilibrium passive sampler for the monitoring of per- and polyfluoroalkyl substances (PFAS) in sediment pore water and surface water. Environmental Sciences: Processes and Impacts, 2023, 25, 980-995.	3.5	1
11	Perfluoroalkyl substances in Romanian wastewater treatment plants: Transfer to surface waters, environmental and human risk assessment. Science of the Total Environment, 2023, 892, 164576.	8.0	4
12	Domestic Dogs and Horses as Sentinels of Per- and Polyfluoroalkyl Substance Exposure and Associated Health Biomarkers in Gray's Creek North Carolina. Environmental Science & Technology, 2023, 57, 9567-9579.	10.0	4
13	PFAS levels in paired drinking water and serum samples collected from an exposed community in Central North Carolina. Science of the Total Environment, 2023, 895, 165091.	8.0	3
14	Characterizing the long-term occurrence and anthropogenic drivers of per- and polyfluoroalkyl substances in surface water of the Rhine River. Water Research, 2023, 245, 120528.	11.3	1
16	Extracellular Vesicles altered by a Per- and Polyfluoroalkyl Substance Mixture: In Vitro Dose-Dependent Release, Chemical Content, and MicroRNA Signatures involved in Liver Health. Toxicological Sciences, 0, , .	3.1	1
17	Uncovering per- and polyfluoroalkyl substances (PFAS) with nontargeted ion mobility spectrometry–mass spectrometry analyses. Science Advances, 2023, 9, .	10.3	2
18	Investigation of Sources of Fluorinated Compounds in Private Water Supplies in an Oil and Gas-Producing Region of Northern West Virginia. Environmental Science & Technology, 2023, 57, 17452-17464.	10.0	1
19	Investigating the applicability and assumptions of the regression relationship between flow discharge and nitrogen concentrations for load estimation. Heliyon, 2024, 10, e23603.	3.2	0

#	Article	IF	CITATIONS
20	Comparison of the PFAS and physical-chemical parameter fluctuations between an ash landfill and a MSW landfill. Waste Management, 2024, 174, 558-567.	7.4	2
22	Biological effects of perfluoroalkyl substances on running water ecosystems: A case study in Beiluo River, China. Journal of Hazardous Materials, 2024, 468, 133808.	12.4	0
23	PFAS River Export Analysis Highlights the Urgent Need for Catchment-Scale Mass Loading Data. Environmental Science and Technology Letters, 2024, 11, 266-272.	8.7	0