Smart textiles for personalized healthcare

Nature Electronics 5, 142-156

DOI: 10.1038/s41928-022-00723-z

Citation Report

#	Article	IF	CITATIONS
1	Piezoelectric nanogenerators for personalized healthcare. Chemical Society Reviews, 2022, 51, 3380-3435.	18.7	145
2	Giant Magnetoelastic Effect Enabled Stretchable Sensor for Self-Powered Biomonitoring. ACS Nano, 2022, 16, 6013-6022.	7.3	59
3	Self-powered environmental monitoring via a triboelectric nanogenerator. Nano Energy, 2022, 98, 107282.	8.2	56
4	Bioinspired acoustic textiles with nanoscale vibrations for wearable biomonitoring. Matter, 2022, 5, 1342-1345.	5.0	29
5	Porous Pyroelectric Ceramic with Carbon Nanotubes for High-Performance Thermal to Electrical Energy Conversion. SSRN Electronic Journal, 0, , .	0.4	0
6	Design Thinking Applied to Home Textiles Innovation: A Case Study in an Elderly Centre in Hong Kong. Designs, 2022, 6, 49.	1.3	1
7	Inhalationâ€Driven Vertical Flutter Triboelectric Nanogenerator with Amplified Output as a Gasâ€Maskâ€Integrated Selfâ€Powered Multifunctional System. Advanced Energy Materials, 2022, 12, .	10.2	9
8	Design and characterization of a cotton fabric antenna for on-body thermotherapy. Journal of Industrial Textiles, 0, , 152808372211071.	1.1	2
9	Deep Learning Assisted Body Area Triboelectric Hydrogel Sensor Network for Infant Care. Advanced Functional Materials, 2022, 32, .	7.8	51
10	Advances in the Robustness of Wearable Electronic Textiles: Strategies, Stability, Washability and Perspective. Nanomaterials, 2022, 12, 2039.	1.9	18
11	Kirigamiâ€Inspired Pressure Sensors for Wearable Dynamic Cardiovascular Monitoring. Advanced Materials, 2022, 34, .	11.1	63
12	Industrial Fabrication of 3D Braided Stretchable Hierarchical Interlocked Fancy‥arn Triboelectric Nanogenerator for Selfâ€Powered Smart Fitness System. Advanced Energy Materials, 2022, 12, .	10.2	31
13	High sensitivity and broad linearity range pressure sensor based on hierarchical in-situ filling porous structure. Npj Flexible Electronics, 2022, 6, .	5.1	23
14	Cotton fabrics treated with acylhydrazone-based polyviologen to create innovative multi-stimulus responsive textiles. Arabian Journal of Chemistry, 2022, 15, 104077.	2.3	4
15	A contextual framework development toward triboelectric nanogenerator commercialization. Nano Energy, 2022, 101, 107572.	8.2	21
16	Natural gum-based electronic ink with water-proofing self-healing and easy-cleaning properties for directly on-skin electronics. Biosensors and Bioelectronics, 2022, 214, 114547.	5.3	7
17	Selfâ€Powered Allâ€Optical Tactile Sensing Platform for Userâ€Interactive Interface. Advanced Materials Technologies, 2023, 8, .	3.0	12
18	Surface engineering of a triboelectric nanogenerator for room temperature high-performance self-powered formaldehyde sensors. Journal of Materials Chemistry A, 2022, 10, 22373-22389.	5.2	14

#	Article	IF	CITATIONS
19	A dual cooling composite film by subtly combining phase change materials and thermally conductive fillers for efficient thermal management. Journal of Materials Science, 2022, 57, 14464-14477.	1.7	3
20	Mechanoreceptor Inspired Electronic Skin for Multiâ€Modal Tactile Information Decoding. Advanced Materials Technologies, 2023, 8, .	3.0	5
21	Self-powered sensing technologies for human Metaverse interfacing. Joule, 2022, 6, 1381-1389.	11.7	62
22	A flexible and highly sensitive organic electrochemical transistor-based biosensor for continuous and wireless nitric oxide detection. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	23
23	Highly efficient liquid droplet manipulation via human-motion-induced direct charge injection. Materials Today, 2022, 58, 41-47.	8.3	15
24	Smart Textiles for Healthcare and Sustainability. ACS Nano, 2022, 16, 13301-13313.	7.3	61
25	A Soft Magnetoelastic Generator for Windâ€Energy Harvesting. Advanced Materials, 2022, 34, .	11.1	41
26	Fluid Field Modulation in Mass Transfer for Efficient Photocatalysis. Advanced Science, 2022, 9, .	5.6	28
27	Multimode humanâ€"machine interface using a single-channel and patterned triboelectric sensor. Nano Research, 2022, 15, 9352-9358.	5.8	5
28	Progress in Hybridization of Covalent Organic Frameworks and Metal–Organic Frameworks. Small, 2022, 18, .	5.2	41
29	Bispecific aptamer-initiated 3D DNA nanomotor biosensor powered by DNAzyme and entropy-driven circuit for sensitive and specificity detection of lysozyme. Nano Research, 2023, 16, 1286-1295.	5.8	4
30	A programmable magnetoelastic sensor array for self-powered human–machine interface. Applied Physics Reviews, 2022, 9, .	5.5	32
31	Porous pyroelectric ceramic with carbon nanotubes for high-performance thermal to electrical energy conversion. Nano Energy, 2022, 102, 107703.	8.2	9
32	Ultrastrong, flame-retardant, intrinsically weldable, and highly conductive metallized Kevlar fabrics. Journal of Materials Chemistry A, 2022, 10, 21379-21389.	5.2	6
33	Flexible and weavable 3D porous graphene/PPy/lignocellulose-based versatile fibrous wearables for thermal management and strain sensing. Chemical Engineering Journal, 2023, 452, 139338.	6.6	19
34	Arrayed Heterostructures of MoS ₂ Nanosheets Anchored TiN Nanowires as Efficient Pseudocapacitive Anodes for Fiber-Shaped Ammonium-Ion Asymmetric Supercapacitors. ACS Nano, 2022, 16, 14951-14962.	7.3	33
35	Advances in Electrostatic Spinning of Polymer Fibers Functionalized with Metal-Based Nanocrystals and Biomedical Applications. Molecules, 2022, 27, 5548.	1.7	8
36	Direct-Current Triboelectric Nanogenerators Based on Semiconductor Structure. ACS Applied Electronic Materials, 2022, 4, 4212-4230.	2.0	7

#	Article	IF	Citations
37	Selfâ€Powered Smart Gloves Based on Triboelectric Nanogenerators. Small Methods, 2022, 6, .	4.6	20
38	Controlling the oxidation and wettability of liquid metal via femtosecond laser for high-resolution flexible electronics. Frontiers in Chemistry, 0, 10, .	1.8	3
39	Maximum power point tracking for a multi-layered piezoelectric heel charger with a levered mechanism toward impact-based energy harvesting. Review of Scientific Instruments, 2022, 93, 095001.	0.6	3
40	Topological Nanofibers Enhanced Piezoelectric Membranes for Soft Bioelectronics. Advanced Functional Materials, 2022, 32, .	7.8	15
41	Selfâ€Healing and Shape Memory Hypercrosslinked Metalâ€Organic Polyhedra Polymers via Coordination Postâ€Assembly. Angewandte Chemie, 0, , .	1.6	0
42	Flexible wearable devices for intelligent health monitoring. View, 2022, 3, .	2.7	23
43	A Dual Sensing Platform for Human Exhaled Breath Enabled by Feâ€MILâ€101â€NH ₂ Metalâ€"Organic Frameworks and its Derived Co/Ni/Fe Trimetallic Oxides. Small, 2022, 18, .	5.2	13
44	Magnetically tunable enhanced performance of CoFe2O4–PVDF nanocomposite film-based piezoelectric nanogenerator. Applied Physics Letters, 2022, 121, .	1.5	15
45	Topographic design in wearable MXene sensors with in-sensor machine learning for full-body avatar reconstruction. Nature Communications, 2022, 13, .	5.8	49
46	A soft haptic interface for programmable patterns of touch. Matter, 2022, 5, 2590-2593.	5.0	2
47	Immobilization of strontium aluminate nanoparticles onto plasma-pretreated nonwoven polypropylene fibers by screen-printing toward photochromic textiles. Journal of Materials Research and Technology, 2022, 20, 3146-3157.	2.6	6
48	Dry and Binder-Free Deposition of Single-Walled Carbon Nanotubes on Fabrics for Thermal Regulation and Electromagnetic Interference Shielding. ACS Applied Nano Materials, 2022, 5, 13373-13383.	2.4	6
49	Stimulated Parotid Saliva Is a Better Method for Depression Prediction. Biomedicines, 2022, 10, 2220.	1.4	7
50	Selfâ€Healing and Shape Memory Hypercrosslinked Metalâ€Organic Polyhedra Polymers via Coordination Postâ€Assembly. Angewandte Chemie - International Edition, 2022, 61, .	7.2	16
51	Development of novel photoluminescent fibers from recycled polyester waste using plasma-assisted dyeing toward ultraviolet sensing and protective textiles. Journal of Materials Research and Technology, 2022, 21, 1630-1642.	2.6	9
52	Harvesting Hydropower via a Magnetoelastic Generator for Sustainable Water Splitting. ACS Nano, 2022, 16, 16816-16823.	7.3	13
53	Advances in Bioinspired Triboelectric Nanogenerators. Advanced Electronic Materials, 2022, 8, .	2.6	18
54	Bottom-up reconstruction of smart textiles with hierarchical structures to assemble versatile wearable devices for multiple signals monitoring. Nano Energy, 2022, 104, 107963.	8.2	16

#	Article	IF	CITATIONS
55	Robust, Breathable and Flexible Smart Textiles as Multifunctional Sensor and Heater for Personal Health Management. Advanced Fiber Materials, 2023, 5, 282-295.	7.9	48
56	Advances in Photoplethysmography for Personalized Cardiovascular Monitoring. Biosensors, 2022, 12, 863.	2.3	6
57	Advanced Fiber Materials for Wearable Electronics. Advanced Fiber Materials, 2023, 5, 12-35.	7.9	81
58	Influence of Knitting and Material Parameters on the Quality and Reliability of Knitted Conductor Tracks. Textiles, 2022, 2, 524-545.	1.8	O
59	Recent Progress in Advanced Units of Triboelectric Electronic Skin. Advanced Materials Technologies, 2023, 8, .	3.0	8
60	Recent Progress of Wearable Piezoelectric Pressure Sensors Based on Nanofibers, Yarns, and Their Fabrics via Electrospinning. Advanced Materials Technologies, 2023, 8, .	3.0	35
61	Intrinsically Stretchable Microbattery with Ultrahigh Deformability for Self-Powering Wearable Electronics., 2022, 4, 2401-2408.		5
62	Triboelectric nanogenerators with a constant inherent capacitance design. Nano Research, 2023, 16, 4077-4084.	5.8	1
63	Wearable respiratory sensors for COVIDâ€19 monitoring. View, 2022, 3, .	2.7	10
64	Hierarchically Assembled Counter Electrode for Fiber Solar Cell Showing Record Power Conversion Efficiency. Advanced Functional Materials, 2022, 32, .	7.8	17
65	Perspectives of Triboelectric Sensors for Internet of Healthcare. , 2022, 1, .		10
66	Energy Harvesting and Sensing Integrated Woven Structure Kneepad Based on Triboelectric Nanogenerators. Advanced Materials Technologies, 2023, 8, .	3.0	3
67	Fabric computing: Concepts, opportunities, and challenges. Innovation(China), 2022, 3, 100340.	5.2	12
68	High-performance piezoelectric composites via \hat{I}^2 phase programming. Nature Communications, 2022, 13, .	5.8	131
69	Classifying gait alterations using an instrumented smart sock and deep learning. IEEE Sensors Journal, 2022, , 1-1.	2.4	1
70	All textile-based robust pressure sensors for smart garments. Chemical Engineering Journal, 2023, 454, 140302.	6.6	17
71	Smart Fibers and Textiles for Personal Thermal Management in Emerging Wearable Applications. Advanced Materials Technologies, 2023, 8, .	3.0	31
72	Low-temperature-processable amorphous-oxide-semiconductor-based phosphors for durable light-emitting diodes. Applied Physics Letters, 2022, 121, 192108.	1.5	0

#	Article	IF	Citations
73	Advances in solid-state fiber batteries for wearable bioelectronics. Current Opinion in Solid State and Materials Science, 2022, 26, 101042.	5.6	18
74	Weavable, large-scaled, rapid response, long-term stable electrochemical fabric sensor integrated into clothing for monitoring potassium ions in sweat. Chemical Engineering Journal, 2023, 454, 140473.	6.6	17
75	lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:		0
76	Suppressing piezoelectric screening effect at atomic scale for enhanced piezoelectricity. Nano Energy, 2023, 105, 108024.	8.2	21
77	MXene-based wireless facemask enabled wearable breath acetone detection for lipid metabolic monitoring. Biosensors and Bioelectronics, 2023, 222, 114945.	5.3	13
78	Biodegradable cotton fiber-based piezoresistive textiles for wearable biomonitoring. Biosensors and Bioelectronics, 2023, 222, 114999.	5.3	60
79	Measurement of Heart Rate and Heart Rate Variability: A Review of NeurolS Research with a Focus on Applied Methods. Lecture Notes in Information Systems and Organisation, 2022, , 269-283.	0.4	1
80	Microwave-Enabled Wearables: Underpinning Technologies, Integration Platforms, and Next-Generation Roadmap. IEEE Journal of Microwaves, 2023, 3, 193-226.	4.9	16
81	Flexible Wearable Sensors in Medical Monitoring. Biosensors, 2022, 12, 1069.	2.3	20
82	Smart Fabric Textiles: Recent Advances and Challenges. Textiles, 2022, 2, 582-605.	1.8	27
84	Stretchable One-Dimensional Conductors for Wearable Applications. ACS Nano, 2022, 16, 19810-19839.	7.3	21
85	Thermoelectric energy harvesting for personalized healthcare. , 2022, 1, .		6
86	Recent Advances in Stimuliâ€Responsive Smart Membranes for Nanofiltration. Advanced Functional Materials, 2023, 33, .	7.8	24
87	Selfâ€Powered Programming of Fibroblasts into Neurons via a Scalable Magnetoelastic Generator Array. Advanced Materials, 2023, 35, .	11.1	16
88	Highly Sensitive, Stretchable, and Robust Strain Sensor Based on Crack Propagation and Opening. ACS Applied Materials & Decided House (2023), 15, 1798-1807.	4.0	14
89	Smart Fibers for Self-Powered Electronic Skins. Advanced Fiber Materials, 2023, 5, 401-428.	7.9	49
90	Polystyrene-Based Triboelectric Nanogenerators for Self-Powered Multifunctional Human Activity Monitoring. ACS Applied Energy Materials, 2022, 5, 15881-15889.	2.5	3
91	Carbonâ€Based Flexible Devices for Comprehensive Health Monitoring. Small Methods, 2023, 7, .	4.6	25

#	Article	IF	CITATIONS
92	Scalable one-step wet-spinning of triboelectric fibers for large-area power and sensing textiles. Nano Research, 2023, 16, 7518-7526.	5.8	12
93	Sensing–transducing coupled piezoelectric textiles for self-powered humidity detection and wearable biomonitoring. Materials Horizons, 2023, 10, 842-851.	6.4	71
94	Active Textile Fabrics from Weaving Liquid Crystalline Elastomer Filaments. Advanced Materials, 2023, 35, .	11.1	17
95	Fluorinated Covalent Organic Framework as a Positive Triboâ€Material for Highâ€Performance Triboelectric Nanogenerators. Advanced Functional Materials, 2023, 33, .	7.8	15
96	Emerging Selfâ€Powered Autonomous Sensing Triboelectric Fibers toward Future Wearable Humanâ€Computer Interaction Devices. , 2023, 2, .		6
97	Flexible integrated sensor with asymmetric structure for simultaneously 3D tactile and thermal sensing. Biosensors and Bioelectronics, 2023, 224, 115054.	5.3	4
98	A Self-Powered, Highly Embedded and Sensitive Tribo-Label-Sensor for the Fast and Stable Label Printer. Nano-Micro Letters, 2023, 15, .	14.4	10
99	Piezoresistive Fibers with Large Working Factors for Strain Sensing Applications. ACS Applied Materials & Samp; Interfaces, 2023, 15, 2277-2288.	4.0	2
100	Preparation of afterglow and photochromic fibrous mats from polypropylene plastics to detect ultraviolet light. Luminescence, 2023, 38, 1358-1367.	1.5	2
101	Applications of Graphene in Five Senses, Nervous System, and Artificial Muscles. ACS Sensors, 2023, 8, 482-514.	4.0	24
102	Dual Structural Design of Platinumâ€Nickel Hydrogels for Wearable Glucose Biosensing with Ultrahigh Stability. Small, 2023, 19, .	5.2	12
103	The Rising Aerogel Fibers: Status, Challenges, and Opportunities. Advanced Science, 2023, 10, .	5.6	26
104	Inclusive Smart Textile Design for Healthy Ageing. , 2023, , 433-448.		0
105	Flexible Zinc–Air Batteries with Ampereâ€Hour Capacities and Wideâ€Temperature Adaptabilities. Advanced Materials, 2023, 35, .	11.1	40
106	Stretchable and Skinâ€Attachable Electronic Device for Remotely Controlled Wearable Cancer Therapy. Advanced Science, 2023, 10, .	5.6	15
107	Speed and Scalability of Ambipolar Deep-Subthreshold TFTs for Ultralow-Power Printed Electronics., 2023, 2, 11-17.		1
108	Strongly enhanced charge density via gradient nano-doping for high performance elastic-material-based triboelectric nanogenerators. Materials Today, 2023, 65, 26-36.	8.3	16
109	A humidity- and environment-resisted high-performance triboelectric nanogenerator with superhydrophobic interface for energy harvesting and sensing. Nano Energy, 2023, 109, 108300.	8.2	16

#	Article	IF	CITATIONS
110	Scalable, high-performance, yarn-shaped batteries activated by an ultralow volume of sweat for self-powered sensing textiles. Nano Energy, 2023, 109, 108304.	8.2	6
111	Multi-weather full-body triboelectric garments for personalized moisture management and water energy acquisition. Nano Energy, 2023, 110, 108359.	8.2	5
112	Emerging trends in drug-device combination for advanced disease diagnosis and therapy. Nano Today, 2023, 50, 101853.	6.2	1
113	A wearable electrochemical fabric for cytokine monitoring. Biosensors and Bioelectronics, 2023, 232, 115301.	5.3	5
114	Selective and Independent Control of Microrobots in a Magnetic Field: A Review. Engineering, 2023, 24, 21-38.	3.2	7
115	Emerging ultrasonic bioelectronics for personalized healthcare. Progress in Materials Science, 2023, 136, 101110.	16.0	10
116	Electronic textiles: New age of wearable technology for healthcare and fitness solutions. Materials Today Bio, 2023, 19, 100565.	2.6	22
117	Airâ€Permeable Textile Bioelectronics for Wearable Energy Harvesting and Active Sensing. Advanced Materials Technologies, 2023, 8, .	3.0	5
118	Soft Fiber Electronics Based on Semiconducting Polymer. Chemical Reviews, 2023, 123, 4693-4763.	23.0	40
119	Implantable Triboelectric Nanogenerators for Selfâ€Powered Cardiovascular Healthcare. Small, 2023, 19, .	5.2	17
120	Green Flexible Electronics: Natural Materials, Fabrication, and Applications. Advanced Materials, 2023, 35, .	11.1	40
121	Ultrasensitive determination of \hat{l} ±-glucosidase activity using CoOOH nanozymes and its application to inhibitor screening. Journal of Materials Chemistry B, 2023, 11, 2727-2732.	2.9	3
122	Selfâ€Powered Smart Textile Based on Dynamic Schottky Diode for Humanâ€Machine Interactions. Advanced Science, 2023, 10, .	5.6	7
123	Press-N-Go On-Skin Sensor with High Interfacial Toughness for Continuous Healthcare Monitoring. ACS Applied Materials & Diterfaces, 2023, 15, 11379-11387.	4.0	5
124	Fiber- and Textile-Based Triboelectric Nanogenerators. , 2023, , 1-39.		0
125	End-User Assessment of an Innovative Clothing-Based Sensor Developed for Pressure Injury Prevention: A Mixed-Method Study. International Journal of Environmental Research and Public Health, 2023, 20, 4039.	1.2	3
126	Advances in Wearable Strain Sensors Based on Electrospun Fibers. Advanced Functional Materials, 2023, 33, .	7.8	31
127	Stretchable Woven Fabric-Based Triboelectric Nanogenerator for Energy Harvesting and Self-Powered Sensing. Nanomaterials, 2023, 13, 863.	1.9	4

#	Article	IF	CITATIONS
128	Flexible Organic Transistors for Biosensing: Devices and Applications. Advanced Materials, 0, , .	11.1	21
129	Wireless Batteryâ€Free Flexible Sensing System for Continuous Wearable Health Monitoring. Advanced Materials Technologies, 2023, 8, .	3.0	3
130	A cost-effective smartphone-based device for rapid <i>C</i> -reaction protein (CRP) detection using magnetoelastic immunosensor. Lab on A Chip, 2023, 23, 2048-2056.	3.1	4
131	Technology Roadmap for Flexible Sensors. ACS Nano, 2023, 17, 5211-5295.	7.3	238
132	Highly sensitive and extremely durable wearable e-textiles of graphene/carbon nanotube hybrid for cardiorespiratory monitoring. IScience, 2023, 26, 106403.	1.9	12
133	Roadmap on energy harvesting materials. JPhys Materials, 2023, 6, 042501.	1.8	19
134	Robust hydrogel sensors for unsupervised learning enabled signâ€ŧoâ€verbal translation. InformaÄnÃ- Materiály, 2023, 5, .	8.5	16
135	Skin-Interfaced Wearable Sweat Sensors for Precision Medicine. Chemical Reviews, 2023, 123, 5049-5138.	23.0	85
136	Flexible and breathable 3D porous SSE/MXene foam towards impact/electromagnetic interference/bacteria multiple protection performance for intelligent wearable devices. Nano Research, 2023, 16, 10164-10174.	5.8	7
137	Additive Engineering Enables Ionic-Liquid Electrolyte-Based Supercapacitors To Deliver Simultaneously High Energy and Power Density. ACS Sustainable Chemistry and Engineering, 2023, 11, 5685-5695.	3.2	11
138	Continuous synthesis of ultra-fine fiber for wearable mechanoluminescent textile. Nano Research, 2023, 16, 9379-9386.	5.8	8
139	Realizing self-powered mechanical transmission control system via triboelectric nanogenerator and electrorheological fluid composed soft starter. , 2023, 2, e9120066.		6
140	Bioinspired optical and electrical dual-responsive heart-on-a-chip for hormone testing. Science Bulletin, 2023, 68, 938-945.	4.3	9
141	Fiber Crossbars: An Emerging Architecture of Smart Electronic Textiles. Advanced Materials, 2023, 35, .	11.1	5
142	Advanced and Smart Textiles during and after the COVID-19 Pandemic: Issues, Challenges, and Innovations. Healthcare (Switzerland), 2023, 11, 1115.	1.0	3
143	Conducting Yarn based Capacitive Humidity Sensor. , 2023, , .		0
151	Biomolecular sensors for advanced physiological monitoring., 2023, 1, 560-575.		16
164	Design, fabrication and assembly considerations for electronic systems made of fibre devices. Nature Reviews Materials, 2023, 8, 552-561.	23.3	10

#	Article	IF	CITATIONS
170	Cellulose processing in ionic liquids from a materials science perspective: turning a versatile biopolymer into the cornerstone of our sustainable future. Green Chemistry, 2023, 25, 5338-5389.	4.6	8
174	Smart fibers and textiles for emerging clothe-based wearable electronics: materials, fabrications and applications. Journal of Materials Chemistry A, 2023, 11, 17336-17372.	5.2	11
177	Smart textiles for self-powered biomonitoring. , 2023, 1, .		38
185	Bioinspired nanomaterials for wearable sensing and human-machine interfacing. Nano Research, 2024, 17, 445-461.	5.8	3
186	Sustainable electronic textiles towards scalable commercialization. Nature Materials, 2023, 22, 1294-1303.	13.3	15
191	Functional material-mediated wireless physical stimulation for neuro-modulation and regeneration. Journal of Materials Chemistry B, O, , .	2.9	O
198	Hierarchical Fermat helix-structured electrochemical sensing fibers enable sweat capture and multi-biomarker monitoring. Materials Horizons, 0, , .	6.4	1
207	Advancing healthcare applications: wearable sensors utilizing metal–organic frameworks. Sensors & Diagnostics, 0, , .	1.9	O
223	Fiber- and Textile-Based Triboelectric Nanogenerators. , 2023, , 851-889.		0
230	ELECTRICAL RESISTIVITY DISTRIBUTION ANALYSIS FOR TEXTILE STRUCTURES BASED ON COPPER YARNS. , 2023, , .		O
232	In-ear electrophysichochemical sensing. Nature Biomedical Engineering, 2023, 7, 1207-1209.	11.6	2
234	BioWeave: Weaving Thread-Based Sweat-Sensing On-Skin Interfaces. , 2023, , .		O
252	Hand-drawing perovskite devices. Nature Photonics, 2023, 17, 928-930.	15.6	1
255	Artificial intelligence-powered electronic skin. Nature Machine Intelligence, 2023, 5, 1344-1355.	8.3	4
277	Can e-textiles make their way into mass production?. , 2024, 1, 4-5.		0