Comparative study of convolutional neural network (CI (SVM) for flood susceptibility mapping: a case study at I

Geocarto International 37, 11088-11115

DOI: 10.1080/10106049.2022.2046866

Citation Report

#	Article	IF	CITATIONS
1	Multi-hazard susceptibility mapping based on Convolutional Neural Networks. Geoscience Frontiers, 2022, 13, 101425.	8.4	36
2	Effective delineation of rare metal-bearing granites from remote sensing data using machine learning methods: A case study from the Umm Naggat Area, Central Eastern Desert, Egypt. Ore Geology Reviews, 2022, 150, 105184.	2.7	15
3	Comparison of Machine Learning Algorithms for Flood Susceptibility Mapping. Remote Sensing, 2023, 15, 192.	4.0	22
4	Cross-modal change detection flood extraction based on convolutional neural network. International Journal of Applied Earth Observation and Geoinformation, 2023, 117, 103197.	1.9	6
6	A coordinated drainage and regulation model of urban water systems in China: A case study in Fuzhou city. , 2023, 2, 5-20.		2
8	A Multi-Criteria Decision Analysis (MCDA) Approach for Landslide Susceptibility Mapping of a Part of Darjeeling District in North-East Himalaya, India. Applied Sciences (Switzerland), 2023, 13, 5062.	2.5	6
9	Flood susceptibility modeling of the Karnali river basin of Nepal using different machine learning approaches. Geomatics, Natural Hazards and Risk, 2023, 14, .	4.3	5
10	The State of the Art in Deep Learning Applications, Challenges, and Future Prospects: A Comprehensive Review of Flood Forecasting and Management. Sustainability, 2023, 15, 10543.	3.2	21
11	Data-driven approaches to built environment flood resilience: A scientometric and critical review. Advanced Engineering Informatics, 2023, 57, 102085.	8.0	1
12	Applying a 1D Convolutional Neural Network in Flood Susceptibility Assessments—The Case of the Island of Euboea, Greece. Remote Sensing, 2023, 15, 3471.	4.0	2
13	Flood-Prone Zones of Meandering Rivers: Machine Learning Approach and Considering the Role of Morphology (Kashkan River, Western Iran). Geosciences (Switzerland), 2023, 13, 267.	2.2	0
14	A novel semantic segmentation approach based on U-Net, WU-Net, and U-Net++ deep learning for predicting areas sensitive to pluvial flood at tropical area. International Journal of Digital Earth, 2023, 16, 3661-3679.	3.9	2
15	Flood susceptibility prediction using MaxEnt and frequency ratio modeling for Kokcha River in Afghanistan. Natural Hazards, 0, , .	3.4	0
16	Risk assessment of flood disasters in the Poyang lake area. International Journal of Disaster Risk Reduction, 2024, 100, 104208.	3.9	0
17	Novel optimized deep learning algorithms and explainable artificial intelligence for storm surge susceptibility modeling and management in a flood-prone island. Natural Hazards, 2024, 120, 5099-5128.	3.4	0
18	Leveraging machine learning and open-source spatial datasets to enhance flood susceptibility mapping in transboundary river basin. International Journal of Digital Earth, 2024, 17, .	3.9	0
19	Comparative study for coastal aquifer vulnerability assessment using deep learning and metaheuristic algorithms. Environmental Science and Pollution Research, 2024, 31, 24235-24249.	5.3	0
20	Enhancing Flood Susceptibility Modeling: a Hybrid Deep Neural Network with Statistical Learning Algorithms for Predicting Flood Prone Areas. Water Resources Management, 0, , .	3.9	0