Biomaterials for Hemostasis

Annual Review of Biomedical Engineering 24, 111-135 DOI: 10.1146/annurev-bioeng-012521-101942

Citation Report

#	Article	IF	CITATIONS
1	Biodegradable Polymer Nanosheets Incorporated with Zn-Containing Nanoparticles for Biomedical Applications. Materials, 2022, 15, 8101.	2.9	1
2	Advances in Hemostatic Hydrogels That Can Adhere to Wet Surfaces. Gels, 2023, 9, 2.	4.5	12
3	Hydrophobic aerogel-modified hemostatic gauze with thermal management performance. Bioactive Materials, 2023, 26, 142-158.	15.6	3
4	A polymerâ€based systemic hemostat for managing uncontrolled bleeding. Bioengineering and Translational Medicine, 2023, 8, .	7.1	2
5	Chitosan-Based Hemostatic Hydrogels: The Concept, Mechanism, Application, and Prospects. Molecules, 2023, 28, 1473.	3.8	31
6	Short Peptide Nanofiber Biomaterials Ameliorate Local Hemostatic Capacity of Surgical Materials and Intraoperative Hemostatic Applications in Clinics. Advanced Materials, 2023, 35, .	21.0	5
7	4D Light-sheet imaging and interactive analysis of cardiac contractility in zebrafish larvae. APL Bioengineering, 2023, 7, .	6.2	2
8	Biocompatibility of Membranes Based on a Mixture of Chitosan and Lythri herba Aqueous Extract. Applied Sciences (Switzerland), 2023, 13, 8023.	2.5	0
9	Bacteriosynthetic Degradable Tranexamic Acidâ€Functionalized Short Fibers for Inhibiting Invisible Hemorrhage. Small, 2023, 19, .	10.0	1
10	Gelable and Adhesive Powder for Lethal Non ompressible Hemorrhage Control. Advanced Functional Materials, 2023, 33, .	14.9	6
11	Gelatin Sponges with a Uniform Interoperable Pore Structure and Biodegradability for Liver Injury Hemostasis and Tissue Regeneration. Biomacromolecules, 2023, 24, 5313-5327.	5.4	1
12	Progress and future prospects of hemostatic materials based on nanostructured clay minerals. Biomaterials Science, 0, , .	5.4	3
13	Biomaterials and other adjuncts for pediatric hemostasis. , 2024, , 289-303.		0
14	Chemical modification of chitosan for developing of new hemostatic materials: A review. International Journal of Biological Macromolecules, 2023, 253, 127608.	7.5	0
15	Novel microneedle platforms for the treatment of wounds by drug delivery: A review. Colloids and Surfaces B: Biointerfaces, 2024, 233, 113636.	5.0	0
16	Influence of Lavender Essential Oil on the Physical and Antibacterial Properties of Chitosan Sponge for Hemostatic Applications. International Journal of Molecular Sciences, 2023, 24, 16312.	4.1	0
17	Preparation and Application of Hemostatic Hydrogels. Small, 0, , .	10.0	1
18	Wound microenvironment-responsive dually cross-linked nanofibrillar peptide hydrogels for efficient hemostatic control and multi-faceted wound management. International Journal of Biological Macromolecules, 2024, 259, 129133.	7.5	0

#	Article	IF	CITATIONS
19	State of the art, trends, hotspots, and prospects of injection materials for controlling bleeding. International Wound Journal, 2024, 21, .	2.9	0
20	Chitosan-based injectable hydrogel with multifunction for wound healing: A critical review. Carbohydrate Polymers, 2024, 333, 121952.	10.2	Ο

CITATION REPORT