Inflammation and immune dysfunction in Parkinson di

Nature Reviews Immunology 22, 657-673 DOI: 10.1038/s41577-022-00684-6

Citation Report

#	Article	IF	CITATIONS
1	Convergence of signalling pathways in innate immune responses and genetic forms of Parkinson's disease. Neurobiology of Disease, 2022, 169, 105721.	2.1	6
2	Neuromelanin in Parkinson's Disease: Tyrosine Hydroxylase and Tyrosinase. International Journal of Molecular Sciences, 2022, 23, 4176.	1.8	32
3	A Calixarene Assembly Strategy of Combined Anti-Neuroinflammation and Drug Delivery Functions for Traumatic Brain Injury Therapy. Molecules, 2022, 27, 2967.	1.7	4
4	Parkinson's Disease-Specific Autoantibodies against the Neuroprotective Co-Chaperone STIP1. Cells, 2022, 11, 1649.	1.8	4
5	The Role of Human Herpesvirus 6 Infection in Alzheimer's Disease Pathogenicity—A Theoretical Mosaic. Journal of Clinical Medicine, 2022, 11, 3061.	1.0	10
6	Modern Concepts in Cardiovascular Disease: Inflamm-Aging. Frontiers in Cell and Developmental Biology, 2022, 10, .	1.8	12
8	Age-Related Midbrain Inflammation and Senescence in Parkinson's Disease. Frontiers in Aging Neuroscience, 0, 14, .	1.7	12
9	Alpha-synuclein and tau are abundantly expressed in the ENS of the human appendix and monkey cecum. PLoS ONE, 2022, 17, e0269190.	1.1	2
10	WHOPPA Enables Parallel Assessment of Leucine-Rich Repeat Kinase 2 and Glucocerebrosidase Enzymatic Activity in Parkinson's Disease Monocytes. Frontiers in Cellular Neuroscience, 0, 16, .	1.8	13
11	The Gut Microbiome–Brain Crosstalk in Neurodegenerative Diseases. Biomedicines, 2022, 10, 1486.	1.4	20
12	Central and Peripheral Inflammation: Connecting the Immune Responses of Parkinson's Disease. Journal of Parkinson's Disease, 2022, 12, S129-S136.	1.5	9
13	Angiotensin type-1 receptor and ACE2 autoantibodies in Parkinson´s disease. Npj Parkinson's Disease, 2022, 8, .	2.5	13
15	Exploration of the Common Gene Characteristics and Molecular Mechanism of Parkinson's Disease and Crohn's Disease from Transcriptome Data. Brain Sciences, 2022, 12, 774.	1.1	3
16	Effects of Respiratory Muscle Strength Training on Respiratory-Related Impairments of Parkinson's Disease. Frontiers in Aging Neuroscience, 0, 14, .	1.7	4
17	Sarcopenia and nervous system disorders. Journal of Neurology, 2022, 269, 5787-5797.	1.8	12
18	Mitochondrial control of inflammation. Nature Reviews Immunology, 2023, 23, 159-173.	10.6	199
19	Interplay of cGAS with micronuclei: Regulation and diseases. Mutation Research - Reviews in Mutation Research, 2022, 790, 108440.	2.4	7
20	Neuro-immune interactions at single-cell resolution in neurodevelopmental, infectious, and neurodegenerative diseases. Animal Cells and Systems, 2022, 26, 137-147.	0.8	5

#	Article	IF	Citations
21	Identification of Immune-Related Hub Genes in Parkinson's Disease. Frontiers in Genetics, 0, 13, .	1.1	6
22	Could Embryonic Cerebrospinal Fluid Direct the Fate of Hair Follicle Stem Cells towards Dopaminergic Neurons to Treat Parkinson's Disease?. Stem Cell Reviews and Reports, 2022, 18, 3115-3117.	1.7	2
23	Increased <scp>phosphoâ€AKT</scp> in blood cells from <scp> <i>LRRK2</i> G2019S </scp> mutation carriers. Annals of Neurology, 0, , .	2.8	0
24	Paraquat exposure induces Parkinsonism by altering lipid profile and evoking neuroinflammation in the midbrain. Environment International, 2022, 169, 107512.	4.8	13
25	Identification and validation of key molecules associated with humoral immune modulation in Parkinson's disease based on bioinformatics. Frontiers in Immunology, 0, 13, .	2.2	3
26	Bioinspired shark skin-based liquid metal triboelectric nanogenerator for self-powered gait analysis and long-term rehabilitation monitoring. Nano Energy, 2022, 104, 107852.	8.2	25
28	The role of protein arginine N-methyltransferases in inflammation. Seminars in Cell and Developmental Biology, 2024, 154, 208-214.	2.3	6
29	Crosstalk between neurological, cardiovascular, and lifestyle disorders: insulin and lipoproteins in the lead role. Pharmacological Reports, 0, , .	1.5	0
32	GBA1 and The Immune System: A Potential Role in Parkinson's Disease?. Journal of Parkinson's Disease, 2022, 12, S53-S64.	1.5	3
34	Increased PRR14 and VCAM-1 level in serum of patients with Parkinson's disease. Frontiers in Neurology, 0, 13, .	1.1	1
37	Medicinal chemistry perspective on cGAS-STING signaling pathway with small molecule inhibitors. European Journal of Medicinal Chemistry, 2022, 244, 114791.	2.6	13
38	[18F]NOS PET Brain Imaging Suggests Elevated Neuroinflammation in Idiopathic Parkinson's Disease. Cells, 2022, 11, 3081.	1.8	2
39	Fucosylated Chondroitin Sulfate against Parkinson's Disease through Inhibiting Inflammation Induced by Gut Dysbiosis. Journal of Agricultural and Food Chemistry, 2022, 70, 13676-13691.	2.4	1
40	Encapsulation of MSCs and GDNF in an Injectable Nanoreinforced Supramolecular Hydrogel for Brain Tissue Engineering. Biomacromolecules, 2022, 23, 4629-4644.	2.6	6
41	The Emerging Roles of E3 Ligases and DUBs in Neurodegenerative Diseases. Molecular Neurobiology, 2023, 60, 247-263.	1.9	4
42	Association of Glial Activation and α-Synuclein Pathology in Parkinson's Disease. Neuroscience Bulletin, 2023, 39, 479-490.	1.5	11
43	Cellular Models of Alpha-Synuclein Aggregation: What Have We Learned and Implications for Future Study. Biomedicines, 2022, 10, 2649.	1.4	4
45	Involvement of Intestinal Enteroendocrine Cells in Neurological and Psychiatric Disorders. Biomedicines, 2022, 10, 2577.	1.4	6

CITATION REPORT

Сіт	ΑΤΙ	ON	RF	PO	RΤ
U 11	/ \		- NCL		IC I

#	Article	IF	CITATIONS
46	Hibiscetin attenuates oxidative, nitrative stress and neuroinflammation via suppression of TNF-α signaling in rotenone induced parkinsonism in rats. Saudi Pharmaceutical Journal, 2022, 30, 1710-1717.	1.2	3
47	Dysregulation of Circulatory Levels of IncRNAs in Parkinson's Disease. Molecular Neurobiology, 2023, 60, 317-328.	1.9	8
48	Hydrogels for brain repair: application to Parkinson's disease. Expert Opinion on Drug Delivery, 2022, 19, 1521-1537.	2.4	0
49	The pathobiological basis of depression in Parkinson disease: challenges and outlooks. Journal of Neural Transmission, 2022, 129, 1397-1418.	1.4	15
50	Inflammatory pathophysiological mechanisms implicated in postpartum depression. Frontiers in Pharmacology, 0, 13, .	1.6	4
51	Squarate-Based Metal-Organic Frameworks for Highly Selective and Sensitive Electrochemical Sensing of Dopamine. Journal of the Electrochemical Society, 2022, 169, 116504.	1.3	2
52	Relationship between CRP gene polymorphisms and ischemic stroke risk: A systematic review and meta-analysis. Open Life Sciences, 2022, 17, 1519-1530.	0.6	0
53	Neuroprotective effects of fermented tea in MPTP-induced Parkinson's disease mouse model via MAPK signaling-mediated regulation of inflammation and antioxidant activity. Food Research International, 2023, 164, 112133.	2.9	4
54	The multitaskers of the brain: Glial responses to viral infections and associated postâ€infectious neurologic sequelae. Glia, 2023, 71, 803-818.	2.5	6
55	Major advances in Parkinson's disease over the past two decades and future research directions. Lancet Neurology, The, 2022, 21, 1076-1079.	4.9	4
56	Vitamin D3 actions on astrocyte cells: A target for therapeutic strategy in Parkinson's disease?. Neuroscience Letters, 2023, 793, 136997.	1.0	3
57	Microbiota-immune-brain interactions: A lifespan perspective. Current Opinion in Neurobiology, 2023, 78, 102652.	2.0	19
58	Exosomes based strategies for brain drug delivery. Biomaterials, 2023, 293, 121949.	5.7	27
59	Mitochondrial signaling on innate immunity activation in Parkinson disease. Current Opinion in Neurobiology, 2023, 78, 102664.	2.0	5
60	AT1 receptor autoantibodies mediate effects of metabolic syndrome on dopaminergic vulnerability. Brain, Behavior, and Immunity, 2023, 108, 255-268.	2.0	4
61	Should patients with Parkinson's disease only visit a neurologist's office? - a narrative review of neuropsychiatric disorders among people with Parkinson's disease. Current Problems of Psychiatry, 2022, 23, 220-236.	0.1	0
62	A Single Chain Fragment Variant Binding Misfolded Alpha-Synuclein Exhibits Neuroprotective and Antigen-Specific Anti-Inflammatory Properties. Cells, 2022, 11, 3822.	1.8	4
64	Type 2 Diabetes and Parkinson's Disease: A Focused Review of Current Concepts. Movement Disorders, 2023, 38, 162-177.	2.2	8

		CITATION REPORT		
#	Article		IF	CITATIONS
65	\hat{I} ±-Synuclein in synaptic function and dysfunction. Trends in Neurosciences, 2023, 46, 153-166.		4.2	26
66	Impaired migratory phenotype of CD4+ T cells in Parkinson's disease. Npj Parkinson's Diseas	e, 2022, 8, .	2.5	7
67	The Neurotoxin DSP-4 Dysregulates the Locus Coeruleus-Norepinephrine System and Recapitula Molecular and Behavioral Aspects of Prodromal Neurodegenerative Disease. ENeuro, 2023, 10, ENEURO.0483-22.2022.	tes	0.9	9
68	Neuroinflammation, immune response and α-synuclein pathology: how animal models are helpir connect dots. Expert Opinion on Drug Discovery, 2023, 18, 13-23.	ig us to	2.5	1
70	The gut microbiota is an emerging target for improving brain health during ageing. Gut Microbio 2023, 4, .	me,	0.8	9
71	Inflammatory microbes and genes as potential biomarkers of Parkinson's disease. Npj Biofiln Microbiomes, 2022, 8, .	ns and	2.9	9
72	Toll-like receptors and NLRP3 inflammasome-dependent pathways in Parkinson's disease: me and therapeutic implications. Journal of Neurology, 2023, 270, 1346-1360.	chanisms	1.8	8
73	Iron-induced cytotoxicity mediated by endolysosomal TRPML1 channels is reverted by TFEB. Cell and Disease, 2022, 13, .	Death	2.7	1
74	Intranasal Rotenone Induces Alpha-Synuclein Accumulation, Neuroinflammation and Dopaminer Neurodegeneration in Middle-Aged Mice. Neurochemical Research, 2023, 48, 1543-1560.	gic	1.6	1
75	Advances in NURR1-Regulated Neuroinflammation Associated with Parkinson's Disease. Inte Journal of Molecular Sciences, 2022, 23, 16184.	rnational	1.8	7
76	Progranulin loss results in sex-dependent dysregulation of the peripheral and central immune sys Frontiers in Immunology, 0, 13, .	stem.	2.2	11
78	Age-Related Changes of the Synucleins Profile in the Mouse Retina. Biomolecules, 2023, 13, 180		1.8	Ο
79	Editorial: Glial cells and immune cells in neuroinflammatory and neurodegenerative diseases. Frontiers in Aging Neuroscience, 0, 14, .		1.7	1
80	Chiral Se@CeO ₂ superparticles for ameliorating Parkinson's disease. Nanoscale, 20 4367-4377.	23, 15,	2.8	4
81	On the Chemical and Biological Characteristics of Multifunctional Compounds for the Treatment Parkinson's Disease. Antioxidants, 2023, 12, 214.	: of	2.2	7
82	The association between Parkinson's disease and autoimmune diseases: A systematic review meta-analysis. Frontiers in Immunology, 0, 14,	and	2.2	10
83	The Interplay between α-Synuclein and Microglia in α-Synucleinopathies. International Journal o Molecular Sciences, 2023, 24, 2477.	f	1.8	9
84	Peripheral inflammatory immune response differs among sporadic and familial Parkinson's di Parkinson's Disease, 2023, 9, .	sease. Npj	2.5	10

#	Article	IF	CITATIONS
85	Parkinson's Disease Gene Biomarkers Screened by the LASSO and SVM Algorithms. Brain Sciences, 2023, 13, 175.	1.1	4
86	Discovery of novel 2-(4-(benzyloxy)-5-(hydroxyl) phenyl) benzothiazole derivatives as multifunctional MAO-B inhibitors for the treatment of Parkinson's disease. Journal of Enzyme Inhibition and Medicinal Chemistry, 2023, 38, .	2.5	1
87	Increased Risk of Aging-Related Neurodegenerative Disease after Traumatic Brain Injury. Biomedicines, 2023, 11, 1154.	1.4	6
88	The pollutome-connectome axis: a putative mechanism to explain pollution effects on neurodegeneration. Ageing Research Reviews, 2023, 86, 101867.	5.0	4
89	Understanding the involvement of innate immunity and the Nrf2-NLRP3 axis on mitochondrial health in Parkinson's disease. Ageing Research Reviews, 2023, 87, 101915.	5.0	11
90	Complement system changes in blood in Parkinson's disease and progressive Supranuclear Palsy/Corticobasal Syndrome. Parkinsonism and Related Disorders, 2023, 108, 105313.	1.1	3
91	NLRP3 Inflammasome-Mediated Neuroinflammation and Related Mitochondrial Impairment in Parkinson's Disease. Neuroscience Bulletin, 2023, 39, 832-844.	1.5	11
92	Translational molecular imaging and drug development in Parkinson's disease. Molecular Neurodegeneration, 2023, 18, .	4.4	11
93	Systemic lupus erythematosus is associated with increased risk of Parkinson's disease. Therapeutic Advances in Musculoskeletal Disease, 2023, 15, 1759720X2311526.	1.2	0
94	Evaluation of the Anti-Inflammatory Properties of Mastic Oil Extracted from Pistacia lentiscus var. chia. Immuno, 2023, 3, 57-73.	0.6	0
95	Neurological Consequences of Pulmonary Emboli in COVID-19 Patients: A Study of Incidence and Outcomes in the Kingdom of Saudi Arabia. Brain Sciences, 2023, 13, 343.	1.1	5
96	The Role of Bacteria–Mitochondria Communication in the Activation of Neuronal Innate Immunity: Implications to Parkinson's Disease. International Journal of Molecular Sciences, 2023, 24, 4339.	1.8	2
97	Lymphocyte deficiency alters the transcriptomes of oligodendrocytes, but not astrocytes or microglia. PLoS ONE, 2023, 18, e0279736.	1.1	0
98	Mitochondrial function-associated genes underlie cortical atrophy in prodromal synucleinopathies. Brain, 2023, 146, 3301-3318.	3.7	4
99	Brain and Systemic Inflammation in De Novo Parkinson's Disease. Movement Disorders, 2023, 38, 743-754.	2.2	12
100	The neuroprotective effects of targeting key factors of neuronal cell death in neurodegenerative diseases: The role of ER stress, oxidative stress, and neuroinflammation. Frontiers in Cellular Neuroscience, 0, 17, .	1.8	14
101	Natural products targeting cellular processes common in Parkinson's disease and multiple sclerosis. Frontiers in Neurology, 0, 14, .	1.1	3
103	Multi-omics studies in interpreting the evolving standard model for immune functions. Briefings in Functional Genomics, 2024, 23, 75-81.	1.3	0

#	Article	IF	CITATIONS
104	Peripheral Inflammation Is Associated with Dopaminergic Degeneration in Parkinson's Disease. Movement Disorders, 2023, 38, 755-763.	2.2	5
105	Soluble TNF mediates amyloid-independent, diet-induced alterations to immune and neuronal functions in an Alzheimer's disease mouse model. Frontiers in Cellular Neuroscience, 0, 17, .	1.8	3
106	Infectious Microorganisms Seen as Etiologic Agents in Parkinson's Disease. Life, 2023, 13, 805.	1.1	1
107	Neuroinflammation in Parkinson's Disease: From Gene to Clinic: A Systematic Review. International Journal of Molecular Sciences, 2023, 24, 5792.	1.8	10
108	Alpha Synuclein: Neurodegeneration and Inflammation. International Journal of Molecular Sciences, 2023, 24, 5914.	1.8	11
109	Parkinson's Disease, SARS-CoV-2, and Frailty: Is There a Vicious Cycle Related to Hypovitaminosis D?. Brain Sciences, 2023, 13, 528.	1.1	4
110	Inhibiting degradation of 2-arachidonoylglycerol as a therapeutic strategy for neurodegenerative diseases. , 2023, 244, 108394.		8
111	Allogenic microglia replacement: A novel therapeutic strategy for neurological disorders. Fundamental Research, 2023, , .	1.6	3
112	Microglia Mediated Neuroinflammation in Parkinson's Disease. Cells, 2023, 12, 1012.	1.8	19
113	Activation of HCA2 regulates microglial responses to alleviate neurodegeneration in LPS-induced in vivo and in vitro models. Journal of Neuroinflammation, 2023, 20, .	3.1	6
114	Progressive Motor and Non-Motor Symptoms in Park7 Knockout Zebrafish. International Journal of Molecular Sciences, 2023, 24, 6456.	1.8	3
115	Molecular Targets Underlying the Neuroprotective Effects of Boswellic acid: A Systematic Review. Mini-Reviews in Medicinal Chemistry, 2023, 23, .	1.1	0
116	Inflammatory hallmarks in 6-OHDA- and LPS-induced Parkinson's disease in rats. Brain, Behavior, & Immunity - Health, 2023, 30, 100616.	1.3	3
117	The cervical lymph node contributes to peripheral inflammation related to Parkinson's disease. Journal of Neuroinflammation, 2023, 20, .	3.1	5
118	Microglia and Astrocytes Dysfunction and Key Neuroinflammation-Based Biomarkers in Parkinson's Disease. Brain Sciences, 2023, 13, 634.	1.1	7
119	Deletion of Calhm2 alleviates MPTP-induced Parkinson's disease pathology by inhibiting EFHD2-STAT3 signaling in microglia. Theranostics, 2023, 13, 1809-1822.	4.6	4
120	Immunological Features of LRRK2 Function and Its Role in the Gut-Brain Axis Governing Parkinson's Disease. Journal of Parkinson's Disease, 2023, 13, 279-296.	1.5	2
121	Lactate metabolism in neurodegenerative diseases. Neural Regeneration Research, 2024, 19, 69-74.	1.6	6

	Стато	CITATION REPORT	
#	Article	IF	CITATIONS
124	The Potential Regulation of A-to-I RNA Editing on Genes in Parkinson's Disease. Genes, 2023, 14, 919.	1.0	3
125	Bioactive Compounds of the Mediterranean Diet as Nutritional Support to Fight Neurodegenerative Disease. International Journal of Molecular Sciences, 2023, 24, 7318.	1.8	10
126	PARK7/DJ-1 in microglia: implications in Parkinson's disease and relevance as a therapeutic target. Journal of Neuroinflammation, 2023, 20, .	3.1	5
127	Programmed ageing: decline of stem cell renewal, immunosenescence, and Alzheimer's disease. Biological Reviews, 2023, 98, 1424-1458.	4.7	12
128	Air pollution nanoparticle and alpha-synuclein fibrils synergistically decrease glutamate receptor A1, depending upon nPM batch activity. Heliyon, 2023, 9, e15622.	1.4	0
134	Novel Reinforcement Learning Algorithm for Suppressing Synchronization in Closed Loop Deep Brain Stimulators. , 2023, , .		0
139	Targeting Sigma-1 Receptor: A Promising Strategy in the Treatment of Parkinson's Disease. Neurochemical Research, 2023, 48, 2925-2935.	1.6	5
154	An update on pathogenesis and clinical scenario for Parkinson's disease: diagnosis and treatment. 3 Biotech, 2023, 13, .	1.1	2
155	Matrine exerts its neuroprotective effects by modulating multiple neuronal pathways. Metabolic Brain Disease, 2023, 38, 1471-1499.	1.4	3
159	Gastrointestinal disorders in Parkinson's disease and other Lewy body diseases. Npj Parkinson's Disease, 2023, 9, .	2.5	3
161	Biomolecule-protected gold nanoclusters: synthesis and biomedical applications. Journal of Materials Chemistry B, 2023, 11, 5051-5070.	2.9	7
167	Perspective on the current state of the LRRK2 field. Npj Parkinson's Disease, 2023, 9, .	2.5	10
172	Role of neuroinflammation in neurodegeneration development. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	62
179	Co-administration of Nanowired DL-3-n-Butylphthalide (DL-NBP) Together with Mesenchymal Stem Cells, Monoclonal Antibodies to Alpha Synuclein and TDP-43 (TAR DNA-Binding Protein 43) Enhance Superior Neuroprotection in Parkinson's Disease Following Concussive Head Injury. Advances in Neurobiology, 2023, , 97-138.	1.3	0
186	Exploring Federated Learning for Speech-based Parkinson's Disease Detection. , 2023, , .		1
194	Neuroinflammation Imaging in Neurodegenerative Diseases. , 2023, , 145-155.		0
197	Markers of Neurodegeneration in Parkinson's Disease. Neurochemical Journal, 2023, 17, 338-348.	0.2	0
207	Small-molecule fluorescent probes for bioactive species in inflammatory disease: arthritis, pneumonia and hepatitis. Analyst, The, 2023, 148, 5303-5321.	1.7	0

CITATION REPORT

#	Article	IF	CITATIONS
208	The link between the gut microbiome, inflammation, and Parkinson's disease. Applied Microbiology and Biotechnology, 2023, 107, 6737-6749.	1.7	1
229	Inflammation Biomarkers in Huntington's Disease. Contemporary Clinical Neuroscience, 2023, , 277-304.	0.3	0
276	Neuroinflammation and Immune Dysfunction in the Mechanisms of Development of Parkinson's Disease. Neuroscience and Behavioral Physiology, 0, , .	0.2	0
298	Association of grip strength and walking pace with the risk of incident Parkinson's disease: a prospective cohort study of 422,531 participants. Journal of Neurology, 0, , .	1.8	0
303	Some Advanced Biomarkers of Neurodegenerative Disorders: Focus on Cystatin C. Neurochemical Journal, 2023, 17, 509-515.	0.2	0
341	Identification of Parkinson's Disease Associated Genes Through Explicable Deep Learning and Bioinformatic. Communications in Computer and Information Science, 2024, , 136-146.	0.4	0