What is Next in Anionâ€Exchange Membrane Water Ele Future

ChemSusChem 15, DOI: 10.1002/cssc.202200027

Citation Report

#	Article	IF	CITATIONS
1	What is Next in Anionâ€Exchange Membrane Water Electrolyzers? Bottlenecks, Benefits, and Future. ChemSusChem, 2022, 15, .	6.8	77
2	Electrochemical Water Splitting: Bridging the Gaps Between Fundamental Research and Industrial Applications. Energy and Environmental Materials, 2023, 6, .	12.8	89
3	Review—Recent Developments in the Applications of 2D Transition Metal Dichalcogenides as Electrocatalysts in the Generation of Hydrogen for Renewable Energy Conversion. Journal of the Electrochemical Society, 2022, 169, 064504.	2.9	19
4	Improving poly(arylene piperidinium) anion exchange membranes by monomer design. Journal of Materials Chemistry A, 2022, 10, 16478-16489.	10.3	36
5	Valorization of the inedible pistachio shells into nanoscale transition metal and nitrogen codoped carbon-based electrocatalysts for hydrogen evolution reaction and oxygen reduction reaction. Materials for Renewable and Sustainable Energy, 2022, 11, 131-141.	3.6	20
6	Anode Catalysts in Anionâ€Exchangeâ€Membrane Electrolysis without Supporting Electrolyte: Conductivity, Dynamics, and Ionomer Degradation. Advanced Materials, 2022, 34, .	21.0	42
7	A Step Forward: Hydrogen Production on Cobalt Molybdenum Sulfide Electrocatalyst in Anion Exchange Membrane Water Electrolyzer. ACS Applied Energy Materials, 2022, 5, 10396-10401.	5.1	3
8	On the Radicalâ€Induced Degradation of Quaternary Ammonium Cations for Anionâ€Exchange Membrane Fuel Cells and Electrolyzers. ChemSusChem, 2022, 15, .	6.8	7
9	Inâ€situ Electrochemical Transformed Cu Oxide from Cu Sulfide for Efficient Upgrading of Biomass Derived 5â€Hydroxymethylfurfural in Anion Exchange Membrane Electrolyzer. ChemSusChem, 2022, 15, .	6.8	8
10	Application of Thermal Spray Coatings in Electrolysers for Hydrogen Production: Advances, Challenges, and Opportunities. ChemNanoMat, 2022, 8, .	2.8	7
11	Structural-enhanced bacterial cellulose based alkaline exchange membranes for highly selective CO2 electrochemical reduction and excellent conductive performance in flexible zinc-air batteries. Chemical Engineering Journal, 2023, 454, 139807.	12.7	7
12	Coupling Valueâ€Added Anodic Reactions with Electrocatalytic CO ₂ Reduction. Chemistry - A European Journal, 2023, 29, .	3.3	4
13	NiFe2O4 hierarchical nanoparticles as electrocatalyst for anion exchange membrane water electrolysis. Journal of Power Sources, 2023, 556, 232417.	7.8	18
14	Highly Efficient and Durable Anion Exchange Membrane Water Electrolyzer Enabled by a Fe–Ni ₃ S ₂ Anode Catalyst. Advanced Energy and Sustainability Research, 2023, 4, .	5.8	6
15	Impact of Catalyst Reconstruction on the Durability of Anion Exchange Membrane Water Electrolysis. ACS Sustainable Chemistry and Engineering, 2022, 10, 16725-16733.	6.7	12
16	Anion Exchange Membrane Water Electrolysis Based on Nickel Ferrite Catalysts. ChemElectroChem, 2023, 10, .	3.4	12
17	Development of Anion Exchange Membrane Water Electrolysis and the Associated Challenges: A Review. ChemElectroChem, 2023, 10, .	3.4	15
18	Alkali-Stable Anion Exchange Membranes Based on Poly(xanthene). ACS Macro Letters, 2023, 12, 20-25.	4.8	14

CITATION REPORT

#	Article	IF	CITATIONS
19	Aquivion-based anion exchange membranes: Synthesis optimization via dispersant agents and reaction time. Chemical Engineering Journal, 2023, 455, 140765.	12.7	3
20	Green Hydrogen Production by Anion Exchange Membrane Water Electrolysis: Status and Future Perspectives. Energies, 2023, 16, 943.	3.1	12
21	Synthesis and Characterization of a Composite Anion Exchange Membrane for Water Electrolyzers (AEMWE). Membranes, 2023, 13, 109.	3.0	7
22	Progress in constructing high-performance anion exchange Membrane: Molecular design, microphase controllability and In-device property. Chemical Engineering Journal, 2023, 457, 141094.	12.7	18
23	Bubble evolution and transport in PEM water electrolysis: Mechanism, impact, and management. Progress in Energy and Combustion Science, 2023, 96, 101075.	31.2	54
24	Tailoring Ni-Fe-Se film on Ni foam via electrodeposition optimization for efficient oxygen evolution reaction. Electrochimica Acta, 2023, 451, 142294.	5.2	4
25	State-of-the-art hydrogen generation techniques and storage methods: A critical review. Journal of Energy Storage, 2023, 64, 107196.	8.1	61
26	Morpholiniumâ€Modified, Polyketoneâ€Based Anion Exchange Membranes for Water Electrolysis. ChemElectroChem, 2023, 10, .	3.4	6
27	Key components and design strategy of the membrane electrode assembly for alkaline water electrolysis. Energy and Environmental Science, 2023, 16, 1384-1430.	30.8	49
28	Tuning Alkaline Anion Exchange Membranes through Crosslinking: A Review of Synthetic Strategies and Property Relationships. Polymers, 2023, 15, 1534.	4.5	9
29	Giving New Life to Waste Cigarette Butts: Transformation into Platinum Group Metal-Free Electrocatalysts for Oxygen Reduction Reaction in Acid, Neutral and Alkaline Environment. Catalysts, 2023, 13, 635.	3.5	4
30	Litchiâ€derived platinum group metalâ€free electrocatalysts for oxygen reduction reaction and hydrogen evolution reaction in alkaline media. SusMat, 2023, 3, 248-262.	14.9	8
31	Electrode Separators for the Next-Generation Alkaline Water Electrolyzers. ACS Energy Letters, 2023, 8, 1900-1910.	17.4	14
32	In-situ spectroelectrochemical study of highly active Ni-based foam electrocatalysts for hydrogen evolution reaction. Applied Catalysis B: Environmental, 2023, 336, 122930.	20.2	9
33	Dynamic operation of water electrolyzers: A review for applications in photovoltaic systems integration. Renewable and Sustainable Energy Reviews, 2023, 182, 113407.	16.4	5
34	Start–Stop Cyclic Durability Analysis of Membrane–Electrode Assemblies Using Polyflourene-Based Electrolytes for an Anion-Exchange Membrane Water Electrolyzer. ACS Sustainable Chemistry and Engineering, 2023, 11, 9295-9302.	6.7	2
35	Durable and highly-efficient anion exchange membrane water electrolysis using poly(biphenyl) Tj ETQq0 0 0 rgBT	/Overlock 12.7	10 Tf 50 102

Stainless Steel Felt as a Combined OER Electrocatalyst/Porous Transport Layer for Investigating Anion-Exchange Membranes in Water Electrolysis. ACS Energy Letters, 2023, 8, 2661-2667.

17.4 7

#	Article	IF	Citations
37	Membranes for hydrogen rainbow toward industrial decarbonization: Status, challenges and perspectives from materials to processes. Chemical Engineering Journal, 2023, 470, 144328.	12.7	1
38	Anion Exchange Membrane Water Electrolyzers: An Overview. Journal of Chemical Engineering of Japan, 2023, 56, .	0.6	2
39	Degradation of QPPO-based anion polymer electrolyte membrane at neutral pH. RSC Advances, 2023, 13, 20235-20242.	3.6	1
40	Three-dimensionally ordered macroporous trimetallic spinel for anion exchange membrane water electrolysis. Electrochimica Acta, 2023, 463, 142851.	5.2	1
41	Microwave-assisted synthesis of carbon-supported Pt nanoparticles for their use as electrocatalysts in the oxygen reduction reaction and hydrogen evolution reaction. Electrochimica Acta, 2023, 464, 142871.	5.2	9
42	Effects of the Hydrophobic Block Length Ratio of Poly(vinylbenzyl <i>N</i> methylpiperidinium) Tj ETQq1 1 0.78 Block Copolymers for Anion Exchange Membrane Electrolysis. ACS Applied Polymer Materials, 2023, 5, 5834-5845	4314 rgB1 4.4	[Overlock] 2
43	Mono-, bi- and tri-metallic platinum group metal-free electrocatalysts for hydrogen evolution reaction following a facile synthetic route. , 2023, 1, 343-359.		3
44	Opportunities of lonomer Development for Anion-Exchange Membrane Water Electrolysis. ACS Energy Letters, 2023, 8, 3330-3342.	17.4	10
45	High-performance anion exchange membranes based on poly(aryl piperidinium): With interpenetrating ion transport channels induced by fluorinated crosslinking and side chains. Fuel, 2024, 357, 129686.	6.4	1
46	Molybdenum disulfide as hydrogen evolution catalyst: From atomistic to materials structure and electrocatalytic performance. Journal of Energy Chemistry, 2023, 87, 256-285.	12.9	5
47	Molecular Assembly of Alkylated Fused Expanded Pyridinium for a Highly Conductive Anion-Exchange Membrane. Chemistry of Materials, 2023, 35, 8030-8038.	6.7	0
48	Effect of the calcination temperature on the characteristics of Ni/Fe-oxide electrocatalysts for application in anion exchange membrane electrolysers. , 2023, 1, 553-562.		0
49	Why today's "water―in water splitting is not natural water? Critical up-to-date perspective and future challenges for direct seawater splitting. Nano Energy, 2023, 117, 108884.	16.0	0
50	Scaling up BiVO ₄ Photoanodes on Porous Ti Transport Layers for Solar Hydrogen Production. ChemSusChem, 2024, 17, .	6.8	0
51	Screening potential anodic chemistry in lieu of the oxygen evolution reaction in electrolysis systems: the road to practical application. Energy and Environmental Science, 0, , .	30.8	0
52	Research Trend in Anion Exchange Membrane Water Electrolysis System. Journal of the KNST, 2023, 6, 240-248.	0.1	0
53	Advanced membraneâ€based electrode engineering toward efficient and durable water electrolysis and costâ€effective seawater electrolysis in membrane electrolyzers. Exploration, 2024, 4, .	11.0	3
54	Stainless steel as an electrocatalyst for overall water splitting under alkaline and neutral conditions. Journal of Electroanalytical Chemistry, 2023, 950, 117880.	3.8	1

CITATION REPORT

	CITATION	N REPORT	
# 55	ARTICLE Hydrogen Technologies: A Critical Review and Feasibility Study. Energies, 2023, 16, 5482.	IF 3.1	Citations
56	Recent progress in understanding the catalyst layer in anion exchange membrane electrolyzers – durability, utilization, and integration. , 0, , .		1
57	Dye-sensitized solar cells based on critical raw material-free Fe–N–C counter electrodes. Materials for Renewable and Sustainable Energy, 0, , .	3.6	0
58	Anion Exchange Ionomers: Design Considerations and Recent Advances ―An Electrochemical Perspective. Advanced Materials, 2024, 36, .	21.0	0
59	Environmental and material criticality assessment of hydrogen production via anion exchange membrane electrolysis. Applied Energy, 2024, 356, 122247.	10.1	1
60	Anode Reinforcement by Polydopamine Glue in Anion Exchange Membrane Water Electrolysis. ACS Energy Letters, 2023, 8, 5240-5247.	17.4	0
61	NiGraf: A new nickel-based molecularly doped metal for enhanced water electrolysis. Materials Advances, 0, , .	5.4	0
62	Computational Modeling of Hydrated Polyamine-Based Anion Exchange Membranes via Molecular Dynamics Simulation. Journal of Physical Chemistry C, O, , .	3.1	0
63	Hydroxide Conducting Membranes with Quaternary Ammonium Cations Tethered to Poly(arylene) Tj ETQq0	0 0 rgBT/Ove 6.7	rlock 10 Tf 50
64	Fabrication of a Ti-based 3D porous transport layer for PEMWEs using ShockWave-induced spraying and cold spray. Surface and Coatings Technology, 2024, 477, 130353.	4.8	0
65	Anode Engineering for Proton Exchange Membrane Water Electrolyzers. ACS Catalysis, 2024, 14, 921-954.	11.2	0
66	Non-noble metal-based electro-catalyst for the oxygen evolution reaction (OER): Towards an active & stable electro-catalyst for PEM water electrolysis. International Journal of Hydrogen Energy, 2024, 58, 556-582.	7.1	0
67	Electrostatic Potential of Functional Cations as a Predictor of Hydroxide Diffusion Pathways in Nanoconfined Environments of Anion Exchange Membranes. Journal of Physical Chemistry Letters, 2024, 15, 408-415.	4.6	0
68	Dynamically Fed Anion-Conducting Matrix-Based Water Electrolyzer. Springer Proceedings in Physics, 2024, , 234-242.	0.2	0
69	Techno-economic analysis of anion exchange membrane electrolysis process for green hydrogen production under uncertainty. Energy Conversion and Management, 2024, 302, 118134.	9.2	0
70	Surface Reconstruction of Coâ€based Catalysts for Enhanced Oxygen Evolution Activity in Anion Exchange Membrane Water Electrolysis. Advanced Functional Materials, 0, , .	14.9	0
71	Ni,Fe,Co-LDH Coated Porous Transport Layers for Zero-Gap Alkaline Water Electrolyzers. Nanomaterials, 2024, 14, 407.	4.1	0
72	Recent advancement in water electrolysis for hydrogen production: A comprehensive bibliometric analysis and technology updates. International Journal of Hydrogen Energy, 2024, 60, 780-801.	7.1	0

~			<u> </u>	
	ΙΤΔΤ	$1 \cap N$	RED	OPT
<u> </u>				

#	Article	IF	CITATIONS
73	Increased Readiness for Water Splitting: NiOâ€Induced Weakening of Bonds in Water Molecules as Possible Cause of Ultra‣ow Oxygen Evolution Potential. Small, 0, , .	10.0	0
74	Catalysts for Direct Seawater Electrolysis: Current Status and Future Prospectives. ChemElectroChem, 0, , .	3.4	0
75	Bipolar Membrane Seawater Splitting for Hydrogen Production: A Review. ACS Omega, 2024, 9, 14704-14727.	3.5	0
76	Bifunctional Electrocatalysts for Overall and Hybrid Water Splitting. Chemical Reviews, 2024, 124, 3694-3812.	47.7	0
77	Nickel nanoparticles supported on doped graphene-based materials for the ORR and HER in alkaline medium. Inorganica Chimica Acta, 2024, 566, 122008.	2.4	0