Museum of spatial transcriptomics

Nature Methods 19, 534-546 DOI: 10.1038/s41592-022-01409-2

Citation Report

#	Article	IF	CITATIONS
2	Statistical and machine learning methods for spatially resolved transcriptomics data analysis. Genome Biology, 2022, 23, 83.	3.8	66
5	Multi-Omics Techniques for Soybean Molecular Breeding. International Journal of Molecular Sciences, 2022, 23, 4994.	1.8	20
6	Spatially informed cell-type deconvolution for spatial transcriptomics. Nature Biotechnology, 2022, 40, 1349-1359.	9.4	121
9	spatialLIBD: an R/Bioconductor package to visualize spatially-resolved transcriptomics data. BMC Genomics, 2022, 23, .	1.2	50
10	A comprehensive comparison on cell-type composition inference for spatial transcriptomics data. Briefings in Bioinformatics, 2022, 23, .	3.2	15
12	An introduction to spatial transcriptomics for biomedical research. Genome Medicine, 2022, 14, .	3.6	187
13	Cell-by-Cell: Unlocking Lung Cancer Pathogenesis. Cancers, 2022, 14, 3424.	1.7	3
14	Histologically resolved multiomics enables precise molecular profiling of human intratumor heterogeneity. PLoS Biology, 2022, 20, e3001699.	2.6	6
15	Rethinking interactive image segmentation: Feature space annotation. Pattern Recognition, 2022, 131, 108882.	5.1	4
16	What is a cell type and how to define it?. Cell, 2022, 185, 2739-2755.	13.5	144
18	The emerging landscape of spatial profiling technologies. Nature Reviews Genetics, 2022, 23, 741-759.	7.7	149
21	Machine Learning in Tissue Engineering. Tissue Engineering - Part A, 2023, 29, 2-19.	1.6	14
23	Cellular and Transcriptional Heterogeneity in the Intrahepatic Biliary Epithelium. , 2023, 2, 108-120.		3
25	Computational solutions for spatial transcriptomics. Computational and Structural Biotechnology Journal, 2022, 20, 4870-4884.	1.9	30
29	Ushering in a new era of single-cell transcriptomics in bacteria. MicroLife, 2022, 3, .	1.0	21
30	Scalable in situ single-cell profiling by electrophoretic capture of mRNA using EEL FISH. Nature Biotechnology, 0, , .	9.4	28
31	RNA velocity unraveled. PLoS Computational Biology, 2022, 18, e1010492.	1.5	65
35	From multitude to singularity: An up-to-date overview of scRNA-seq data generation and analysis. Frontiers in Genetics, 0, 13, .	1.1	9

#	Article	IF	CITATIONS
36	Muscle injury induces a transient senescenceâ€like state that is required for myofiber growth during muscle regeneration. FASEB Journal, 2022, 36, .	0.2	15
37	Spatial transcriptomics tools allow for regional exploration of heterogeneous muscle pathology in the pre-clinical rabbit model of rotator cuff tear. Journal of Orthopaedic Surgery and Research, 2022, 17, .	0.9	4
38	Review: Challenges and perspectives in applying single nuclei RNA-seq technology in plant biology. Plant Science, 2022, 325, 111486.	1.7	12
39	Chemosensory ionotropic receptors in human host-seeking mosquitoes. Current Opinion in Insect Science, 2022, 54, 100967.	2.2	3
40	Aquila: a spatial omics database and analysis platform. Nucleic Acids Research, 2023, 51, D827-D834.	6.5	7
41	A Gene-Community Overview of Transcriptional Dynamics During Neurodevelopment. IFMBE Proceedings, 2023, , 104-110.	0.2	0
42	Preclinical models of radiation-induced cardiac toxicity: Potential mechanisms and biomarkers. Frontiers in Oncology, 0, 12, .	1.3	5
44	A review of spatial profiling technologies for characterizing the tumor microenvironment in immuno-oncology. Frontiers in Immunology, 0, 13, .	2.2	12
45	Elucidating tumor heterogeneity from spatially resolved transcriptomics data by multi-view graph collaborative learning. Nature Communications, 2022, 13, .	5.8	14
47	Light-Seq: light-directed in situ barcoding of biomolecules in fixed cells and tissues for spatially indexed sequencing. Nature Methods, 2022, 19, 1393-1402.	9.0	27
49	Using singleâ€cell multiâ€omics screening of human fetal pancreas to identify novel players in human beta cell development. Diabetic Medicine, 0, , .	1.2	3
50	The industrial genomic revolution: A new era in neuroimmunology. Neuron, 2022, 110, 3429-3443.	3.8	2
51	Single-cell methods in myeloproliferative neoplasms: old questions, new technologies. Blood, 2023, 141, 380-390.	0.6	4
52	Spatial mapping of the total transcriptome by in situ polyadenylation. Nature Biotechnology, 2023, 41, 513-520.	9.4	22
54	Imaging the unimaginable: leveraging signal generation of CRISPR-Cas for sensitive genome imaging. Trends in Biotechnology, 2023, 41, 769-784.	4.9	10
56	Spatiotemporal Omics-Refining the landscape of precision medicine. , 2022, 1, 84-102.		6
60	Deconvolution algorithms for inference of the cell-type composition of the spatial transcriptome. Computational and Structural Biotechnology Journal, 2023, 21, 176-184.	1.9	8
61	Microfluidics-based single cell analysis: from transcriptomics to spatiotemporal multi-omics. TrAC - Trends in Analytical Chemistry, 2023, 158, 116868.	5.8	6

CITATION REPORT

#	Article	IF	CITATIONS
62	A comparative performance evaluation of imputation methods in spatially resolved transcriptomics data. Molecular Omics, 2023, 19, 162-173.	1.4	4
63	Mitochondrial form and function in hair cells. Hearing Research, 2023, 428, 108660.	0.9	6
67	A high-efficiency PEG-Ca2+-mediated transient transformation system for broccoli protoplasts. Frontiers in Plant Science, 0, 13, .	1.7	5
70	Concordance of MERFISH spatial transcriptomics with bulk and single-cell RNA sequencing. Life Science Alliance, 2023, 6, e202201701.	1.3	23
71	EnDecon: cell type deconvolution of spatially resolved transcriptomics data via ensemble learning. Bioinformatics, 2023, 39, .	1.8	9
72	Navigating bottlenecks and trade-offs in genomic data analysis. Nature Reviews Genetics, 2023, 24, 235-250.	7.7	6
73	Antipsychotics-Induced Changes in Synaptic Architecture and Functional Connectivity: Translational Implications for Treatment Response and Resistance. Biomedicines, 2022, 10, 3183.	1.4	5
74	spaCI: deciphering spatial cellular communications through adaptive graph model. Briefings in Bioinformatics, 2023, 24, .	3.2	28
76	Single-cell computational machine learning approaches to immune-mediated inflammatory disease: New tools uncover novel fibroblast and macrophage interactions driving pathogenesis. Frontiers in Immunology, 0, 13, .	2.2	4
77	Transcriptomics for Clinical and Experimental Biology Research: Hang on a Seq. Genetics & Genomics Next, 2023, 4, .	0.8	5
78	Advances and Challenges in Spatial Transcriptomics for Developmental Biology. Biomolecules, 2023, 13, 156.	1.8	11
79	Slide-to-slide tissue transfer and array assembly from limited samples for comprehensive molecular profiling. Laboratory Investigation, 2023, , 100062.	1.7	0
80	A Comprehensive Exploration of the Transcriptomic Landscape in Multiple Sclerosis: A Systematic Review. International Journal of Molecular Sciences, 2023, 24, 1448.	1.8	5
81	A guidebook of spatial transcriptomic technologies, data resources and analysis approaches. Computational and Structural Biotechnology Journal, 2023, 21, 940-955.	1.9	7
82	The Utility of Spatial Transcriptomics for Solid Organ Transplantation. Transplantation, 2023, 107, 1463-1471.	0.5	3
84	Application of Single-Cell and Spatial Omics in Musculoskeletal Disorder Research. International Journal of Molecular Sciences, 2023, 24, 2271.	1.8	4
87	Spatially resolved transcriptomic profiling of degraded and challenging fresh frozen samples. Nature Communications, 2023, 14, .	5.8	13
89	Fourth Report on Chicken Genes and Chromosomes 2022. Cytogenetic and Genome Research, 2022, 162, 405-528.	0.6	12

CITATION REPORT

#	Article	IF	CITATIONS
90	Important Cells and Factors from Tumor Microenvironment Participated in Perineural Invasion. Cancers, 2023, 15, 1360.	1.7	5
91	Spatial transcriptomics using multiplexed deterministic barcoding in tissue. Nature Communications, 2023, 14, .	5.8	5
92	Subcellular omics: a new frontier pushing the limits of resolution, complexity and throughput. Nature Methods, 2023, 20, 331-335.	9.0	4
93	Artificial Intelligence, Bioinformatics, and Pathology. Advances in Molecular Pathology, 2023, , .	0.2	0
94	Spatial profiling technologies illuminate the tumor microenvironment. Cancer Cell, 2023, 41, 404-420.	7.7	41
95	Endogenous neural stem cells characterization using omics approaches: Current knowledge in health and disease. Frontiers in Cellular Neuroscience, 0, 17, .	1.8	1
99	Deep learning in spatial transcriptomics: Learning from the next next-generation sequencing. Biophysics Reviews, 2023, 4, .	1.0	6
103	Identifying spatial domain by adapting transcriptomics with histology through contrastive learning. Briefings in Bioinformatics, 2023, 24, .	3.2	7
104	Further refining the boundaries of the hippocampus <scp>CA2</scp> with gene expression and connectivity: Potential subregions and heterogeneous cell types. Hippocampus, 2023, 33, 150-160.	0.9	5
105	Improved in situ sequencing for high-resolution targeted spatial transcriptomic analysis in tissue sections. Journal of Genetics and Genomics, 2023, 50, 652-660.	1.7	2
106	SODB facilitates comprehensive exploration of spatial omics data. Nature Methods, 2023, 20, 387-399.	9.0	28
108	<scp>Cellâ€ŧype</scp> profiling of the sympathetic nervous system using spatial transcriptomics and spatial mapping of <scp>mRNA</scp> . Developmental Dynamics, 2023, 252, 1130-1142.	0.8	1
109	Cell composition inference and identification of layer-specific spatial transcriptional profiles with POLARIS. Science Advances, 2023, 9, .	4.7	2
110	Designing spatial transcriptomic experiments. Nature Methods, 2023, 20, 355-356.	9.0	0
111	Methods and applications for single-cell and spatial multi-omics. Nature Reviews Genetics, 2023, 24, 494-515.	7.7	192
112	Application of spatial transcriptome technologies to neurological diseases. Frontiers in Cell and Developmental Biology, 0, 11, .	1.8	1
113	SRTsim: spatial pattern preserving simulations for spatially resolved transcriptomics. Genome Biology, 2023, 24, .	3.8	14
116	Comparison of the Illumina NextSeq 2000 and GeneMind Genolab M sequencing platforms for spatial transcriptomics. BMC Genomics, 2023, 24, .	1.2	3

	CHANON	ILLI OKT	
#	Article	IF	CITATIONS
117	Complex Analysis of Single-Cell RNA Sequencing Data. Biochemistry (Moscow), 2023, 88, 231-252.	0.7	4
119	A Primer on Preprocessing, Visualization, Clustering, and Phenotyping of Barcode-Based Spatial Transcriptomics Data. Methods in Molecular Biology, 2023, , 115-140.	0.4	2
121	A comprehensive benchmarking with practical guidelines for cellular deconvolution of spatial transcriptomics. Nature Communications, 2023, 14, .	5.8	38
126	Identification and Characterisation of Infiltrating Immune Cells in Malignant Pleural Mesothelioma Using Spatial Transcriptomics. Methods and Protocols, 2023, 6, 35.	0.9	3
128	Inferring spatial transcriptomics markers from whole slide images to characterize metastasis-related spatial heterogeneity of colorectal tumors: A pilot study. Journal of Pathology Informatics, 2023, 14, 100308.	0.8	6
129	It is better to light a candle than to curse the darkness: single-cell transcriptomics sheds new light on pancreas biology and disease. Gut, 2023, 72, 1211-1219.	6.1	6
130	Single-cell and spatially resolved transcriptomics for liver biology. Hepatology, 0, Publish Ahead of Print, .	3.6	2
133	Recent advances in differential expression analysis for single-cell RNA-seq and spatially resolved transcriptomic studies. Briefings in Functional Genomics, 0, , .	1.3	1
134	Spatial Transcriptomics: Technical Aspects of Recent Developments and Their Applications in Neuroscience and Cancer Research. Advanced Science, 2023, 10, .	5.6	7
136	Identification of Spatial Proteomic Signatures of Colon Tumor Metastasis. American Journal of Pathology, 2023, 193, 778-795.	1.9	3
137	Dissecting the brain with spatially resolved multi-omics. Journal of Pharmaceutical Analysis, 2023, 13, 694-710.	2.4	3
138	VT3D: a visualization toolbox for 3D transcriptomic data. Journal of Genetics and Genomics, 2023, 50, 713-719.	1.7	3
141	Single-cell and spatial transcriptomics: Advances in heart development and disease applications. Computational and Structural Biotechnology Journal, 2023, 21, 2717-2731.	1.9	6
144	Spatial transcriptomics of murine bone marrow megakaryocytes at single-cell resolution. Research and Practice in Thrombosis and Haemostasis, 2023, 7, 100158.	1.0	2
145	Single-cell genomics meets human genetics. Nature Reviews Genetics, 2023, 24, 535-549.	7.7	18
162	Next-generation deconvolution of transcriptomic data to investigate the tumor microenvironment. International Review of Cell and Molecular Biology, 2024, , 103-143.	1.6	1
165	Understanding tumour endothelial cell heterogeneity and function from single-cell omics. Nature Reviews Cancer, 2023, 23, 544-564.	12.8	14
176	Multiplexed single-cell 3D spatial gene expression analysis in plant tissue using PHYTOMap. Nature Plants, 2023, 9, 1026-1033.	4.7	16

#	Article	IF	CITATIONS
179	Microtechnologies for single-cell and spatial multi-omics. , 2023, 1, 769-784.		2
197	Extending the landscape of omics technologies by pathomics. Npj Systems Biology and Applications, 2023, 9, .	1.4	10
201	Spatial transcriptomics in human biomedical research and clinical application. , 2023, 2, .		2
210	Microglial contribution to the pathology of neurodevelopmental disorders in humans. Acta Neuropathologica, 2023, 146, 663-683.	3.9	5
211	Bioinformatics in urology $\hat{a} \in$ " molecular characterization of pathophysiology and response to treatment. Nature Reviews Urology, 0, , .	1.9	0
215	Spatial transcriptomics in neuroscience. Experimental and Molecular Medicine, 0, , .	3.2	0
224	Spatial transcriptomics in development and disease. Molecular Biomedicine, 2023, 4, .	1.7	4
263	How chemokines organize the tumour microenvironment. Nature Reviews Cancer, 2024, 24, 28-50.	12.8	0
290	Drug targeting in psychiatric disorders — how to overcome the loss in translation?. Nature Reviews Drug Discovery, 2024, 23, 218-231.	21.5	0
307	Discrete Representation Learning for Modeling Imaging-based Spatial Transcriptomics Data. , 2023, , .		0
313	Comparing Python Code Parallelization Techniques for Spatial Transcriptomics Data. , 2023, , .		0
321	STADS: Spatial Transcriptomics to Aid Drug-reposition Recommendation. , 2023, , .		0
333	Heterogeneity and tumoral origin of medulloblastoma in the single-cell era. Oncogene, 2024, 43, 839-850.	2.6	0

CITATION REPORT