Artificial Intelligence in Critical Care Medicine

Critical Care 26, 75 DOI: 10.1186/s13054-022-03915-3

Citation Report

#	Article	IF	CITATIONS
1	Machine learning-based suggestion for critical interventions in the management of potentially severe conditioned patients in emergency department triage. Scientific Reports, 2022, 12, .	3.3	5
2	Optimising clinical outcomes with innovative research in the intensive care unit. Indian Journal of Anaesthesia, 2022, 66, 549.	1.0	2
4	Artificial Intelligence in Intensive Care Medicine: Bibliometric Analysis. Journal of Medical Internet Research, 2022, 24, e42185.	4.3	9
6	Algorithmic fairness audits in intensive care medicine: artificial intelligence for all?. Critical Care, 2022, 26, .	5.8	3
8	Systematized and efficient: organization of critical care in the future. Critical Care, 2022, 26, .	5.8	2
9	Using machine learning for the early prediction of sepsis-associated ARDS in the ICU and identification of clinical phenotypes with differential responses to treatment. Frontiers in Physiology, 0, 13, .	2.8	10
10	Difficult diagnosis in the <scp>ICU</scp> : making the right call but beware uncertainty and bias. Anaesthesia, 2023, 78, 501-509.	3.8	3
11	Prospective Real-Time Validation of a Lung Ultrasound Deep Learning Model in the ICU. Critical Care Medicine, 2023, 51, 301-309.	0.9	1
12	Evolution of Hybrid Intelligence and Its Application in Evidence-Based Medicine: A Review. Medical Science Monitor, 0, 29, .	1.1	3
13	Explainable Machine Learning to Predict Successful Weaning of Mechanical Ventilation in Critically Ill Patients Requiring Hemodialysis. Healthcare (Switzerland), 2023, 11, 910.	2.0	0
14	Expectations of Anesthesiology and Intensive Care Professionals Toward Artificial Intelligence: Observational Study. JMIR Formative Research, 0, 7, e43896.	1.4	1
15	Artificial intelligence in critical illness and its impact on patient care: a comprehensive review. Frontiers in Medicine, 0, 10, .	2.6	7
16	Current challenges in adopting machine learning to critical care and emergency medicine. Clinical and Experimental Emergency Medicine, 2023, 10, 132-137.	1.6	4
17	Non-Invasive Mapping of Cerebral Autoregulation Using Near-Infrared Spectroscopy: A Study Protocol. Methods and Protocols, 2023, 6, 58.	2.0	0
18	Critical care pharmacists have a rich history and evolving roles. JACCP Journal of the American College of Clinical Pharmacy, 2023, 6, 934-941.	1.0	1
20	Enhancing Cardiac Arrest Education: Exploring the potential use of MidJourney. Resuscitation, 2023, 189, 109893.	3.0	0
21	Artificial intelligence and machine learning in prehospital emergency care: A scoping review. IScience, 2023, 26, 107407.	4.1	1
22	Research Hotspots and Trends of Deep Learning in Critical Care Medicine: A Bibliometric and Visualized Study, Journal of Multidisciplinary Healthcare, O. Volume 16, 2155-2166	2.7	1

CITATION REPORT

#	Article	IF	CITATIONS
23	Clinical support system for triage based on federated learning for the Korea triage and acuity scale. Heliyon, 2023, 9, e19210.	3.2	0
24	Systems of Care Delivery and Optimization in the Intensive Care Unit. Anesthesiology Clinics, 2023, 41, 863-873.	1.4	0
25	Integrating a Virtual ICU with Cardiac and Cardiovascular ICUs: Managing the Needs of a Complex and High-Acuity Specialty ICU Cohort. Methodist DeBakey Cardiovascular Journal, 2023, 19, 4-16.	1.0	2
27	Artificial intelligence systems in surgery: A review of opportunities, limitations, and prospects. Russian Journal of Pediatric Surgery Anesthesia and Intensive Care, 2023, 13, 385-404.	0.1	0
28	Machine learning vs. traditional regression analysis for fluid overload prediction in the ICU. Scientific Reports, 2023, 13, .	3.3	0
29	Causal inference using observational intensive care unit data: a scoping review and recommendations for future practice. Npj Digital Medicine, 2023, 6, .	10.9	0
30	Impact of Analytics Applying Artificial Intelligence and Machine Learning on Enhancing Intensive Care Unit: A Narrative Review. Galician Medical Journal, 2023, 30, .	0.3	0
31	The application of artificial intelligence in the management of sepsis. Medical Review, 2023, .	1.2	0
32	Research Priorities in CriticalÂCareÂCardiology. Journal of the American College of Cardiology, 2023, 82, 2329-2337.	2.8	0
33	A Delphi Process to Identify Relevant Outcomes That May Be Associated With a Predictive Analytic Tool to Detect Hemodynamic Deterioration in the Intensive Care Unit. Cureus, 2023, , .	0.5	0
36	Supervised machine learning model to predict mortality in patients undergoing venovenous extracorporeal membrane oxygenation from a nationwide multicentre registry. BMJ Open Respiratory Research, 2023, 10, e002025.	3.0	0
38	Advances and Challenges in Sepsis Management: Modern Tools and Future Directions. Cells, 2024, 13, 439.	4.1	0
40	Development and Validation of an Interpretable Conformal Predictor to Predict Sepsis Mortality Risk: Retrospective Cohort Study. Journal of Medical Internet Research, 0, 26, e50369.	4.3	0