High-Temperature Behavior of Spent Li-Ion Battery Bla

Journal of Sustainable Metallurgy 8, 566-581 DOI: 10.1007/s40831-022-00514-y

Citation Report

#	Article	IF	CITATIONS
1	Recovery of Valuable Metals from Spent Lithium-Ion Batteries by Complexation-Assisted Ammonia Leaching from Reductive Roasting Residue. SSRN Electronic Journal, 0, , .	0.4	1
2	Recovery of valuable metals from spent lithium-ion batteries by complexation-assisted ammonia leaching from reductive roasting residue. Chemosphere, 2023, 312, 137230.	8.2	11
3	Mechanical Activation-Assisted Recovery of Valuable Metals from Black Mass in the Form of Fe/Cu Alloys. Journal of Sustainable Metallurgy, 2023, 9, 522-536.	2.3	1
4	In-situ pyrolysis based on alkaline medium removes fluorine-containing contaminants from spent lithium-ion batteries. Journal of Hazardous Materials, 2023, 457, 131782.	12.4	5
5	Methods and Technologies for Recycling Energy Storage Materials and Device. Green Energy and Technology, 2023, , 489-507.	0.6	0
6	Analyzing the environmental impact of recovering critical materials from spent lithium-ion batteries through statistical optimization. Journal of Power Sources, 2023, 580, 233425.	7.8	2
8	A simple methodology for the quantification of graphite in end-of-life lithium-ion batteries using thermogravimetric analysis. IScience, 2023, 26, 107782.	4.1	1
10	A comprehensive review of emerging technologies for recycling spent lithium-ion batteries. Science of the Total Environment, 2024, 910, 168543.	8.0	2
11	Fe3+ and Al3+ removal by phosphate and hydroxide precipitation from synthetic NMC Li-ion battery leach solution. Scientific Reports, 2023, 13, .	3.3	0
13	Thermogravimetric Analysis of Black Mass Components from Li-ion Battery. , 2023, 32, 25-33.		0
14	Graphite recovery from waste Li-ion battery black mass for direct re-use. Minerals Engineering, 2024, 208, 108587.	4.3	1
15	Battery Waste Management in Europe: Black Mass Hazardousness and Recycling Strategies in the Light of an Evolving Competitive Regulation. Recycling, 2024, 9, 13.	5.0	0
16	Characterization of Black Mass After Different Pre-Treatment Processes for Optimized Metal Recovery. Minerals, Metals and Materials Series, 2024, , 389-408.	0.4	0
17	Modelling Binder Degradation in the Thermal Treatment of Spent Lithium-Ion Batteries by Coupling Discrete Element Method and Isoconversional Kinetics. Batteries. 2024, 10, 63.	4.5	0