Physiological Adaptation of Three Wild Halophytic Suas Strategies and Metal Accumulation Capacity

Plants

11,537

DOI: 10.3390/plants11040537

Citation Report

#	Article	IF	Citations
1	Research Advances on Molecular Mechanism of Salt Tolerance in Suaeda. Biology, 2022, 11, 1273.	2.8	7
2	Salinity Tolerance and Ion Accumulation of Coastal and Inland Accessions of Clonal Climbing Plant Species Calystegia sepium in Comparison with a Coastal-Specific Clonal Species Calystegia soldanella. International Journal of Plant Biology, 2022, 13, 381-399.	2.6	1
3	Anatomical and physiological systematics of Capparis decidua (Forsskal.) Edgew from different habitats of Cholistan Desert, Pakistan. Biochemical Systematics and Ecology, 2022, 105, 104539.	1.3	1
4	Halophytes for the sustainable remediation of heavy metal-contaminated sites: Recent developments and future perspectives. Chemosphere, 2023, 313, 137524.	8.2	10
5	Physiological and Biochemical Changes in Vegetable and Field Crops under Drought, Salinity and Weeds Stresses: Control Strategies and Management. Agriculture (Switzerland), 2022, 12, 2084.	3.1	19
6	Wild Halophytes: Tools for Understanding Salt Tolerance Mechanisms of Plants and for Adapting Agriculture to Climate Change. Plants, 2023, 12, 221.	3.5	11
7	Potential of Suaeda nudiflora and Suaeda fruticosa to Adapt to High Salinity Conditions. Horticulturae, 2023, 9, 74.	2.8	4
8	Climate Change Modulates Halophyte Secondary Metabolites to Reshape Rhizosphere Halobacteria for Biosaline Agriculture. Applied Sciences (Switzerland), 2023, 13, 1299.	2.5	1
9	Ecotoxicological monitoring of potentially toxic elements contamination in Eucalyptus forest plantation subjected to long-term irrigation with recycled wastewater. Environmental Pollution, 2023, 329, 121739.	7.5	1
10	Sulfur-Oxidizing Bacteria Alleviate Salt and Cadmium Stress in Halophyte Tripolium pannonicum (Jacq.) Dobrocz International Journal of Molecular Sciences, 2024, 25, 2455.	4.1	0
11	New perspective for the upscaling of plant functional response to flooding stress in salt marshes using remote sensing. Scientific Reports, 2024, 14, .	3.3	0
12	Tolerance of the Australian halophyte, beaded samphire, Sarcocornia quinqueflora, to Pb and Zn under glasshouse conditions: Evaluating metal uptake and partitioning, photosynthetic performance, biomass, and growth. Aquatic Toxicology, 2024, 270, 106887.	4.0	О