Deep demersal fish communities respond rapidly to wa Arctic and Atlantic waters

Global Change Biology 28, 2979-2990 DOI: 10.1111/gcb.16113

Citation Report

#	Article	IF	CITATIONS
1	Deep demersal fish communities respond rapidly to warming in a frontal region between Arctic and Atlantic waters. Global Change Biology, 2022, 28, 2979-2990.	9.5	6
2	Recent warming causes functional borealization and diversity loss in deep fish communities east of Greenland. Diversity and Distributions, 2022, 28, 2071-2083.	4.1	6
3	Shifts in the composition and distribution of Pacific Arctic larval fish assemblages in response to rapid ecosystem change. Global Change Biology, 2023, 29, 4212-4233.	9.5	1
4	A marine protected area network does not confer community structure resilience to a marine heatwave across coastal ecosystems. Global Change Biology, 2023, 29, 5634-5651.	9.5	4
5	Effect of live-storage period and temperature on oxygen consumption rate in the cold-water sea cucumber Parastichopus tremulus. Frontiers in Marine Science, 0, 10, .	2.5	0
6	Warming changes the life history composition of marine fish communities at high latitudes. Marine Ecology - Progress Series, 0, 732, 119-133.	1.9	0