Electrospinning based on benign solvents: current defin

Green Chemistry 24, 2347-2375

DOI: 10.1039/d1gc04252a

Citation Report

#	Article	IF	CITATIONS
1	Fabrication of Electrospun Xylan-g-PMMA/TiO2 Nanofibers and Photocatalytic Degradation of Methylene Blue. Polymers, 2022, 14, 2489.	4.5	5
2	A review on electrospun membranes for potential air filtration application. Journal of Environmental Chemical Engineering, 2022, 10, 108452.	6.7	29
3	Electrospun carbon nanofibers and their reinforced composites: Preparation, modification, applications, and perspectives. Composites Part B: Engineering, 2023, 249, 110386.	12.0	33
4	Effect of amylose content on the preparation for carboxymethyl starch/pullulan electrospun nanofibers and their properties as encapsulants of thymol. Food Hydrocolloids, 2023, 136, 108250.	10.7	10
5	Sustainable strategies for waterborne electrospinning of biocompatible nanofibers based on soy protein isolate. Sustainable Materials and Technologies, 2022, 34, e00519.	3.3	2
6	Pickering Emulsion-Templated Nanocomposite Membranes for Excellent Demulsification and Oil–Water Separation. ACS Applied Materials & Samp; Interfaces, 2022, 14, 54233-54244.	8.0	13
7	Green approaches for extraction, chemical modification and processing of marine polysaccharides for biomedical applications. Frontiers in Bioengineering and Biotechnology, 0, 10 , .	4.1	4
8	Application of Electrospun Water-Soluble Synthetic Polymers for Multifunctional Air Filters and Face Masks. Molecules, 2022, 27, 8753.	3.8	1
9	Development of mechanically reinforced bioadhesive electrospun nanofibers using cellulose acetate–levan complexes. Cellulose, 2023, 30, 1685-1696.	4.9	4
10	Responsive hydrogel microfibers for biomedical engineering. , 2022, 1, .		11
11	Orodispersible Filmsâ€"Current State of the Art, Limitations, Advances and Future Perspectives. Pharmaceutics, 2023, 15, 361.	4.5	4
12	Electrospinning of Potential Medical Devices (Wound Dressings, Tissue Engineering Scaffolds, Face) Tj ETQq1 1 ().784314 4.5	rgBT /Overl <mark>oc</mark>
13	Magnetic-Field-Assisted Emulsion Electrospinning System: Designing, Assembly, and Testing for the Production of PCL/Gelatin Core–Shell Nanofibers. Fibers and Polymers, 2023, 24, 515-523.	2.1	1
14	The enhanced photocatalytic performance of the amorphous carbon/MgO nanofibers: Insight into the role of the oxygen vacancies and 1D morphology. Applied Surface Science, 2023, 616, 156470.	6.1	7
15	Poly(caprolactone)/lignin-based 3D-printed dressings loaded with a novel combination of bioactive agents for wound-healing applications. Sustainable Materials and Technologies, 2023, 35, e00581.	3.3	2
16	Electrohydrodynamic Techniques for the Manufacture and/or Immobilization of Vesicles. Polymers, 2023, 15, 795.	4.5	3
17	Recent Progress of the Preparation and Application of Electrospun Porous Nanofibers. Polymers, 2023, 15, 921.	4.5	32
18	Biomedical Applications of Blow-Spun Coatings, Mats, and Scaffolds—A Mini-Review. Journal of Composites Science, 2023, 7, 86.	3.0	2

#	Article	IF	CITATIONS
19	Engineering of Ti/V bimetallene for selectivity boosting the photocatalytic carbon dioxide hydrogenation reaction. Chemical Engineering Journal, 2023, 461, 141981.	12.7	1
20	Unique Fiber Morphologies from Emulsion Electrospinning—A Case Study of Poly(Îμ-caprolactone) and Its Applications. Colloids and Interfaces, 2023, 7, 19.	2.1	8
21	Ibuprofen-loaded electrospun poly(ethylene- <i>co</i> -vinyl alcohol) nanofibers for wound dressing applications. Nanoscale Advances, 2023, 5, 2261-2270.	4.6	0
22	Cell Electrospinning: A Miniâ€Review of the Critical Processing Parameters and Its Use in Biomedical Applications. Advanced Biology, 2023, 7, .	2.5	2
23	Environmentally friendly waterproof and breathable membranes via electrospinning. Journal of the Textile Institute, 2024, 115, 504-526.	1.9	4
24	The History of Electrospinning: Past, Present, and Future Developments. Advanced Materials Technologies, 2023, 8, .	5.8	28
25	Electrospun nanofibers for medical face mask with protection capabilities against viruses: State of the art and perspective for industrial scale-up. Applied Materials Today, 2023, 32, 101833.	4.3	8
26	Electrospun nanofibrous membranes of recombinant human collagen type III promote cutaneous wound healing. Journal of Materials Chemistry B, 2023, 11, 6346-6360.	5.8	2
27	Custom-modified oligolactide-cyclodextrin derivatives for electrospun drug formulations. European Polymer Journal, 2023, 196, 112234.	5.4	2
28	Potential of uniaxial electrospun composite nanofibers based on polycaprolactone and polyvinyl alcohol in guided bone regeneration. Journal of Applied Polymer Science, 0, , .	2.6	0
29	Synthesis and characterization of high surface area mesoporous manganese oxides nanofibers prepared by electrospinning technique. Journal of the Australian Ceramic Society, 2023, 59, 633-643.	1.9	0
30	Sustainable wearable infrared shielding bamboo fiber fabrics loaded with antimony doped tin oxide/silver binary nanoparticles. Advanced Composites and Hybrid Materials, 2023, 6, .	21.1	5
31	Supramolecular Nonwoven Materials via Thermally Induced Precursor Crystallization of Nanocrystalline Fibers/Belts for Recyclable Air Filters. ACS Applied Nano Materials, 2023, 6, 9548-9557.	5.0	19
32	Quaternized chitosan (nano)fibers: A journey from preparation to high performance applications. International Journal of Biological Macromolecules, 2023, 242, 125136.	7.5	5
33	Electrospun Nanofibers including Organic/Inorganic Nanohybrids: Polystyrene- and Clay-Based Architectures in Immunosensor Preparation for Serum Amyloid A. Biosensors, 2023, 13, 673.	4.7	3
34	Can we achieve biomimetic electrospun scaffolds with gelatin alone?. Frontiers in Bioengineering and Biotechnology, 0, 11 , .	4.1	1
35	Sustainable and scalable development of PVDF-OH Ag/TiO _{<i>x</i>} nanocomposites for simultaneous oil/water separation and pollutant degradation. Environmental Science: Nano, 2023, 10, 2359-2373.	4.3	2
36	Upcycling Wool Waste into Keratin Gel-Based Nanofibers Using Deep Eutectic Solvents. Gels, 2023, 9, 661.	4.5	0

3

#	Article	IF	CITATIONS
37	Effect of plasma treatment on electrochemical performance of lignin-based carbon fibers. Journal of Electroanalytical Chemistry, 2023, 946, 117723.	3.8	0
38	Green nanofiber membranes. , 2023, , 149-168.		0
39	Recent trends in the application of protein electrospun fibers for loading food bioactive compounds. Food Chemistry: X, 2023, 20, 100922.	4.3	0
40	Optimization of Polyvinyl Alcohol-Based Electrospun Fibers with Bioactive or Electroconductive Phases for Tissue-Engineered Scaffolds. Fibers, 2023, 11, 85.	4.0	0
41	Electrospun fibers for the treatment of skin diseases. Journal of Controlled Release, 2023, 363, 621-640.	9.9	2
42	The impact of electrospinning conditions on the properties of enzymes immobilized on electrospun materials: Exploring applications and future perspectives. Environmental Technology and Innovation, 2023, 32, 103408.	6.1	2
43	Drug Delivery of Gelatin Nanoparticles as a Biodegradable Polymer for the Treatment of Infectious Diseases: Perspectives and Challenges. Polymers, 2023, 15, 4327.	4.5	2
44	Nonwoven Electrospun Membranes as Tissue Scaffolds: Practices, Problems, and Future Directions. Journal of Composites Science, 2023, 7, 481.	3.0	1
45	Electrospun nanofibers: Exploring process parameters, polymer selection, and recent applications in pharmaceuticals and drug delivery. Journal of Drug Delivery Science and Technology, 2023, 90, 105156.	3.0	3
46	Air filtration performance of nanofiber membranes with different morphologies produced by green electrospinning. Journal of Applied Polymer Science, 2024, 141, .	2.6	0
47	Natural-based electrospun nanofibers: Challenges and potential applications in agri-food sector. Food Bioscience, 2023, 56, 103372.	4.4	3
48	Engineering periodontal tissue interfaces using multiphasic scaffolds and membranes for guided bone and tissue regeneration., 2024, 157, 213732.		0
49	Non-covalent crosslinked hydrogels to realize renewable and re-moldable strain sensors with excellent sensing behavior. Polymer, 2024, 290, 126588.	3.8	0
50	Recent progress on UV-light barrier food packaging films $\hat{a}\in$ a systematic review. Innovative Food Science and Emerging Technologies, 2024, 91, 103550.	5.6	2
51	PVDF ve TPU Nanoliflerinin Geliştirilmesi için Stratejik Solvent Sistemi Optimizasyonu. European Dental Research and Biomaterials Journal:, 0, , .	0.1	0
52	Recent advances in production of sustainable and biodegradable polymers from agro-food waste: Applications in tissue engineering and regenerative medicines. International Journal of Biological Macromolecules, 2024, 259, 129129.	7.5	2
53	Optimized Polymeric Membranes for Water Treatment: Fabrication, Morphology, and Performance. Polymers, 2024, 16, 271.	4.5	0
54	Fiber membranes for oil/water separation. , 2024, , 105-130.		O

#	Article	IF	CITATIONS
55	Bilayer regenerated cellulose/quaternized chitosan-hyaluronic acid/collagen electrospun scaffold for potential wound healing applications. International Journal of Biological Macromolecules, 2024, 261, 129661.	7.5	1
56	Electrospinning technique: A potential method to develop bioresorbable-based medical devices. , 2024, , 197-212.		0
57	Electrospun polymeric nanofibers for dental applications. Journal of Applied Polymer Science, 2024, 141, .	2.6	0
58	Extracellular Matrixâ€Bioinspired Anisotropic Topographical Cues of Electrospun Nanofibers: A Strategy of Wound Healing through Macrophage Polarization. Advanced Healthcare Materials, 2024, 13, .	7.6	0
59	Electrospun porous carbon nanofiber-based electrodes for redox flow batteries: Progress and opportunities. Carbon, 2024, 222, 118969.	10.3	0
60	A review on chitin dissolution as preparation for electrospinning application. International Journal of Biological Macromolecules, 2024, 265, 130858.	7. 5	0
61	Development and application of electrospun fiber-based multifunctional sensors. Chemical Engineering Journal, 2024, 486, 150204.	12.7	0