EXPERIMENTS ON THE FACTORS INFLUENCING THE SACCORHIZA POLYSCHIDES AND SACCORHIZA DERM

New Phytologist 78, 625-635 DOI: 10.1111/j.1469-8137.1977.tb02167.x

Citation Report

#	Article	IF	CITATIONS
1	The Factors Influencing the Distribution of <i>Saccorhiza Polyschides</i> in the Region of Lough Ine. Journal of the Marine Biological Association of the United Kingdom, 1978, 58, 527-536.	0.8	43
2	Mapping species distributions as a tool in marine ecology. Proceedings of the Royal Society of Edinburgh Section B Biological Sciences, 1978, 76, 201-213.	0.2	3
3	Phytogeographic distribution groups of benthic marine algae in the North Atlantic Ocean. A review of experimental evidence from life history studies. Helgolâ^šA§nder Meeresuntersuchungen, 1982, 35, 153-214.	0.2	115
4	The distribution of benthic marine algae in relation to the temperature regulation of their life histories. Biological Journal of the Linnean Society, 1982, 18, 81-144.	1.6	210
5	Response of gametophytes of Ecklonia radiata (Laminariales) to temperature in saturating light. Marine Biology, 1984, 82, 241-245.	1.5	48
6	Aspects of the reproductive phenology ofSaccorhiza dermatodea(Phaeophyta, Laminariales) in Newfoundland. British Phycological Journal, 1985, 20, 117-122.	1.2	12
7	Primitive reproductive characters and a photoperiodic response inSaccorhiza dermatodea(Laminariales, Phaeophyceae). British Phycological Journal, 1987, 22, 23-31.	1.2	31
8	Temperature tolerances of two southern African Ecklonia species (Alariaceae: Laminariales) and of hybrids between them. Marine Biology, 1987, 96, 293-297.	1.5	30
9	TEMPERATURE TOLERANCE OF NORTHEAST PACIFIC MARINE ALGAE ¹ . Journal of Phycology, 1988, 24, 310-315.	2.3	60
10	Relative importance of temperature and other factors in determining geographic boundaries of seaweeds: Experimental and phenological evidence. Helgol√§nder Meeresuntersuchungen, 1988, 42, 199-241.	0.2	223
11	Algal interactions on shallow subtidal reefs in northern New Zealand: A review. New Zealand Journal of Marine and Freshwater Research, 1988, 22, 481-489.	2.0	68
12	Temperature tolerance and survival in darkness of kelp gametophyles (Laminariales, Phaeophyta): ecological and biogeographical implications. Marine Ecology - Progress Series, 1993, 100, 253-264.	1.9	149
13	Temperature Requirements and Biogeography of Antarctic, Arctic and Amphiequatorial Seaweeds. Botanica Marina, 1994, 37, .	1.2	98
14	A Checklist of the Seaweeds of the Mediterranean and Atlantic Coasts of Morocco. II. Phaeophyceae. Botanica Marina, 2002, 45, 217-230.	1.2	38
15	Impact of oceanic warming on the distribution of seaweeds in polar and cold-temperate waters. Botanica Marina, 2009, 52, 617-638.	1.2	195
16	Effects of water temperatures, UV radiation and low vs high PAR on phlorotannin content and germination in zoospores of <i>Saccorhiza dermatodea</i> (Tilopteridales, Phaeophyceae). Phycologia, 2011, 50, 256-263.	1.4	15
17	VARIATIONS IN GROWTH, EROSION, PRODUCTIVITY, AND MORPHOLOGY OF ECKLONIA RADIATA (ALARIACEAE;) Tj_ETQqC	0 0 o rgBT /Ov

18The retreat of large brown seaweeds on the north coast of Spain: the case of <i>Saccorhiza2.011518polyschides </i>European Journal of Phycology, 2011, 46, 352-360.2.0115

	CITATION RE	PORT	
#	Article	IF	CITATIONS
19	High and Distinct Range-Edge Genetic Diversity despite Local Bottlenecks. PLoS ONE, 2013, 8, e68646.	2.5	90
20	The cultivation of European kelp for bioenergy: Site and species selection. Biomass and Bioenergy, 2015, 80, 229-242.	5.7	91
21	Contrasting timing of life stages across latitudes – a case study of a marine forest-forming species. European Journal of Phycology, 2015, 50, 361-369.	2.0	7
22	Response of kelps from different latitudes to consecutive heat shock. Journal of Experimental Marine Biology and Ecology, 2015, 463, 57-62.	1.5	25
23	Deep reefs are climatic refugia for genetic diversity of marine forests. Journal of Biogeography, 2016, 43, 833-844.	3.0	84
24	Major shifts at the range edge of marine forests: the combined effects of climate changes and limited dispersal. Scientific Reports, 2017, 7, 44348.	3.3	87
25	Projected climate changes threaten ancient refugia of kelp forests in the North Atlantic. Global Change Biology, 2018, 24, e55-e66.	9.5	140
26	Climate change induced range shifts in seaweeds distributions in Europe. Marine Environmental Research, 2019, 148, 1-11.	2.5	34
27	Setting the basis for a long-term monitoring network of intertidal seaweed assemblages in northwest Spain. Marine Environmental Research, 2020, 160, 105039.	2.5	17
28	Sexual Difference in the Optimum Environmental Conditions for Growth and Maturation of the Brown Alga Undaria pinnatifida in the Gametophyte Stage. Genes, 2020, 11, 944.	2.4	9
29	Spatial variation in the structure of overwintering, remnant <i>Saccorhiza polyschides</i> sporophytes and their associated assemblages. Journal of the Marine Biological Association of the United Kingdom, 2021, 101, 639-648.	0.8	6
30	The Northern Atlantic Coasts (The Swedish West Coast, Norway and Iceland). Ecological Studies, 1996, , 165-184.	1.2	2
31	TEMPERATURE TOLERANCE OF NORTHEAST PACIFIC MARINE ALGAE. Journal of Phycology, 1988, 24, 310-515.	2.3	19
32	Areal- und Florenkunde (Floristische Geobotanik). , 1980, , 331-345.		0
33	Sighting of Saccorhiza polyschides (Lightfoot) Batters (Phaeophyceae, Stramenopiles) in Algeria (Mediterranean Sea): an Insight into Range Expansion Routes. Cryptogamie, Algologie, 2020, 41, 31.	0.9	1
34	Genus-specific response of kelp photosynthetic pigments to decomposition. Marine Biology, 2023, 170, .	1.5	1
35	Spatiotemporal variability in population demography and morphology of the habitat-forming macroalga <i>Saccorhiza polyschides</i> in the Western English Channel. Annals of Botany, 2024, 133, 117-130.	2.9	0