Silver nanoparticles inhibit hepatitis B virus replication

Antiviral Therapy 13, 253-62

Citation Report

#	Article	IF	CITATIONS
1	Tiopronin monolayer-protected silver nanoparticles modulate IL-6 secretion mediated by Toll-like receptor ligands. Nanomedicine, 2008, 3, 627-635.	3.3	66
2	Lactic acid bacteria as reducing and capping agent for the fast and efficient production of silver nanoparticles. Applied Microbiology and Biotechnology, 2009, 84, 741-749.	3.6	342
3	Silver Nanoparticles Toxicity and Bactericidal Effect Against Methicillin-Resistant Staphylococcus aureus: Nanoscale Does Matter. Nanobiotechnology, 2009, 5, 2-9.	1.2	165
4	A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. Journal of Nanoparticle Research, 2010, 12, 1531-1551.	1.9	2,357
5	Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World Journal of Microbiology and Biotechnology, 2010, 26, 615-621.	3.6	597
6	Size-controlled preparation of silver nanoparticles by a modified polyol method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 366, 197-202.	4.7	150
7	Mode of antiviral action of silver nanoparticles against HIV-1. Journal of Nanobiotechnology, 2010, 8, 1.	9.1	762
8	Nanoparticulate Delivery Systems for Antiviral Drugs. Antiviral Chemistry and Chemotherapy, 2010, 21, 53-70.	0.6	154
9	Glycan Encapsulated Gold Nanoparticles Selectively Inhibit Shiga Toxins 1 and 2. Bioconjugate Chemistry, 2010, 21, 1486-1493.	3.6	52
10	Antitumor activity of silver nanoparticles in Dalton's lymphoma ascites tumor model. International Journal of Nanomedicine, 2010, 5, 753.	6.7	345
11	Antimicrobial activity and the mechanism of silver nanoparticle thermosensitive gel. International Journal of Nanomedicine, 2011, 6, 2873.	6.7	88
12	Silver Nanoparticles as Potential Antiviral Agents. Molecules, 2011, 16, 8894-8918.	3.8	731
13	Health impact and safety of engineered nanomaterials. Chemical Communications, 2011, 47, 7025.	4.1	228
14	Perspectives for the use of silver nanoparticles in dental practice. International Dental Journal, 2011, 61, 297-301.	2.6	111
15	Antileishmanial effect of silver nanoparticles and their enhanced antiparasitic activity under ultraviolet light. International Journal of Nanomedicine, 2011, 6, 2705.	6.7	178
16	Inhibitory effects of silver nanoparticles on H1N1 influenza A virus in vitro. Journal of Virological Methods, 2011, 178, 137-142.	2.1	210
17	Green synthesis of stable silver nanoparticles using Euphorbia milii latex. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 389, 134-137.	4.7	41
18	Antibacterial effect of silver nanoparticles on Staphylococcus aureus. BioMetals, 2011, 24, 135-141.	4.1	382

# 19	ARTICLE Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds. Journal of Nanobiotechnology, 2011, 9, 30.	IF 9.1	CITATIONS
20	Silver nanocrystals sensitize magnetic-nanoparticle-mediated thermo-induced killing of cancer cells. Acta Biochimica Et Biophysica Sinica, 2011, 43, 316-323.	2.0	41
21	Toxicity of nanoparticles. , 2012, , 427-475.		8
22	Genotoxicity of silver nanoparticles evaluated using the Ames test and in vitro micronucleus assay. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2012, 745, 4-10.	1.7	121
23	Inactivation of microbial infectiousness by silver nanoparticles-coated condom: a new approach to inhibit HIV- and HSV-transmitted infection. International Journal of Nanomedicine, 2012, 7, 5007.	6.7	83
25	Engineering Nanostructured Silver Coatings for Antimicrobial Applications. , 2012, , 313-336.		12
26	A DFT study on the interaction between adsorbed silver on C60 and disulfide bond. Journal of Molecular Graphics and Modelling, 2012, 38, 354-359.	2.4	3
27	Comparison of cellular responses across multiple passage numbers in Ba/F3-BCR-ABL cells induced by silver nanoparticles. Science China Life Sciences, 2012, 55, 898-905.	4.9	6
28	Maternal-Fetal Infections with Human Viruses. , 2012, , 105-169.		0
30	Efficacy of silver treated catheters for haemodialysis in preventing bacterial adhesion. Journal of Materials Science: Materials in Medicine, 2012, 23, 1983-1990.	3.6	41
31	Reducing the pathogenicity of <i><scp>B</scp>m</i> <scp>NPV</scp> in silkworms using silver nanoparticles. Entomologia Experimentalis Et Applicata, 2012, 144, 301-310.	1.4	2
32	Rapid assessment of antiviral activity and cytotoxicity of silver nanoparticles using a novel application of the tetrazolium-based colorimetric assay. Journal of Virological Methods, 2012, 183, 19-24.	2.1	39
33	Methods for separation, identification, characterization and quantification of silver nanoparticles. TrAC - Trends in Analytical Chemistry, 2012, 33, 95-106.	11.4	128
34	Silver nanoparticles of Albizia adianthifolia: the induction of apoptosis in human lung carcinoma cell line. Journal of Nanobiotechnology, 2013, 11, 5.	9.1	96
35	Inhibitory effects of silver nanoparticles against adenovirus type 3 in vitro. Journal of Virological Methods, 2013, 193, 470-477.	2.1	103
36	Bactericidal Effect of Poly(Acrylamide/Itaconic Acid)–Silver Nanoparticles Synthesized by Gamma Irradiation Against Pseudomonas Aeruginosa. Applied Biochemistry and Biotechnology, 2013, 171, 469-487.	2.9	29
37	Synthesis and characterization of AgO/PVA nanoparticles via photo- and chemical reduction methods for antibacterial study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 436, 922-929.	4.7	33
38	Antiviral activity of silver nanoparticle/chitosan composites against H1N1 influenza A virus. Nanoscale Research Letters, 2013, 8, 93.	5.7	255

#	Article	IF	CITATIONS
39	Influence of size-corrected bound-electron contribution on nanometric silver dielectric function. Sizing through optical extinction spectroscopy. Journal Physics D: Applied Physics, 2013, 46, 435301.	2.8	27
40	Green synthesis of anisotropic silver nanoparticles and its potential cytotoxicity in human breast cancer cells (MCF-7). Journal of Industrial and Engineering Chemistry, 2013, 19, 1600-1605.	5.8	66
41	Antibacterial potency of V.A.C. GranuFoam Silver® Dressing. Injury, 2013, 44, 1363-1367.	1.7	22
42	Sequential interactions of silver-silica nanocomposite (Ag-SiO ₂ NC) with cell wall, metabolism and genetic stability of <i>Pseudomonas aeruginosa</i> , a multiple antibiotic-resistant bacterium. Letters in Applied Microbiology, 2013, 56, 57-62.	2.2	26
43	Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—A review. Progress in Polymer Science, 2013, 38, 1232-1261.	24.7	1,760
44	Induced Adaptation of <i>Bacillus sp.</i> to Antimicrobial Nanosilver. Small, 2013, 9, 3554-3560.	10.0	81
45	A facile route to synthesize nanogels doped with silver nanoparticles. Journal of Nanoparticle Research, 2013, 15, 1323.	1.9	18
46	Metal nanoantimicrobials for textile applications. Nanotechnology Reviews, 2013, 2, 307-331.	5.8	67
47	Nanomaterials and synergistic lowâ€intensity direct current (LIDC) stimulation technology for orthopedic implantable medical devices. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2013, 5, 191-204.	6.1	21
48	Anti-inflammatory effects of silver-polyvinyl pyrrolidone (Ag-PVP) nanoparticles in mouse macrophages infected with live Chlamydia trachomatis. International Journal of Nanomedicine, 2013, 8, 2421.	6.7	44
49	Antiviral activity of mycosynthesized silver nanoparticles against herpes simplex virus and human parainfluenza virus type 3. International Journal of Nanomedicine, 2013, 8, 4303.	6.7	215
50	Inhibition of A/Human/Hubei/3/2005 (H3N2) influenza virus infection by silver nanoparticles in vitro and in vivo. International Journal of Nanomedicine, 2013, 8, 4103.	6.7	155
51	Tannic Acid Modified Silver Nanoparticles Show Antiviral Activity in Herpes Simplex Virus Type 2 Infection. PLoS ONE, 2014, 9, e104113.	2.5	167
52	Synergistic Toxicity of Gentamicin- and Nanosilver-Doped Polymethylmethacrylate Bone Cement on Primary Human Osteoclasts. Cells Tissues Organs, 2014, 199, 384-392.	2.3	1
53	Development of antimicrobial biomaterials produced from chitin-nanofiber sheet/silver nanoparticle composites. Journal of Nanobiotechnology, 2014, 12, 49.	9.1	50
54	Inhibition of autophagy enhances the anticancer activity of silver nanoparticles. Autophagy, 2014, 10, 2006-2020.	9.1	224
55	Biosynthesis and characterization of silver nanoparticles using panchakavya, an Indian traditional farming formulating agent. International Journal of Nanomedicine, 2014, 9, 1593.	6.7	115
56	Broad-spectrum bioactivities of silver nanoparticles: the emerging trends and future prospects. Applied Microbiology and Biotechnology, 2014, 98, 1951-1961.	3.6	341

#	Article	IF	CITATIONS
57	Surfactant-Modified Nanoclay Exhibits an Antiviral Activity with High Potency and Broad Spectrum. Journal of Virology, 2014, 88, 4218-4228.	3.4	34
58	Antiviral Properties of Silver Nanoparticles on a Magnetic Hybrid Colloid. Applied and Environmental Microbiology, 2014, 80, 2343-2350.	3.1	115
59	Silver Nanoparticles: Therapeutical Uses, Toxicity, and Safety Issues. Journal of Pharmaceutical Sciences, 2014, 103, 1931-1944.	3.3	398
60	Saliva and light as templates for the green synthesis of silver nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 441, 539-543.	4.7	18
61	Predicting the environmental impact of nanosilver. Environmental Toxicology and Pharmacology, 2014, 38, 861-873.	4.0	121
62	Silver nanoparticles impair Peste des petits ruminants virus replication. Virus Research, 2014, 190, 1-7.	2.2	61
63	Emerging nanotechnology-based methods for water purification: a review. Desalination and Water Treatment, 2014, 52, 4089-4101.	1.0	60
64	Fabrication of an anti-viral air filter with SiO2–Ag nanoparticles and performance evaluation in a continuous airflow condition. Journal of Hazardous Materials, 2014, 280, 356-363.	12.4	47
65	Inhibitory effect of silver nanomaterials on transmissible virus-induced host cell infections. Biomaterials, 2014, 35, 4195-4203.	11.4	121
66	Chemical Basis of Interactions Between Engineered Nanoparticles and Biological Systems. Chemical Reviews, 2014, 114, 7740-7781.	47.7	478
67	The optical, photothermal, and facile surface chemical properties of gold and silver nanoparticles in biodiagnostics, therapy, and drug delivery. Archives of Toxicology, 2014, 88, 1391-1417.	4.2	347
68	Efficacy of silver ions against <i>Sacbrood virus</i> infection in the Eastern honey bee <i>Apis cerana</i> . Journal of Veterinary Science, 2015, 16, 289.	1.3	12
69	Silver nanoparticles synthesis mediated by new isolates of Bacillus spp., nanoparticle characterization and their activity against Bean Yellow Mosaic Virus and human pathogens. Frontiers in Microbiology, 2015, 6, 453.	3.5	254
70	Ultrastructural changes in methicillin-resistant <i>Staphylococcus aureus</i> induced by positively charged silver nanoparticles. Beilstein Journal of Nanotechnology, 2015, 6, 2396-2405.	2.8	57
71	New Toxicity Mechanism of Silver Nanoparticles: Promoting Apoptosis and Inhibiting Proliferation. PLoS ONE, 2015, 10, e0122535.	2.5	83
72	Current Development of Silver Nanoparticle Preparation, Investigation, and Application in the Field of Medicine. Journal of Nanomaterials, 2015, 2015, 1-12.	2.7	123
73	A fast green synthesis of Ag nanoparticles in carboxymethyl cellulose (CMC) through UV irradiation technique for antibacterial applications. Journal of Sol-Gel Science and Technology, 2015, 75, 530-540.	2.4	58
74	Adsorption of Silver Nanoparticles onto Different Surface Structures of Chitin/Chitosan and Correlations with Antimicrobial Activities. International Journal of Molecular Sciences, 2015, 16, 13973-13988.	4.1	77

#	Article	IF	CITATIONS
75	Nanosilver based anionic linear globular dendrimer with a special significant antiretroviral activity. Journal of Materials Science: Materials in Medicine, 2015, 26, 179.	3.6	26
76	Perturbation of cellular mechanistic system by silver nanoparticle toxicity: Cytotoxic, genotoxic and epigenetic potentials. Advances in Colloid and Interface Science, 2015, 221, 4-21.	14.7	109
77	Toxicological Effects and Mechanisms of Silver Nanoparticles. , 2015, , 109-138.		3
78	Nanoparticle-Mediated Delivery of Therapeutic Drugs. Pharmaceutical Medicine, 2015, 29, 155-167.	1.9	10
79	Nanoparticles as potential new generation broad spectrum antimicrobial agents. DARU, Journal of Pharmaceutical Sciences, 2015, 23, 43.	2.0	106
80	Nanoparticles in the fight against mosquito-borne diseases: bioactivity of Bruguiera cylindrica-synthesized nanoparticles against dengue virus DEN-2 (in vitro) and its mosquito vector Aedes aegypti (Diptera: Culicidae). Parasitology Research, 2015, 114, 4349-4361.	1.6	63
81	Antimicrobial photodynamic inactivation in nanomedicine: small light strides against bad bugs. Nanomedicine, 2015, 10, 2379-2404.	3.3	148
82	Antiviral activity of cuprous oxide nanoparticles against Hepatitis C Virus in vitro. Journal of Virological Methods, 2015, 222, 150-157.	2.1	140
83	Synthesis, characterization, optical and antimicrobial studies of polyvinyl alcohol–silver nanocomposites. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 138, 434-440.	3.9	30
84	Nanotechnology: A magic bullet for HIV AIDS treatment. Artificial Cells, Nanomedicine and Biotechnology, 2015, 43, 71-86.	2.8	50
85	Metal nanoparticles: The protective nanoshield against virus infection. Critical Reviews in Microbiology, 2016, 42, 46-56.	6.1	218
86	The antifungal effect of silver nanoparticles on Trichosporon asahii. Journal of Microbiology, Immunology and Infection, 2016, 49, 182-188.	3.1	140
87	Nanoparticles. , 2016, , 483-509.		5
88	Scopes of green synthesized metal and metal oxide nanomaterials in antimicrobial therapy. , 2016, , 313-341.		4
89	Mechanistic Basis of Antimicrobial Actions of Silver Nanoparticles. Frontiers in Microbiology, 2016, 7, 1831.	3.5	1,180
90	Antiviral Activity of Graphene–Silver Nanocomposites against Non-Enveloped and Enveloped Viruses. International Journal of Environmental Research and Public Health, 2016, 13, 430.	2.6	207
91	Nanoparticles: Alternatives Against Drug-Resistant Pathogenic Microbes. Molecules, 2016, 21, 836.	3.8	392
92	Photo-induced rapid biosynthesis of silver nanoparticle using aqueous extract of Xanthium strumarium and its antibacterial and antileishmanial activity. Journal of Industrial and Engineering Chemistry, 2016, 37, 224-236.	5.8	55

#	Article	IF	CITATIONS
93	Green synthesis and antimicrobial activity of silver nanoparticles using wild medicinal mushroom <i>Ganoderma applanatum</i> (Pers.) Pat. from Similipal Biosphere Reserve, Odisha, India. IET Nanobiotechnology, 2016, 10, 184-189.	3.8	54
94	In vitro biocompatibility of anodized titanium with deposited silver nanodendrites. Journal of Materials Science, 2016, 51, 5259-5270.	3.7	19
95	Protective hybrid coating containing silver, copper and zinc cations effective against human immunodeficiency virus and other enveloped viruses. BMC Microbiology, 2016, 16, 56.	3.3	76
96	Algal production of nano-silver and gold: Their antimicrobial and cytotoxic activities: A review. Journal of Genetic Engineering and Biotechnology, 2016, 14, 299-310.	3.3	84
97	Silver Nanoparticles (AgNP) in the Environment: a Review of Potential Risks on Human and Environmental Health. Water, Air, and Soil Pollution, 2016, 227, 1.	2.4	109
98	Differential biological activities of silver nanoparticles against Gram-negative and Gram-positive bacteria. , 2016, , 193-227.		8
99	Photoinduced Formation of Colloidal Silver in Nitrocellulose Solutions Containing Titanium Alkoxides. Journal of Applied Spectroscopy, 2016, 83, 466-471.	0.7	0
100	Marine-Derived Fungi: Potential Candidates for Fungal Nanobiotechnology. Fungal Biology, 2016, , 47-69.	0.6	4
101	Antifungal nanomaterials. , 2016, , 343-383.		15
102	Viral Inhibition Mechanism Mediated by Surface-Modified Silica Nanoparticles. ACS Applied Materials & Interfaces, 2016, 8, 16564-16572.	8.0	81
103	lon exchange defines the biological activity of titanate nanotubes. Journal of Basic Microbiology, 2016, 56, 557-565.	3.3	13
104	Silver Nanoparticle-Induced Autophagic-Lysosomal Disruption and NLRP3-Inflammasome Activation in HepG2 Cells Is Size-Dependent. Toxicological Sciences, 2016, 150, 473-487.	3.1	150
105	Assessment of silver nanoparticles contamination on faba bean-Rhizobium leguminosarum bv. viciae-Glomus aggregatum symbiosis: Implications for induction of autophagy process in root nodule. Agriculture, Ecosystems and Environment, 2016, 218, 163-177.	5.3	91
106	Novel therapeutic investigational strategies to treat severe and disseminated HSV infections suggested by a deeper understanding of in vitro virus entry processes. Drug Discovery Today, 2016, 21, 682-691.	6.4	16
107	Dose and Size-Dependent Antiviral Effects of Silver Nanoparticles on Feline Calicivirus, a Human Norovirus Surrogate. Foodborne Pathogens and Disease, 2016, 13, 239-244.	1.8	62
108	Evaluation of Ag nanoparticle coated air filter against aerosolized virus: Anti-viral efficiency with dust loading. Journal of Hazardous Materials, 2016, 301, 547-553.	12.4	84
109	Metal homeostasis in bacteria: the role of ArsR–SmtB family of transcriptional repressors in combating varying metal concentrations in the environment. BioMetals, 2017, 30, 459-503.	4.1	40
110	Toxicity of silver nanoparticles in biological systems: Does the complexity of biological systems matter?. Toxicology Letters, 2017, 276, 11-20.	0.8	187

#	Article	IF	CITATIONS
111	Silver nanoparticle treatment ameliorates biliary atresia syndrome in rhesus rotavirus inoculated mice. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 1041-1050.	3.3	22
112	Biosynthesis of silver nanoparticles by using Camellia japonica leaf extract for the electrocatalytic reduction of nitrobenzene and photocatalytic degradation of Eosin-Y. Journal of Photochemistry and Photobiology B: Biology, 2017, 170, 164-172.	3.8	85
113	Applications of Metallic Nanoparticles in Antimicrobial Therapy. , 2017, , 411-444.		8
114	Endophytic bacteria: a new source of bioactive compounds. 3 Biotech, 2017, 7, 315.	2.2	199
115	Disinfection of various bacterial pathogens using novel silver nanoparticle-decorated magnetic hybrid colloids. Science of the Total Environment, 2017, 609, 289-296.	8.0	18
116	Myconanotechnology to Treat Infectious Diseases: A Perspective. Fungal Biology, 2017, , 235-261.	0.6	2
117	The silver lining: towards the responsible and limited usage of silver. Journal of Applied Microbiology, 2017, 123, 1068-1087.	3.1	35
118	A review on green synthesis of silver nanoparticles and their applications. Artificial Cells, Nanomedicine and Biotechnology, 2017, 45, 1272-1291.	2.8	542
119	Biogenic Synthesis of Silver Nanoparticles and Their Applications in Medicine. Fungal Biology, 2017, , 171-187.	0.6	0
120	Metal Nanoparticles for Microbial Infection. , 2017, , 77-109.		2
121	The Application, Neurotoxicity, and Related Mechanisms of Silver Nanoparticles. , 2017, , 151-177.		2
122	Silver Nanoparticles as Antimicrobial Agents. , 2017, , 577-596.		30
123	Metal-Based Nanoparticles for the Treatment of Infectious Diseases. Molecules, 2017, 22, 1370.	3.8	190
124	A Recombinant Potato virus Y Infectious Clone Tagged with the Rosea1 Visual Marker (PVY-Ros1) Facilitates the Analysis of Viral Infectivity and Allows the Production of Large Amounts of Anthocyanins in Plants. Frontiers in Microbiology, 2017, 08, 611.	3.5	27
125	Genome sequencing and analysis of the first spontaneous Nanosilver resistant bacterium Proteus mirabilis strain SCDR1. Antimicrobial Resistance and Infection Control, 2017, 6, 119.	4.1	16
126	Mechanisms Underlying Neurotoxicity of Silver Nanoparticles. Advances in Experimental Medicine and Biology, 2018, 1048, 227-250.	1.6	44
127	Phytochemical-assisted synthetic approaches for silver nanoparticles antimicrobial applications: A review. Advances in Colloid and Interface Science, 2018, 256, 326-339.	14.7	163
128	Nanotechnology for the Treatment of Stony Materials' Surface Against Biocoatings. , 2018, , 223-257.		Ο

#	Article	IF	Citations
129	Bactericidal effect of silver nanoparticles against propagation of Clavibacter michiganensis infection in Lycopersicon esculentum Mill. Microbial Pathogenesis, 2018, 115, 358-362.	2.9	20
130	Potential applications and human biosafety of nanomaterials used in nanomedicine. Journal of Applied Toxicology, 2018, 38, 3-24.	2.8	112
131	Biological synthesis of silver nanoparticles using β-1, 3 glucan binding protein and their antibacterial, antibiofilm and cytotoxic potential. Microbial Pathogenesis, 2018, 115, 31-40.	2.9	52
132	Applications of Noble Metal-Based Nanoparticles in Medicine. International Journal of Molecular Sciences, 2018, 19, 4031.	4.1	172
133	Antiviral Activity of Tannic Acid Modified Silver Nanoparticles: Potential to Activate Immune Response in Herpes Genitalis. Viruses, 2018, 10, 524.	3.3	94
134	Antiviral Activity of Graphene Oxide–Silver Nanocomposites by Preventing Viral Entry and Activation of the Antiviral Innate Immune Response. ACS Applied Bio Materials, 2018, 1, 1286-1293.	4.6	94
135	A Silver Nanoparticle Method for Ameliorating Biliary Atresia Syndrome in Mice. Journal of Visualized Experiments, 2018, , .	0.3	2
136	The activity of silver nanoparticles against microalgae of the <i>Prototheca</i> genus. Nanomedicine, 2018, 13, 1025-1036.	3.3	26
137	Ultrastructural and biochemical features of cerebral microvessels of adult rat subjected to a low dose of silver nanoparticles Toxicology, 2018, 408, 31-38.	4.2	25
138	Metallic nanoparticle synthesised by biological route: safer candidate for diverse applications. IET Nanobiotechnology, 2018, 12, 392-404.	3.8	15
139	Nanosilver: new ageless and versatile biomedical therapeutic scaffold. International Journal of Nanomedicine, 2018, Volume 13, 733-762.	6.7	147
140	Inactivation of influenza A virus via exposure to silver nanoparticle-decorated silica hybrid composites. Environmental Science and Pollution Research, 2018, 25, 27021-27030.	5.3	41
141	Ultra-sonication-assisted silver nanoparticles using Panax ginseng root extract and their anti-cancer and antiviral activities. Journal of Photochemistry and Photobiology B: Biology, 2018, 188, 6-11.	3.8	108
142	Nanoantimicrobials for Plant Pathogens Control: Potential Applications and Mechanistic Aspects. Nanotechnology in the Life Sciences, 2018, , 87-109.	0.6	9
143	Nanoparticles and their antimicrobial properties against pathogens including bacteria, fungi, parasites and viruses. Microbial Pathogenesis, 2018, 123, 505-526.	2.9	265
144	Nanoparticles as antiviral agents against adenoviruses. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2018, 9, 025021.	1.5	66
145	Noble metal nanoparticles: synthesis, and biomedical implementations. , 2018, , 177-233.		10
146	Subchronic and chronic toxicity evaluation of inorganic nanoparticles for delivery applications. Advanced Drug Delivery Reviews, 2019, 144, 112-132.	13.7	140

#	ARTICLE	IF	CITATIONS
147	Loading AKBA on surface of silver nanoparticles to improve their sedative-hypnotic and anti-inflammatory efficacies. Nanomedicine, 2019, 14, 2783-2798.	3.3	7
148	Metallic nanoparticles as a potential antimicrobial for catheters and prostheses. , 2019, , 153-196.		3
149	Antiviral Properties of R. tanguticum Nanoparticles on Herpes Simplex Virus Type I In Vitro and In Vivo. Frontiers in Pharmacology, 2019, 10, 959.	3.5	22
150	Magnetic Functionalized Nanoparticles for Biomedical, Drug Delivery and Imaging Applications. Nanoscale Research Letters, 2019, 14, 188.	5.7	172
151	Tungsten carbide nanoparticles show a broad spectrum virucidal activity against enveloped and nonenveloped model viruses using a guidelineâ€standardized in vitro test. Letters in Applied Microbiology, 2019, 69, 302-309.	2.2	13
152	Usage of nanoparticles as adsorbents for waste water treatment: An emerging trend. Sustainable Materials and Technologies, 2019, 22, e00128.	3.3	74
153	Polyphosphonium-oligochitosans decorated with nanosilver as new prospective inhibitors for common human enteric viruses. Carbohydrate Polymers, 2019, 226, 115261.	10.2	53
154	<p>Rifampicin conjugated silver nanoparticles: a new arena for development of antibiofilm potential against methicillin resistant Staphylococcus aureus and Klebsiella pneumoniae</p> . International Journal of Nanomedicine, 2019, Volume 14, 3983-3993.	6.7	43
155	The pH-dependent electrostatic interaction of a metal nanoparticle with the MS2 virus-like particles. Chemical Physics Letters, 2019, 730, 84-88.	2.6	6
156	Silver nanoparticles selectively induce human oncogenic γ-herpesvirus-related cancer cell death through reactivating viral lytic replication. Cell Death and Disease, 2019, 10, 392.	6.3	28
157	Modifying the second order dispersion of femtosecond laser pulses to crack silver nanoparticles and control their dimensions. Optics and Laser Technology, 2019, 118, 1-7.	4.6	1
158	Antimicrobial activity of silver nanoparticles. , 2019, , 461-484.		47
159	Medical and Microbial Applications of Controlled Shape of Silver Nanoparticles Prepared by Ionizing Radiation. BioNanoScience, 2019, 9, 414-422.	3.5	11
160	Plant-Based Fabrication of Silver Nanoparticles and Their Application. , 2019, , 135-175.		9
161	Drug repurposing for new, efficient, broad spectrum antivirals. Virus Research, 2019, 264, 22-31.	2.2	55
162	In vitro anthelmintic effect of biologically synthesized silver nanoparticles on liver amphistome, Gigantocotyle explanatum. Experimental Parasitology, 2019, 198, 95-104.	1.2	19
163	Iron oxide nanoparticles based antiviral activity of H1N1 influenza AÂvirus. Journal of Infection and Chemotherapy, 2019, 25, 325-329.	1.7	134
164	Evaluation of the Efficiency of Interparticle Interactions in Nanosystems. Journal of Nanotechnology, 2019, 2019, 1-8.	3.4	10

#	Article	IF	CITATIONS
165	Silver nanoparticles as potential antiviral agents against African swine fever virus. Materials Research Express, 2019, 6, 1250g9.	1.6	63
166	Impact of electromagnetic fields on in vitro toxicity of silver and graphene nanoparticles. Electromagnetic Biology and Medicine, 2019, 38, 21-31.	1.4	13
167	Antiviral and Antimicrobial Potentiality of Nano Drugs. , 2019, , 343-356.		15
168	Temperature-dependent green biosynthesis and characterization of silver nanoparticles using balloon flower plants and their antibacterial potential. Journal of Molecular Structure, 2019, 1177, 302-309.	3.6	76
169	Antimicrobial potentials of medicinal plant's extract and their derived silver nanoparticles: A focus on honey bee pathogen. Saudi Journal of Biological Sciences, 2019, 26, 1815-1834.	3.8	41
170	Promising antimicrobial activities of oil and silver nanoparticles obtained from Melaleuca alternifolia leaves against selected skin-infecting pathogens. Journal of Herbal Medicine, 2020, 20, 100289.	2.0	18
171	Antiviral nanoagents: More attention and effort needed?. Nano Today, 2020, 35, 100976.	11.9	23
172	Metal Nanoparticles: a Promising Treatment for Viral and Arboviral Infections. Biological Trace Element Research, 2021, 199, 3159-3176.	3.5	68
173	Potent antiviral effect of silver nanoparticles on SARS-CoV-2. Biochemical and Biophysical Research Communications, 2020, 533, 195-200.	2.1	301
174	Hard Nanomaterials in Time of Viral Pandemics. ACS Nano, 2020, 14, 9364-9388.	14.6	76
175	Tackling COVID-19 pandemic through nanocoatings: Confront and exactitude. Current Research in Green and Sustainable Chemistry, 2020, 3, 100011.	5.6	59
176	Silver nanoparticles: Synthesis, medical applications and biosafety. Theranostics, 2020, 10, 8996-9031.	10.0	518
177	Surface Stabilization Affects Toxicity of Silver Nanoparticles in Human Peripheral Blood Mononuclear Cells. Nanomaterials, 2020, 10, 1390.	4.1	24
178	Nanomedicine as a promising approach forÂdiagnosis, treatment and prophylaxis against COVID-19. Nanomedicine, 2020, 15, 2085-2102.	3.3	60
179	Medicinal plants: Treasure trove for green synthesis of metallic nanoparticles and their biomedical applications. Biocatalysis and Agricultural Biotechnology, 2020, 24, 101518.	3.1	142
180	The Potential of Silver Nanoparticles for Antiviral and Antibacterial Applications: A Mechanism of Action. Nanomaterials, 2020, 10, 1566.	4.1	317
181	Silver nanoparticles: Synthesis, investigation techniques, and properties. Advances in Colloid and Interface Science, 2020, 284, 102246.	14.7	147
182	Advances in Antiviral Material Development. ChemPlusChem, 2020, 85, 2105-2128.	2.8	27

#	Article	IF	CITATIONS
183	Antiviral Potential of Nanoparticles—Can Nanoparticles Fight Against Coronaviruses?. Nanomaterials, 2020, 10, 1645.	4.1	162
184	Synthesis and evaluation of polyamine carbon quantum dots (CQDs) in Litopenaeus vannamei as a therapeutic agent against WSSV. Scientific Reports, 2020, 10, 7343.	3.3	27
185	The Role of New Inorganic Materials in Composite Membranes for Water Disinfection. Membranes, 2020, 10, 101.	3.0	39
186	A systematic review on use of aminoquinolines for the therapeutic management of COVID-19: Efficacy, safety and clinical trials. Life Sciences, 2020, 254, 117775.	4.3	35
187	Silver and Graphenic Carbon Nanostructures Differentially Influence the Morphology and Viability of Cardiac Progenitor Cells. Materials, 2020, 13, 2159.	2.9	3
188	Introduction to Active, Smart, and Intelligent Nanomaterials for Biomedical Application. , 2020, , 1-16.		3
189	Toward Nanotechnology-Enabled Approaches against the COVID-19 Pandemic. ACS Nano, 2020, 14, 6383-6406.	14.6	455
190	Near-field interaction explains features of antiviral action of non-functionalized nanoparticles. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2020, 11, 015014.	1.5	12
191	<p>Silver-Containing Titanium Dioxide Nanocapsules for Combating Multidrug-Resistant Bacteria</p> . International Journal of Nanomedicine, 2020, Volume 15, 1267-1281.	6.7	19
192	Removal of bacteria, viruses, and other microbial entities by means of nanoparticles. , 2020, , 465-491.		10
193	Health Impact of Silver Nanoparticles: A Review of the Biodistribution and Toxicity Following Various Routes of Exposure. International Journal of Molecular Sciences, 2020, 21, 2375.	4.1	535
194	Viral filtration using carbonâ€based materials. Medical Devices & Sensors, 2020, 3, e10107.	2.7	27
195	Silver nanoparticles for delivery purposes. , 2020, , 347-371.		21
196	Detection and removal of biological contaminants in water. , 2020, , 69-110.		5
197	Endophytic microbes in nanotechnology: Current development, and potential biotechnology applications. , 2020, , 231-262.		44
198	Size-controllable preparation and antibacterial mechanism of thermo-responsive copolymer-stabilized silver nanoparticles with high antimicrobial activity. Materials Science and Engineering C, 2020, 110, 110735.	7.3	58
199	Structure, stability and chaperone function of Mycobacterium leprae Heat Shock Protein 18 are differentially affected upon interaction with gold and silver nanoparticles. International Journal of Biological Macromolecules, 2020, 152, 250-260.	7.5	9
200	Nano Antiviral Photodynamic Therapy: a Probable Biophysicochemical Management Modality in SARS-CoV-2. Expert Opinion on Drug Delivery, 2021, 18, 265-272.	5.0	23

#	Article	IF	CITATIONS
201	Toxicological alterations induced by subacute exposure of silver nanoparticles in Wistar rats. Journal of Applied Toxicology, 2021, 41, 972-986.	2.8	12
202	Nanotechnology for virus treatment. Nano Today, 2021, 36, 101031.	11.9	58
203	Targeting arachidonic acid–related metabolites in COVID-19 patients: potential use of drug-loaded nanoparticles. Emergent Materials, 2021, 4, 265-277.	5.7	20
204	Update on the role of antiseptics in the management of chronic wounds with critical colonisation and/or biofilm. International Wound Journal, 2021, 18, 342-358.	2.9	50
205	Silver nanoparticle based multifunctional approach for combating COVID-19. Sensors International, 2021, 2, 100101.	8.4	59
206	Influence of nanotechnology to combat against COVID-19 for global health emergency: A review. Sensors International, 2021, 2, 100079.	8.4	38
207	Antiviral nanoparticle ligands identified with datamining and high-throughput virtual screening. RSC Advances, 2021, 11, 23136-23143.	3.6	9
208	Mechanisms of Action of Nanoparticles in Living Systems. , 2021, , 1555-1571.		2
209	All That Clitters Is Not Silver—A New Look at Microbiological and Medical Applications of Silver Nanoparticles. International Journal of Molecular Sciences, 2021, 22, 854.	4.1	42
210	Nanomedicine for COVID-19: the role of nanotechnology in the treatment and diagnosis of COVID-19. Emergent Materials, 2021, 4, 75-99.	5.7	81
212	New Strategy of Reducing Biofilm Forming Bacteria in Oral Cavity by Bismuth Nanoparticles. BioMed Research International, 2021, 2021, 1-8.	1.9	10
213	Nano Silver Coated Surgical Apparels and Phaco Needles for Safety of Ophthalmic Surgeons in View of COVID-19 Pandemic. Open Ophthalmology Journal, 2021, 15, 9-12.	0.2	4
214	A proposed insight into the anti-viral potential of metallic nanoparticles against novel coronavirus disease-19 (COVID-19). Bulletin of the National Research Centre, 2021, 45, 36.	1.8	25
215	Silver nanoparticles as a potential treatment against <scp>SARS oV</scp> â€2: A review. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2021, 13, e1707.	6.1	50
216	State-of-the-Art of Nanodiagnostics and Nanotherapeutics against SARS-CoV-2. ACS Applied Materials & Interfaces, 2021, 13, 14816-14843.	8.0	27
217	Trends in the Antiviral Chemical Activity of Material Surfaces Associated With the SARS-CoV-2 Outbreak. Frontiers in Chemical Engineering, 2021, 3, .	2.7	8
218	Anticancer Potential of Biogenic Silver Nanoparticles: A Mechanistic Study. Pharmaceutics, 2021, 13, 707.	4.5	42
219	Antiviral Activity of Silver, Copper Oxide and Zinc Oxide Nanoparticle Coatings against SARS-CoV-2. Nanomaterials, 2021, 11, 1312.	4.1	99

#	Article	IF	CITATIONS
220	Silver Nanoparticles Stable to Oxidation and Silver Ion Release Show Size-Dependent Toxicity In Vivo. Nanomaterials, 2021, 11, 1516.	4.1	35
221	Focused role of nanoparticles against COVID-19: Diagnosis and treatment. Photodiagnosis and Photodynamic Therapy, 2021, 34, 102287.	2.6	20
222	Antiviral Nanomaterials for Designing Mixed Matrix Membranes. Membranes, 2021, 11, 458.	3.0	16
223	Nanotechnologyâ€Based Approach to Combat Pandemic COVID 19: A Review. Macromolecular Symposia, 2021, 397, 2000336.	0.7	2
224	SARS-CoV-2 and its new variants: a comprehensive review on nanotechnological application insights into potential approaches. Applied Nanoscience (Switzerland), 2023, 13, 65-93.	3.1	8
225	Biomedical Applications of Silver Nanoparticles (Review). Drug Development and Registration, 2021, 10, 176-187.	0.6	5
226	A Green, Simple and Facile Way to Synthesize Silver Nanoparticles Using Soluble Starch. pH Studies and Antimicrobial Applications. Materials, 2021, 14, 4765.	2.9	9
227	Development of Novel Antimicrobial and Antiviral Green Synthesized Silver Nanocomposites for the Visual Detection of Fe3+ Ions. Nanomaterials, 2021, 11, 2076.	4.1	10
228	Role of different types of nanomaterials against diagnosis, prevention and therapy of COVID-19. Sustainable Cities and Society, 2021, 72, 103046.	10.4	25
229	Antiviral nanoparticles for sanitizing surfaces: A roadmap to self-sterilizing against COVID-19. Nano Today, 2021, 40, 101267.	11.9	68
230	Inorganic and Polymeric Nanoparticles for Human Viral and Bacterial Infections Prevention and Treatment. Nanomaterials, 2021, 11, 137.	4.1	29
231	A comprehensive review on antimicrobial face masks: an emerging weapon in fighting pandemics. RSC Advances, 2021, 11, 6544-6576.	3.6	83
232	"Nanosilver― A Versatile and New-Generation Nanoproduct in Biomedical Applications. , 2021, , 1-20.		3
233	New Textile for Personal Protective Equipment—Plasma Chitosan/Silver Nanoparticles Nylon Fabric. Fibers, 2021, 9, 3.	4.0	24
234	Application of antiviral materials in textiles: A review. Nanotechnology Reviews, 2021, 10, 1092-1115.	5.8	24
235	Nanoformulations: A Valuable Tool in the Therapy of Viral Diseases Attacking Humans and Animals. , 2019, , 137-178.		9
236	Light, Electromagnetic Spectrum, and Photostimulation of Microorganisms with Special Reference to Chaetomium. Fungal Biology, 2020, , 377-393.	0.6	3
237	Microbial Synthesis of Silver Nanoparticles and Their Biological Potential. , 2020, , 99-133.		19

#	Article	IF	CITATIONS
238	Antibacterial and Antiviral Functional Materials: Chemistry and Biological Activity toward Tackling COVID-19-like Pandemics. ACS Pharmacology and Translational Science, 2021, 4, 8-54.	4.9	174
239	Induction of extrinsic and intrinsic apoptosis in cervical cancer cells by Momordica dioica mediated gold nanoparticles. IET Nanobiotechnology, 2020, 14, 172-179.	3.8	9
240	Inorganic nanomaterials for fighting surface and airborne pathogens and viruses. Nano Express, 2020, 1, 032003.	2.4	10
241	Virucidal activity of silver nanoparticles against Banana bunchy top virus (BBTV) in banana plants. Bulletin of the National Research Centre, 2020, 44, .	1.8	16
242	Nanotechnology in Controlling Infectious Disease. , 2011, , .		1
243	Silver Sucrose Octasulfate (IASOSâ"¢) as a Valid Active Ingredient into a Novel Vaginal Gel against Human Vaginal Pathogens: In Vitro Antimicrobial Activity Assessment. PLoS ONE, 2014, 9, e97791.	2.5	2
244	Nanosilver particles in medical applications: synthesis, performance, and toxicity. International Journal of Nanomedicine, 2014, 9, 2399.	6.7	341
245	Silver Nanomaterials in Contemporary Molecular Physiology Research. Current Medicinal Chemistry, 2020, 27, 411-422.	2.4	1
246	Commercial metal-based nanocolloids – lack of virucidal activity against ECBO virus. Polish Journal of Veterinary Sciences, 2014, 17, 507-509.	0.2	1
247	Cytotoxicity and Synergistic Effect of Biogenically Synthesized Ternary Therapeutic Nano Conjugates Comprising Plant Active Principle, Silver and Anticancer Drug on MDA-MB-453 Breast Cancer Cell Line. Asian Pacific Journal of Cancer Prevention, 2020, 21, 195-204.	1.2	11
249	Mechanisms of Action of Nanoparticles in Living Systems. Advances in Environmental Engineering and Green Technologies Book Series, 2018, , 220-236.	0.4	9
250	Evaluation of a new Argovit as an antiviral agent included in feed to protect the shrimp <i>Litopenaeus vannamei</i> against White Spot Syndrome Virus infection. PeerJ, 2020, 8, e8446.	2.0	29
251	Antiviral Effect of Nonfunctionalized Gold Nanoparticles against Herpes Simplex Virus Type-1 (HSV-1) and Possible Contribution of Near-Field Interaction Mechanism. Molecules, 2021, 26, 5960.	3.8	24
253	Possible mechanism of inhibition of virus infectivity with nanoparticles. Semiconductor Physics, Quantum Electronics and Optoelectronics, 2016, 19, 220-224.	1.0	1
254	Possible method for evaluation of virus, bacteria and yeasts infectivity by optical measurements. Semiconductor Physics, Quantum Electronics and Optoelectronics, 2016, 19, 299-302.	1.0	0
256	Nanobotany and Pharmaceuticals. , 2018, , 131-159.		1
257	Therapeutic potential of sulfathiazole silver for topical treatment of wound infection. Đospital-replacing Technologies Ambulatory Surgery, 2018, , 42-51.	0.2	1
258	Nanoparticle-Mediated Chaetomium, Unique Multifunctional Bullets: What Do We Need for Real Applications in Agriculture?. Fungal Biology, 2020, , 267-300.	0.6	1

#	Article	IF	CITATIONS
259	Nanoscale–Specific Analytics: How to Push the Analytic Excellence in Express Analysis of CBRN. NATO Science for Peace and Security Series A: Chemistry and Biology, 2020, , 199-216.	0.5	0
260	Antimicrobial silver nanoparticle-photodeposited fabrics for SARS-CoV-2 destruction. Colloids and Interface Science Communications, 2021, 45, 100542.	4.1	22
261	In Vivo Effects of Orally Administered Different Concentrations of Silver Oxide Nanoparticles in Hyperuricemic Mice. Biological Trace Element Research, 2022, 200, 3677-3687.	3.5	0
262	Nanomaterials for Agriculture Input Use Efficiency. , 2020, , 137-175.		7
263	Emerging importance of nanotechnology-based approaches to control the COVID-19 pandemic; focus on nanomedicine iterance in diagnosis and treatment of COVID-19 patients. Journal of Drug Delivery Science and Technology, 2022, 67, 102967.	3.0	19
264	Nanotechnology Applications of Flavonoids for Viral Diseases. Pharmaceutics, 2021, 13, 1895.	4.5	24
265	Nanocomposites based on polylactide and silver nanoparticles and their antimicrobial and antiviral applications. Reactive and Functional Polymers, 2022, 170, 105096.	4.1	24
267	Progress in antiretroviral drug delivery using nanotechnology. International Journal of Nanomedicine, 2010, 5, 533-47.	6.7	52
268	Trends of Antibacterial, Antivirus and Antibiofilm Surface Treatments. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2021, 72, 252-258.	0.2	3
269	Investigating the Photothermal Disinfecting Properties of Light-Activated Silver Nanoparticles. Industrial & Engineering Chemistry Research, 2021, 60, 17390-17398.	3.7	7
270	Synthesis of Chitosan-Silver Nanoparticle Composite Spheres and Their Antimicrobial Activities. Polymers, 2021, 13, 3990.	4.5	23
271	Similarities and Differences in the Mechanism of Antibacterial Action of Silver Ions and Nanoparticles. Applied Biochemistry and Microbiology, 2021, 57, 683-693.	0.9	13
272	Biosynthesis of Silver Nanoparticles by Conyza canadensis and Their Antifungal Activity against Bipolaris maydis. Crystals, 2021, 11, 1443.	2.2	7
273	Exploiting the antiviral potential of intermetallic nanoparticles. Emergent Materials, 2022, 5, 1251-1260.	5.7	6
274	Silver Nanoparticles as Potential Antiviral Agents. Pharmaceutics, 2021, 13, 2034.	4.5	35
275	Surface‒Aerosol Stability and Pathogenicity of Diverse Middle East Respiratory Syndrome Coronavirus Strains, 2012‒2018. Emerging Infectious Diseases, 2021, 27, 3052-3062.	4.3	6
276	Glyco disulfide capped gold nanoparticle synthesis: cytotoxicity studies and effects on lung cancer A549 cells. Future Medicinal Chemistry, 2022, 14, 307-324.	2.3	3
277	Review on Nanoparticles and Nanostructured Materials: Bioimaging, Biosensing, Drug Delivery, Tissue Engineering, Antimicrobial, and Agro-Food Applications. Nanomaterials, 2022, 12, 457.	4.1	200

#	Article	IF	CITATIONS
278	Synthesis approach-dependent antiviral properties of silver nanoparticles and nanocomposites. Journal of Nanostructure in Chemistry, 2022, 12, 809-831.	9.1	40
279	The Emerging Roles of Silver Nanoparticles to Target Viral Life Cycle and Detect Viral Pathogens. Chemistry - an Asian Journal, 2022, 17, .	3.3	17
280	Phi 6 Bacteriophage Inactivation by Metal Salts, Metal Powders, and Metal Surfaces. Viruses, 2022, 14, 204.	3.3	13
281	Multifarious global flora fabricated phytosynthesis of silver nanoparticles: a green nanoweapon for antiviral approach including SARS-CoV-2. International Nano Letters, 2022, 12, 313-344.	5.0	6
283	Finite Element Analysis of Silver Nanorods, Spheres, Ellipsoids and Core–Shell Structures for Hyperthermia Treatment of Cancer. Materials, 2022, 15, 1786.	2.9	3
284	Recent advances in carbon quantum dots for virus detection, as well as inhibition and treatment of viral infection. Nano Convergence, 2022, 9, 15.	12.1	40
285	Antimicrobial polymeric composites for high-touch surfaces in healthcare applications. Current Opinion in Biomedical Engineering, 2022, 22, 100395.	3.4	14
287	Nano drug (AgNPs capped with hydroxychloroquine): Synthesis, characterization, anti-covid-19 and healing the wound infected with S. aureus. Materials Chemistry and Physics, 2022, 287, 126249.	4.0	4
289	Synthesis and Biological Use of Nanomaterials. Topics in Applied Physics, 2022, , 793-858.	0.8	0
290	Amine-Functionalized Silver Nanoparticles: A Potential Antiviral-Coating Material with Trap and Kill Efficiency to Combat Viral Dissemination (COVID-19). , 2023, 1, 618-632.		3
291	Ponderomotive forces in the system of two nanoparticles. Scientific Reports, 2022, 12, .	3.3	1
292	Advanced Plasmonic Nanoparticle-Based Techniques for the Prevention, Detection, and Treatment of Current COVID-19. Plasmonics, 2023, 18, 311-347.	3.4	4
293	Inhibition of White Spot Syndrome Virus (WSSV) in Pacific White Shrimp (Litopenaeus vannamei) Using Polyamine-Modified Carbon Quantum Dots. Methods in Molecular Biology, 2023, , 67-73.	0.9	0
294	Nanotechnology in Virology. , 2023, , 75-107.		0
295	A Novel Vision of Reinforcing Nanofibrous Masks with Metal Nanoparticles: Antiviral Mechanisms Investigation. Advanced Fiber Materials, 2023, 5, 1273-1317.	16.1	11
296	Anti-Hepatitis C Virus (HCV) and Cytotoxic Activity of Sofosbuvir Decorated Dextran Stabilized Silver Nanoparticles. Plasmonics, 0, , .	3.4	1