A novel missense mutation in the gene for gap-junction with autosomal dominant "nuclear punctate" cataracts

Molecular Vision 10, 376-82

Citation Report

#	Article	IF	CITATIONS
1	Intracellular Distribution, Assembly and Effect of Disease-associated Connexin 31 Mutants in HeLa Cells. Acta Biochimica Et Biophysica Sinica, 2005, 37, 547-554.	2.0	24
2	Two novel mutations of connexin genes in Chinese families with autosomal dominant congenital nuclear cataract. British Journal of Ophthalmology, 2005, 89, 1535-1537.	3.9	31
3	A novel GJA8 mutation is associated with autosomal dominant lamellar pulverulent cataract: further evidence for gap junction dysfunction in human cataract. Journal of Medical Genetics, 2005, 43, e2-e2.	3.2	75
4	Diverse gap junctions modulate distinct mechanisms for fiber cell formation during lens development and cataractogenesis. Development (Cambridge), 2006, 133, 2033-2040.	2.5	43
5	Knock-in of $\hat{l}\pm 3$ connexin prevents severe cataracts caused by an $\hat{l}\pm 8$ point mutation. Journal of Cell Science, 2006, 119, 2138-2144.	2.0	34
6	A novel connexin50 mutation associated with congenital nuclear pulverulent cataracts. Journal of Medical Genetics, 2007, 45, 155-160.	3.2	69
7	Congenital cataracts and their molecular genetics. Seminars in Cell and Developmental Biology, 2008, 19, 134-149.	5.0	324
8	Cataracts Are Caused by Alterations of a Critical N-Terminal Positive Charge in Connexin50. , 2008, 49, 2549.		32
9	Oxidative Stress, Lens Gap Junctions, and Cataracts. Antioxidants and Redox Signaling, 2009, 11, 339-353.	5 . 4	219
10	Lens Gap Junctions in Growth, Differentiation, and Homeostasis. Physiological Reviews, 2010, 90, 179-206.	28.8	205
11	Gap Junctions or Hemichannel-Dependent and Independent Roles of Connexins in Cataractogenesis and Lens Development. Current Molecular Medicine, 2010, 10, 851-863.	1.3	52
12	Molecular characteristics of inherited congenital cataracts. European Journal of Medical Genetics, 2010, 53, 347-357.	1.3	78
13	A Novel Mutation in the Connexin 50 Gene (GJA8) Associated with Autosomal Dominant Congenital Nuclear Cataract in a Chinese Family. Current Eye Research, 2010, 35, 597-604.	1.5	16
14	Homeostasis in the vertebrate lens: mechanisms of solute exchange. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 1265-1277.	4.0	44
15	Exome sequencing of senescence-accelerated mice (SAM) reveals deleterious mutations in degenerative disease-causing genes. BMC Genomics, 2013, 14, 248.	2.8	29
16	Connexin Mutants and Cataracts. Frontiers in Pharmacology, 2013, 4, 43.	3 . 5	90
17	Identification and functional analysis of two novel connexin 50 mutations associated with autosome dominant congenital cataracts. Scientific Reports, 2016, 6, 26551.	3.3	18
18	Sporadic and Familial Congenital Cataracts: Mutational Spectrum and New Diagnoses Using Nextâ€Generation Sequencing. Human Mutation, 2016, 37, 371-384.	2.5	108

#	Article	IF	CITATIONS
19	Inherited Congenital Cataract: A Guide to Suspect the Genetic Etiology in the Cataract Genesis. Molecular Syndromology, 2017, 8, 58-78.	0.8	58
20	"Ant-egg―cataract revisited. Graefe's Archive for Clinical and Experimental Ophthalmology, 2017, 255, 119-125.	1.9	1
21	The connexin 46 mutant (V44M) impairs gap junction function causing congenital cataract. Journal of Genetics, 2017, 96, 969-976.	0.7	5
22	Intercellular Communication in Lens Development and Disease. , 2005, , 173-195.		2
23	Further evidence for P59L mutation in GJA3 associated with autosomal dominant congenital cataract. Indian Journal of Ophthalmology, 2016, 64, 508.	1.1	9
24	Lens Proteins and Their Molecular Biology. , 2008, , 1341-1364.		1
25	Connexins in Lens Development and Disease. , 2009, , 387-396.		1
26	A novel "pearl box" cataract associated with a mutation in the connexin 46 (GJA3) gene. Molecular Vision, 2007, 13, 797-803.	1.1	16
27	Mutation analysis of congenital cataract in a Chinese family identified a novel missense mutation in the connexin 46 gene (GJA3). Molecular Vision, 2010, 16, 713-9.	1.1	16
28	Molecular analysis of cataract families in India: new mutations in the CRYBB2 and GJA3 genes and rare polymorphisms. Molecular Vision, 2010, 16, 1837-47.	1.1	35
29	A novel mutation in the GJA3 (connexin46) gene is associated with autosomal dominant congenital nuclear cataract in a Chinese family. Molecular Vision, 2011, 17, 1070-3.	1.1	6
30	A novel mutation in the connexin 46 (GJA3) gene associated with congenital cataract in a Chinese pedigree. Molecular Vision, 2011, 17, 1343-9.	1.1	8
31	Mutation analysis of 12 genes in Chinese families with congenital cataracts. Molecular Vision, 2011, 17, 2197-206.	1.1	45
32	A recurrent missense mutation in GJA3 associated with autosomal dominant cataract linked to chromosome 13q. Molecular Vision, 2011, 17, 2255-62.	1.1	13
33	Coralliform cataract caused by a novel connexin46 (GJA3) mutation in a Chinese family. Molecular Vision, 2012, 18, 203-10.	1.1	9
34	A novel insertional mutation in the connexin 46 (gap junction alpha 3) gene associated with autosomal dominant congenital cataract in a Chinese family. Molecular Vision, 2013, 19, 789-95.	1.1	10
36	Evaluating gap junction variants for a role in pediatric cataract: an overview of the genetic landscape and clinical classification of variants in the <i>GJA3</i> and <i>GJA8</i> genes. Expert Review of Ophthalmology, 2023, 18, 71-95.	0.6	1