Some Martian volcanic features as viewed from the Vik

Journal of Geophysical Research 82, 3985-4015 DOI: 10.1029/js082i028p03985

Citation Report

#	Article	IF	CITATIONS
1	The missions of the Viking orbiters. Journal of Geophysical Research, 1977, 82, 3971-3983.	3.3	40
2	Martian permafrost features. Journal of Geophysical Research, 1977, 82, 4039-4054.	3.3	224
3	Geology of the Valles Marineris: First analysis of imaging from the Viking 1 Orbiter Primary Mission. Journal of Geophysical Research, 1977, 82, 4067-4091.	3.3	124
4	Thermal evolutions of the terrestrial planets. The Moon and the Planets, 1978, 18, 281-320.	O.5	101
5	Structural evolution of Arsia Mons, Pavonis Mons, and Ascreus Mons: Tharsis region of Mars. Icarus, 1978, 34, 496-511.	2.5	80
6	Thermal history and evolution of Mars. Icarus, 1978, 34, 537-547.	2.5	77
7	Mineralogy of the planets: a voyage in space and time. Mineralogical Magazine, 1979, 43, 1-89.	1.4	71
8	Evidence for explosive volcanic density currents on certain Martian volcanoes. Icarus, 1979, 39, 88-110.	2.5	63
9	Tharsis province of Mars: Geologic sequence, geometry, and a deformation mechanism. Icarus, 1979, 38, 456-472.	2.5	174
10	Evaporation of ice in planetary atmospheres: Ice-covered rivers on mars. Icarus, 1979, 39, 385-400.	2.5	122
11	Geophysical observations pertaining to solid-state convection in the terrestrial planets. Physics of the Earth and Planetary Interiors, 1979, 19, 107-148.	1.9	42
12	Tectonic evolution of Mars. Journal of Geophysical Research, 1979, 84, 7934-7939.	3.3	136
13	The subglacial birth of Olympus Mons and its aureoles. Journal of Geophysical Research, 1979, 84, 8061-8074.	3.3	66
14	Pseudocraters on Mars. Journal of Geophysical Research, 1979, 84, 8075-8086.	3.3	95
15	MARS: The North Polar Sand Sea and related wind patterns. Journal of Geophysical Research, 1979, 84, 8167-8180.	3.3	153
16	The effects of nonideal surfaces on the derived thermal properties of Mars. Journal of Geophysical Research, 1979, 84, 8252-8262.	3.3	70
17	Formation and deposition of volcanic sulfate aerosols on Mars. Journal of Geophysical Research, 1979, 84, 8343-8354.	3.3	125
18	The planet Mars as seen at the end of the Viking Mission. Journal of Geophysical Research, 1979, 84, 8487-8519.	3.3	35

TATION PEDO

#	Article	IF	Citations
19	Volcanology. Reviews of Geophysics, 1979, 17, 872-887.	23.0	6
20	Planetary surfaces. Reviews of Geophysics, 1979, 17, 1694-1722.	23.0	10
21	Radar altimetry of South Tharsis, Mars. Icarus, 1980, 42, 287-316.	2.5	34
22	The morphology of the Martian surface. Space Science Reviews, 1980, 25, 231.	8.1	24
23	Origin of the Olympus Mons aureole and perimeter scarp. The Moon and the Planets, 1980, 22, 221-234.	0.5	50
24	Radar, visual and thermal characteristics of Mars: Rough planar surfaces. Icarus, 1980, 42, 159-184.	2.5	41
25	A postâ€Viking view of Martian geologic evolution. Reviews of Geophysics, 1980, 18, 565-603.	23.0	48
26	Differentiation of crusts and cores of the terrestrial planets: Lessons for the early Earth?. Precambrian Research, 1980, 10, 177-194.	2.7	30
27	Geomorphological Processes on Terrestrial Planetary Surfaces. Annual Review of Earth and Planetary Sciences, 1980, 8, 231-261.	11.0	27
28	Volcanism on Mars. Reviews of Geophysics, 1981, 19, 13-41.	23.0	366
29	Martian ages. Journal of Geophysical Research, 1981, 86, 3097-3121.	3.3	225
30	Topography of Martian central volcanoes. Icarus, 1981, 45, 87-112.	2.5	39
31	On the original igneous source of Martian fines. Icarus, 1981, 45, 113-123.	2.5	64
32	The Tempe volcanic province of Mars and comparisons with the Snake River Plains of Idaho. Icarus, 1981, 45, 586-601.	2.5	30
33	Mars and Earth: Comparison of cold-climate features. Icarus, 1981, 45, 264-303.	2.5	261
34	Altered basaltic glass: A terrestrial analog to the soil of Mars. Icarus, 1981, 45, 347-369.	2.5	125
35	Martian channels and valleys: Their characteristics, distribution, and age. Icarus, 1981, 48, 91-117.	2.5	219
36	The geomorphology of Mars. Progress in Physical Geography, 1981, 5, 473-513.	3.2	35

#	Article	IF	CITATIONS
37	Explosive volcanism on Hecates Tholus, Mars: Investigation of eruption conditions. Journal of Geophysical Research, 1982, 87, 9890-9904.	3.3	97
38	Further evidence for a mass movement origin of the Olympus Mons aureole. Journal of Geophysical Research, 1982, 87, 9917-9928.	3.3	88
39	Tharsis volcanoes: Separation distances, relative ages, sizes, morphologies, and depths of burial. Journal of Geophysical Research, 1982, 87, 9829-9838.	3.3	8
40	Evolution of the Tharsis Province of Mars: The importance of heterogeneous lithospheric thickness and volcanic construction. Journal of Geophysical Research, 1982, 87, 9755-9774.	3.3	125
41	Absence of silicic volcanism on Mars: Implications for crustal composition and volatile abundance. Journal of Geophysical Research, 1982, 87, 9881-9889.	3.3	53
42	Aureole deposits of the Martian volcano Olympus Mons. Journal of Geophysical Research, 1982, 87, 1164-1178.	3.3	119
43	Ancient and modern slopes in the Tharsis region of Mars. Nature, 1982, 297, 546-550.	27.8	23
44	A comparison of volcanic eruption processes on Earth, Moon, Mars, Io and Venus. Nature, 1983, 302, 663-669.	27.8	201
45	6.2 Short description of the terrestrial planetary bodies. , 0, , 380-384.		0
46	The sedimentology of Mars: A review. New Astronomy Reviews, 1984, 27, 25-53.	0.3	1
46 47	The sedimentology of Mars: A review. New Astronomy Reviews, 1984, 27, 25-53. Topography of the shield volcano, Olympus Mons on Mars. Nature, 1984, 309, 432-435.	0.3 27.8	1 23
46 47 48	The sedimentology of Mars: A review. New Astronomy Reviews, 1984, 27, 25-53. Topography of the shield volcano, Olympus Mons on Mars. Nature, 1984, 309, 432-435. Calderas: A planetary perspective. Journal of Geophysical Research, 1984, 89, 8391-8406.	0.3 27.8 3.3	1 23 71
46 47 48 49	The sedimentology of Mars: A review. New Astronomy Reviews, 1984, 27, 25-53. Topography of the shield volcano, Olympus Mons on Mars. Nature, 1984, 309, 432-435. Calderas: A planetary perspective. Journal of Geophysical Research, 1984, 89, 8391-8406. Volcano/ground ice interactions in Elysium Planitia, Mars. Icarus, 1985, 64, 265-284.	0.3 27.8 3.3 2.5	1 23 71 83
46 47 48 49 50	The sedimentology of Mars: A review. New Astronomy Reviews, 1984, 27, 25-53. Topography of the shield volcano, Olympus Mons on Mars. Nature, 1984, 309, 432-435. Calderas: A planetary perspective. Journal of Geophysical Research, 1984, 89, 8391-8406. Volcano/ground ice interactions in Elysium Planitia, Mars. Icarus, 1985, 64, 265-284. Mars: Thickness of the lithosphere from the tectonic response to volcanic loads. Reviews of Geophysics, 1985, 23, 61-92.	0.3 27.8 3.3 2.5 23.0	1 23 71 83 115
46 47 48 49 50 51	The sedimentology of Mars: A review. New Astronomy Reviews, 1984, 27, 25-53. Topography of the shield volcano, Olympus Mons on Mars. Nature, 1984, 309, 432-435. Calderas: A planetary perspective. Journal of Geophysical Research, 1984, 89, 8391-8406. Volcano/ground ice interactions in Elysium Planitia, Mars. Icarus, 1985, 64, 265-284. Mars: Thickness of the lithosphere from the tectonic response to volcanic loads. Reviews of Geophysics, 1985, 23, 61-92. Linear volcanic features at Alba Patera, Mars ―PRobable spatter ridges. Journal of Geophysical Research, 1986, 91, E159.	0.3 27.8 3.3 2.5 23.0 3.3	1 23 71 83 115 20
 46 47 48 49 50 51 52 	The sedimentology of Mars: A review. New Astronomy Reviews, 1984, 27, 25-53. Topography of the shield volcano, Olympus Mons on Mars. Nature, 1984, 309, 432-435. Calderas: A planetary perspective. Journal of Geophysical Research, 1984, 89, 8391-8406. Volcano/ground ice interactions in Elysium Planitia, Mars. Icarus, 1985, 64, 265-284. Mars: Thickness of the lithosphere from the tectonic response to volcanic loads. Reviews of Geophysics, 1985, 23, 61-92. Linear volcanic features at Alba Patera, Mars ―PRobable spatter ridges. Journal of Geophysical Research, 1986, 91, E159. Lava flows on Mars: Analysis of small surface features and comparisons with terrestrial analogs. Journal of Geophysical Research, 1986, 91, E159.	0.3 27.8 3.3 2.5 23.0 3.3 3.3	1 23 71 83 115 20 43
 46 47 48 49 50 51 52 53 	The sedimentology of Mars: A review. New Astronomy Reviews, 1984, 27, 25-53. Topography of the shield volcano, Olympus Mons on Mars. Nature, 1984, 309, 432-435. Calderas: A planetary perspective. Journal of Geophysical Research, 1984, 89, 8391-8406. Volcano/ground ice interactions in Elysium Planitia, Mars. Icarus, 1985, 64, 265-284. Mars: Thickness of the lithosphere from the tectonic response to volcanic loads. Reviews of Geophysics, 1985, 23, 61-92. Linear volcanic features at Alba Patera, Mars â&PRobable spatter ridges. Journal of Geophysical Research, 1986, 91, E159. Lava flows on Mars: Analysis of small surface features and comparisons with terrestrial analogs. Journal of Geophysical Research, 1986, 91, E193. Tectonics of Marion and Prince Edward volcanoes (Indian Ocean): Result of regional control and edifice dynamics. Tectonophysics, 1986, 124, 155-175.	0.3 27.8 3.3 2.5 23.0 3.3 3.3 2.2	1 23 71 83 115 20 43 22

	CITATION	REPORT	
#	Article	IF	CITATIONS
56	Individual particles and Martian aeolian action—A review. Sedimentary Geology, 1986, 47, 167-189.	2.1	12
57	Martian fluidized crater distribution: tectonic implications. Earth, Moon and Planets, 1986, 34, 169-176.	0.6	6
58	Sequence, rheological properties, and effusion rates of volcanic flows at Alba Patera, Mars. Journal of Geophysical Research, 1987, 92, E553.	3.3	52
59	Large-scale volcano-ground ice interactions on Mars. Icarus, 1987, 70, 385-408.	2.5	124
60	Comets, volcanism, the salt-rich regolith, and cycling of volatiles on Mars. Icarus, 1987, 71, 250-256.	2,5	10
61	Polar wandering of Mars. Icarus, 1988, 73, 91-141.	2.5	223
62	Polygenic eruptions on Alba Patera, Mars. Bulletin of Volcanology, 1988, 50, 361-379.	3.0	81
63	Composite graben tectonics of Alba Patera on Mars. Earth, Moon and Planets, 1988, 42, 277-291.	0.6	5
64	Tharsis block tectonics on Mars. Earth, Moon and Planets, 1988, 41, 201-216.	0.6	2
65	Wrinkle ridge assemblages on the terrestrial planets. Journal of Geophysical Research, 1988, 93, 10236-10254.	3.3	186
66	Marine gravity of the southern ocean and Antarctic margin from Geosat. Journal of Geophysical Research, 1988, 93, 10389-10396.	3.3	63
67	Development of the Alba Patera volcano on Mars. Advances in Space Research, 1989, 9, 143-146.	2.6	2
68	Magma chamber -related development of Alba Patera on Mars. Earth, Moon and Planets, 1989, 45, 187-204.	0.6	4
69	The Geohydrology of Mars. Ground Water, 1989, 27, 184-192.	1.3	6
70	Chapter 3 long term dynamics of the solid earth. , 1989, , 43-102.		0
71	Volcanic flow development at Alba Patera, Mars. Icarus, 1990, 83, 453-493.	2.5	32
72	Volcanic geology of Tyrrhena Patera, Mars. Journal of Geophysical Research, 1990, 95, 7133-7149.	3.3	152
73	Origin and evolution of valleys on Martian volcanoes. Journal of Geophysical Research, 1990, 95, 14325-14344.	3.3	215

#	Article	IF	CITATIONS
74	Flank tectonics of Martian volcanoes. Journal of Geophysical Research, 1990, 95, 14345-14355.	3.3	33
75	Fault propagation folds induced by gravitational failure and slumping of the central Costa Rica Volcanic Range: Implications for large terrestrial and Martian volcanic edifices. Journal of Geophysical Research, 1990, 95, 14357-14382.	3.3	93
76	Emplacement of lava flow fields: Application of terrestrial studies to Alba Patera, Mars. Journal of Geophysical Research, 1990, 95, 14383-14397.	3.3	31
77	Geomorphology and stratigraphy of Alba Patera, Mars. Journal of Geophysical Research, 1991, 96, 1907-1930.	3.3	22
78	Magma Generation on Mars: Amounts, Rates, and Comparisons with Earth, Moon, and Venus. Science, 1991, 254, 996-998.	12.6	175
79	The pattern of circumferential and radial eruptive fissures on the volcanoes of Fernandina and Isabela islands, Galapagos. Bulletin of Volcanology, 1991, 53, 259-275.	3.0	136
80	Mars Observer camera. Journal of Geophysical Research, 1992, 97, 7699-7718.	3.3	240
81	Thermal emission spectrometer experiment: Mars Observer mission. Journal of Geophysical Research, 1992, 97, 7719-7734.	3.3	266
82	Martian parent craters for the SNC meteorites. Journal of Geophysical Research, 1992, 97, 10213-10225.	3.3	36
83	Shear-induced folding in Arsia Mons aureole: Evidence for low-latitude martian glaciations. Earth, Moon and Planets, 1992, 59, 11-22.	0.6	6
84	Volcanic geology of Hadriaca Patera and the eastern Hellas region of Mars. Journal of Geophysical Research, 1993, 98, 3431-3451.	3.3	136
85	On the accuracy of digital bathymetric data. Journal of Geophysical Research, 1993, 98, 9591-9603.	3.3	149
86	Evidence for Komatiite-type lavas on Mars from Phobos ISM data and other observations. Geophysical Research Letters, 1994, 21, 887-890.	4.0	26
87	Bathymetric prediction from dense satellite altimetry and sparse shipboard bathymetry. Journal of Geophysical Research, 1994, 99, 21803-21824.	3.3	404
88	Mars: Review and analysis of volcanic eruption theory and relationships to observed landforms. Reviews of Geophysics, 1994, 32, 221.	23.0	313
89	Calderas on Mars: characteristics, structure, and associated flank deformation. Geological Society Special Publication, 1996, 110, 307-348.	1.3	92
90	Volcano instability development: a planetary perspective. Geological Society Special Publication, 1996, 110, 25-43.	1.3	5
91	Eruption constraints on tube-fed planetary lava flows. Journal of Geophysical Research, 1997, 102, 6597-6613.	3.3	57

TION P

#	Article	IF	CITATIONS
92	Geologic context of the Mars radar "Stealth―region in southwestern Tharsis. Journal of Geophysical Research, 1997, 102, 21545-21567.	3.3	48
93	Alba Patera: A possible trace of a corona structure on Mars. Advances in Space Research, 1997, 20, 1561-1564.	2.6	0
94	The effect of varying acquisition parameters on the interpretation of SIR-C radar data: The Virunga volcanic chain. Remote Sensing of Environment, 1997, 59, 321-336.	11.0	18
95	Aeolian Dunes as Evidence for Explosive Volcanism in the Tharsis Region of Mars. Icarus, 1997, 130, 96-114.	2.5	39
96	Pit crater formation on Kilauea volcano, Hawaii Journal of Volcanology and Geothermal Research, 1998, 86, 1-18.	2.1	138
97	Flow and convective cooling in lava tubes. Journal of Geophysical Research, 1998, 103, 27465-27487.	3.3	60
98	Erosion by flowing lava: Field evidence. Journal of Geophysical Research, 1998, 103, 27325-27345.	3.3	96
99	Emplacement of long lava flows on planetary surfaces. Journal of Geophysical Research, 1998, 103, 27503-27516.	3.3	53
100	The long lava flows of Elysium Planita, Mars. Journal of Geophysical Research, 1998, 103, 19389-19400.	3.3	34
101	Dimensions of Pu'u O'o lava flows on Mars. Journal of Geophysical Research, 1998, 103, 13659-13666.	3.3	2
102	Evidence for a sill emplacement event on the upper flanks of the Ascraeus Mons shield volcano, Mars. Journal of Geophysical Research, 1999, 104, 27079-27089.	3.3	22
103	Evidence for episodicity in the magma supply to the large Tharsis volcanoes. Journal of Geophysical Research, 2001, 106, 1423-1433.	3.3	81
104	Latent outflow activity for western Tharsis, Mars: Significant flood record exposed. Journal of Geophysical Research, 2001, 106, 12301-12314.	3.3	51
105	Icelandic pseudocraters as analogs to some volcanic cones on Mars. Journal of Geophysical Research, 2001, 106, 20527-20546.	3.3	97
106	Mars Global Surveyor Mars Orbiter Camera: Interplanetary cruise through primary mission. Journal of Geophysical Research, 2001, 106, 23429-23570.	3.3	747
107	The geomorphology of planetary calderas. Geomorphology, 2001, 37, 201-223.	2.6	37
108	Geomorphologic Evidence for Liquid Water. Space Science Reviews, 2001, 96, 333-364.	8.1	38
109	Prodigious ash deposits near the summit of Arsia Mons volcano, Mars. Geophysical Research Letters, 2002, 29, 15-1-15-4.	4.0	39

#	Article	IF	CITATIONS
110	Distribution, morphology, and origins of Martian pit crater chains. Journal of Geophysical Research, 2004, 109, .	3.3	162
111	Morphology and geological structure of the western part of the Olympus Mons volcano on Mars from the analysis of the Mars Express HRSC imagery. Solar System Research, 2005, 39, 85-101.	0.7	26
112	Origin and evolution of a cold-based tropical mountain glacier on Mars: The Pavonis Mons fan-shaped deposit. Journal of Geophysical Research, 2005, 110, .	3.3	159
113	Major episodes of the hydrologic history in the region of Hesperia Planum, Mars. Journal of Geophysical Research, 2005, 110, .	3.3	28
114	New observations of volcanic features on Mars from the THEMIS instrument. Journal of Geophysical Research, 2005, 110, n/a-n/a.	3.3	43
115	Alba Patera, Mars: Topography, structure, and evolution of a unique late Hesperian–early Amazonian shield volcano. Journal of Geophysical Research, 2006, 111, .	3.3	37
116	Formation of Aromatum Chaos, Mars: Morphological development as a result of volcano-ice interactions. Journal of Geophysical Research, 2006, 111, .	3.3	36
117	Debris-covered piedmont glaciers along the northwest flank of the Olympus Mons scarp: Evidence for low-latitude ice accumulation during the Late Amazonian of Mars. Icarus, 2006, 181, 388-407.	2.5	76
118	Findings of the Mars Special Regions Science Analysis Group. Astrobiology, 2006, 6, 677-732.	3.0	104
119	Rootless volcanic cones in Iceland and on Mars. , 2007, , 151-177.		38
119 120	Rootless volcanic cones in Iceland and on Mars. , 2007, , 151-177. Terrestrial analogs to the calderas of the Tharsis volcanoes on Mars. , 0, , 71-94.		38 44
119 120 121	Rootless volcanic cones in Iceland and on Mars. , 2007, , 151-177. Terrestrial analogs to the calderas of the Tharsis volcanoes on Mars. , 0, , 71-94. Olympus Mons, Mars: Inferred changes in late Amazonian aged effusive activity from lava flow mapping of Mars Express High Resolution Stereo Camera data. Journal of Geophysical Research, 2007, 112, .	3.3	38 44 38
119 120 121 122	Rootless volcanic cones in Iceland and on Mars. , 2007, , 151-177. Terrestrial analogs to the calderas of the Tharsis volcanoes on Mars. , 0, , 71-94. Olympus Mons, Mars: Inferred changes in late Amazonian aged effusive activity from lava flow mapping of Mars Express High Resolution Stereo Camera data. Journal of Geophysical Research, 2007, 112, . Trends in effusive style at the Tharsis Montes, Mars, and implications for the development of the Tharsis province. Journal of Geophysical Research, 2007, 112, .	3.3	 38 44 38 89
 119 120 121 122 123 	Rootless volcanic cones in Iceland and on Mars. , 2007, , 151-177. Terrestrial analogs to the calderas of the Tharsis volcanoes on Mars. , 0, , 71-94. Olympus Mons, Mars: Inferred changes in late Amazonian aged effusive activity from lava flow mapping of Mars Express High Resolution Stereo Camera data. Journal of Geophysical Research, 2007, 112, . Trends in effusive style at the Tharsis Montes, Mars, and implications for the development of the Tharsis province. Journal of Geophysical Research, 2007, 112, . Context Camera Investigation on board the Mars Reconnaissance Orbiter. Journal of Geophysical Research, 2007, 112, .	3.3 3.3 3.3	 38 44 38 89 953
 119 120 121 122 123 124 	Rootless volcanic cones in Iceland and on Mars. , 2007, , 151-177. Terrestrial analogs to the calderas of the Tharsis volcanoes on Mars. , 0, , 71-94. Olympus Mons, Mars: Inferred changes in late Amazonian aged effusive activity from lava flow mapping of Mars Express High Resolution Stereo Camera data. Journal of Geophysical Research, 2007, 112, . Trends in effusive style at the Tharsis Montes, Mars, and implications for the development of the Tharsis province. Journal of Geophysical Research, 2007, 112, . Context Camera Investigation on board the Mars Reconnaissance Orbiter. Journal of Geophysical Research, 2007, 112, . Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (HiRISE). Journal of Geophysical Research, 2007, 112, .	3.3 3.3 3.3 3.3	 38 44 38 89 953 1,253
 119 120 121 122 123 124 125 	Rootless volcanic cones in Iceland and on Mars. , 2007, , 151-177. Terrestrial analogs to the calderas of the Tharsis volcanoes on Mars. , 0, , 71-94. Olympus Mons, Mars: Inferred changes in late Amazonian aged effusive activity from lava flow mapping of Mars Express High Resolution Stereo Camera data. Journal of Geophysical Research, 2007, 112, . Trends in effusive style at the Tharsis Montes, Mars, and implications for the development of the Tharsis province. Journal of Geophysical Research, 2007, 112, . Context Camera Investigation on board the Mars Reconnaissance Orbiter. Journal of Geophysical Research, 2007, 112, . Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (HiRISE). Journal of Geophysical Research, 2007, 112, . THEMIS observes possible cave skylights on Mars. Geophysical Research Letters, 2007, 34, .	3.3 3.3 3.3 3.3	 38 44 38 89 953 1,253 121
 119 120 121 122 123 124 125 126 	Rootless volcanic cones in Iceland and on Mars., 2007,, 151-177. Terrestrial analogs to the calderas of the Tharsis volcanoes on Mars., 0,, 71-94. Olympus Mons, Mars: Inferred changes in late Amazonian aged effusive activity from lava flow mapping of Mars Express High Resolution Stereo Camera data. Journal of Geophysical Research, 2007, 112, . Trends in effusive style at the Tharsis Montes, Mars, and implications for the development of the Tharsis province. Journal of Geophysical Research, 2007, 112, . Context Camera Investigation on board the Mars Reconnaissance Orbiter. Journal of Geophysical Research, 2007, 112, . Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (HIRISE). Journal of Geophysical Research, 2007, 112, . THEMIS observes possible cave skylights on Mars. Geophysical Research Letters, 2007, 34, . The Ascraeus Mons fan-shaped deposit: Volcano〓ice interactions and the climatic implications of cold-based tropical mountain glaciation. Icarus, 2008, 197, 84-109.	3.3 3.3 3.3 3.3 4.0	 38 44 38 38 89 953 1,253 121 92

#	Article	IF	CITATIONS
128	Spatial and alignment analyses for a field of small volcanic vents south of Pavonis Mons and implications for the Tharsis province, Mars. Journal of Volcanology and Geothermal Research, 2009, 185, 96-102.	2.1	60
129	The global martian volcanic evolutionary history. Icarus, 2009, 201, 44-68.	2.5	243
130	Minimum estimates of the amount and timing of gases released into the martian atmosphere from volcanic eruptions. Icarus, 2009, 204, 512-526.	2.5	95
131	The Circum-Hellas Volcanic Province, Mars: Overview. Planetary and Space Science, 2009, 57, 895-916.	1.7	83
132	Inflated flows on Daedalia Planum (Mars)? Clues from a comparative analysis with the Payen volcanic complex (Argentina). Planetary and Space Science, 2009, 57, 556-570.	1.7	25
133	The geometry of volcano flank terraces on Mars. Earth and Planetary Science Letters, 2009, 281, 1-13.	4.4	32
134	Pit-floor craters on Mercury: Evidence of near-surface igneous activity. Earth and Planetary Science Letters, 2009, 285, 243-250.	4.4	58
135	Reconciling channel formation processes with the nature of elevated outflow systems at Ophir and Aurorae Plana, Mars. Journal of Geophysical Research, 2009, 114, .	3.3	30
136	Do ice caves exist on Mars?. Icarus, 2010, 209, 358-368.	2.5	50
137	Late-stage water eruptions from Ascraeus Mons volcano, Mars: Implications for its structure and history. Earth and Planetary Science Letters, 2010, 294, 479-491.	4.4	21
138	The Circum-Hellas Volcanic Province, Mars: Assessment of wrinkle-ridged plains. Earth and Planetary Science Letters, 2010, 294, 492-505.	4.4	30
139	Surface-compositional properties of the Malea Planum region of the Circum-Hellas Volcanic Province, Mars. Earth and Planetary Science Letters, 2010, 294, 451-465.	4.4	17
140	An episodic slab-rollback model for the origin of the Tharsis rise on Mars: Implications for initiation of local plate subduction and final unification of a kinematically linked global plate-tectonic network on Earth. Lithosphere, 2012, 4, 553-593.	1.4	84
141	Aqueous Alteration in Martian Meteorites: Comparing Mineral Relations in Igneous-Rock Weathering of Martian Meteorites and in the Sedimentary Cycle of Mars. , 2012, , 97-117.		15
142	Spectral analysis and geological mapping of the Daedalia Planum lava field (Mars) using OMEGA data. Icarus, 2012, 220, 679-693.	2.5	9
143	Arecibo radar imagery of Mars: The major volcanic provinces. Icarus, 2012, 220, 990-1030.	2.5	54
144	A volcanotectonic survey of Ascraeus Mons, Mars. Journal of Geophysical Research, 2012, 117, .	3.3	18
145	Thermal anomalies on pit craters and sinuous rilles of Arsia Mons: Possible signatures of atmospheric gas circulation in the volcano, Journal of Geophysical Research, 2012, 117	3.3	8

#	Article	IF	Citations
146	A unique volcanic field in Tharsis, Mars: Pyroclastic cones as evidence for explosive eruptions. Icarus, 2012, 218, 88-99.	2.5	81
147	The volcanic history of Syria Planum, Mars. Journal of Volcanology and Geothermal Research, 2013, 252, 1-13.	2.1	34
148	Hydrovolcanic tuff rings and cones as indicators for phreatomagmatic explosive eruptions on Mars. Journal of Geophysical Research E: Planets, 2013, 118, 1656-1675.	3.6	124
149	Alluvial Fan. , 2014, , 1-14.		0
150	Circumferential graben and the structural evolution of Alba Mons, Mars. Icarus, 2014, 233, 114-125.	2.5	5
151	Analogue modelling of volcano flank terrace formation on Mars. Geological Society Special Publication, 2015, 401, 185-202.	1.3	6
152	Sources of water for the outflow channels on Mars: Implications of the Late Noachian "icy highlands―model for melting and groundwater recharge on the Tharsis rise. Planetary and Space Science, 2015, 108, 54-65.	1.7	26
153	Volcanism and tectonism across the inner solar system: an overview. Geological Society Special Publication, 2015, 401, 1-56.	1.3	46
154	Lithospheric flexure and gravity spreading of Olympus Mons volcano, Mars. Journal of Geophysical Research E: Planets, 2016, 121, 255-272.	3.6	18
155	The eruptibility of magmas at Tharsis and Syrtis Major on Mars. Journal of Geophysical Research E: Planets, 2016, 121, 944-964.	3.6	24
156	Flank vents and graben as indicators of Late Amazonian volcanotectonic activity on Olympus Mons. Journal of Geophysical Research E: Planets, 2017, 122, 501-523.	3.6	15
157	Plateaus and sinuous ridges as the fingerprints of lava flow inflation in the Eastern Tharsis Plains of Mars. Journal of Volcanology and Geothermal Research, 2017, 342, 29-46.	2.1	21
158	Recurrence rate and magma effusion rate for the latest volcanism on Arsia Mons, Mars. Earth and Planetary Science Letters, 2017, 458, 170-178.	4.4	29
159	Morphologic and thermophysical characteristics of lava flows southwest of Arsia Mons, Mars. Journal of Volcanology and Geothermal Research, 2017, 342, 13-28.	2.1	28
160	Olympus Mons volcano, Mars: A photogeologic view and new insights. Chemie Der Erde, 2018, 78, 397-431.	2.0	12
161	The Generation of Barriers to Melt Ascent in the Martian Lithosphere. Journal of Geophysical Research E: Planets, 2018, 123, 47-66.	3.6	8
163	History of Exploration of Mars. , 2019, , 4-9.		0
164	Global Character of Mars. , 2019, , 10-24.		0

#	Article	IF	CITATIONS
165	Regional Geographic Features and Surface Views of Mars. , 2019, , 25-38.		0
166	Geology of Mars. , 2019, , 39-62.		0
167	Mare Boreum (MC-1). , 2019, , 64-71.		0
168	Diacria (MC-2). , 2019, , 72-77.		0
169	Arcadia (MC-3). , 2019, , 78-83.		0
170	Mare Acidalium (MC-4). , 2019, , 84-89.		0
171	Ismenius Lacus (MC-5). , 2019, , 90-95.		0
172	Casius (MC-6). , 2019, , 96-99.		0
173	Cebrenia (MC-7). , 2019, , 100-105.		0
174	Amazonis (MC-8). , 2019, , 106-113.		0
175	Tharsis (MC-9). , 2019, , 114-119.		0
176	Lunae Palus (MC-10). , 2019, , 120-125.		0
177	Oxia Palus (MC-11). , 2019, , 126-131.		0
178	Arabia (MC-12). , 2019, , 132-135.		1
179	Syrtis Major (MC-13). , 2019, , 136-139.		0
180	Amenthes (MC-14). , 2019, , 140-143.		0
181	Elysium (MC-15). , 2019, , 144-149.		0
182	Memnonia (MC-16). , 2019, , 150-155.		0

#	Article	IF	CITATIONS
183	Phoenicis Lacus (MC-17). , 2019, , 156-161.		0
184	Coprates (MC-18). , 2019, , 162-169.		0
185	Margaritifer Sinus (MC-19). , 2019, , 170-175.		0
186	Sinus Sabaeus (MC-20). , 2019, , 176-179.		0
187	lapygia (MC-21). , 2019, , 180-185.		0
188	Mare Tyrrhenum (MC-22). , 2019, , 186-191.		0
189	Aeolis (MC-23). , 2019, , 192-197.		0
190	Phaethontis (MC-24). , 2019, , 198-203.		0
191	Thaumasia (MC-25). , 2019, , 204-209.		0
192	Argyre (MC-26). , 2019, , 210-215.		0
193	Noachis (MC-27). , 2019, , 216-221.		0
194	Hellas (MC-28). , 2019, , 222-227.		0
195	Eridania (MC-29). , 2019, , 228-233.		0
196	Mare Australe (MC-30). , 2019, , 234-243.		0
197	Moons: Phobos and Deimos. , 2019, , 244-246.		0
203	The cryptic summit graben of Mt. Etna volcano. Journal of Volcanology and Geothermal Research, 2019, 387, 106657.	2.1	5
204	SHARAD mapping of Arsia Mons caldera. Journal of Volcanology and Geothermal Research, 2020, 390, 106748.	2.1	13
205	Lava tubes on Earth, Moon and Mars: A review on their size and morphology revealed by comparative planetology. Earth-Science Reviews, 2020, 209, 103288.	9.1	80

#	Article	IF	CITATIONS
206	Detection, imaging and analysis of lava tubes for planetary analogue studies using electric methods (ERT). Icarus, 2021, 357, 114244.	2.5	15
207	An overview of explosive volcanism on Mars. Journal of Volcanology and Geothermal Research, 2021, 409, 107125.	2.1	29
208	Ice caves on Mars: Hoarfrost and microclimates. Icarus, 2021, 357, 114271.	2.5	3
209	The Circum-Hellas Province. , 2021, , 92-120.		0
210	The Tharsis Province. , 2021, , 36-68.		0
211	Areography. , 2021, , 20-35.		0
212	Taxonomic Characterization and Microbial Activity Determination of Cold-Adapted Microbial Communities in Lava Tube Ice Caves from Lava Beds National Monument, a High-Fidelity Mars Analogue Environment. Astrobiology, 2021, 21, 613-627.	3.0	10
213	Landform evolution of Tharsis Montes and Olympus Mons of Mars: Insights from morphometric, hypsometric and chronologic evidences. Journal of Earth System Science, 2021, 130, 1.	1.3	5
214	Alluvial Fan. , 2015, , 53-64.		2
215	Volcanism on the Red Planet: Mars. , 2000, , 75-112.		23
216	Geological Processes and Evolution. Space Sciences Series of ISSI, 2001, , 263-292.	0.0	11
217	Cold-based glaciation of Pavonis Mons, Mars: evidence for moraine deposition during glacial advance. Progress in Earth and Planetary Science, 2020, 7, 13.	3.0	2
218	Explosive Volcanism on Mars. , 2021, , 183-230.		0
219	Volcanic Eruptions on Mars, Lava Flow Morphology, and Thermodynamics. , 2021, , 71-94.		1
220	Low Shield Volcano (Mars). , 2014, , 1-9.		0
222	Low Shield Volcano (Mars). , 2015, , 1271-1277.		0
224	6.13 References. , 0, , 413-417.		0
225	Effusive silicate volcanism: Observations and processes. , 2022, , 5-75.		1

#	Article	IF	CITATIONS
226	Planetary analogue study using microseismic analysis for near-surface lava tube detection and exploration. Icarus, 2022, 377, 114912.	2.5	3
227	Martian volcanism: Current state of knowledge and known unknowns. Chemie Der Erde, 2022, 82, 125886.	2.0	3
228	Distribution and Morphology of Lava Tube Systems on the Western Flank of Alba Mons, Mars. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	3
229	Planetary Caves: A Solar System View of Processes and Products. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	3
230	Determining Emplacement Conditions and Vent Locations for Channelized Lava Flows Southwest of Arsia Mons. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	3
231	Longâ€Lived and Continual Volcanic Eruptions, Tectonic Activity, Pit Chains Formation, and Boulder Avalanches in Northern Tharsis Region: Implications for Late Amazonian Geodynamics and Seismoâ€Tectonic Processes on Mars. Journal of Geophysical Research E: Planets, 2023, 128, .	3.6	3
232	Subglacial catastrophic-flood origin of linear and curvilinear flat-rimmed pit chains on Mars: Evidence from geomorphological mapping and detailed landsystem analysis. Icarus, 2023, 395, 115439.	2.5	0
233	A Global Survey of Gravitationally Deformed Volcanoes on Venus. Journal of Geophysical Research E: Planets, 2024, 129, .	3.6	Ο