Convergent Floral Evolution in South African and Austr Bearing on Pollination by Nonflying Mammals

Annals of the Missouri Botanical Garden

64, 1

DOI: 10.2307/2395234

Citation Report

#	Article	IF	CITATIONS
1	Hooks for mammal pollination?. Oecologia, 1978, 35, 123-132.	2.0	64
2	Rodent pollination in southern African Protea spp Nature, 1978, 276, 71-73.	27.8	80
3	Pollination by Lemurs and Marsupials: An Archaic Coevolutionary System. Science, 1978, 200, 731-736.	12.6	194
4	Biotic pollination mechanisms in the Australian flora — a review. New Zealand Journal of Botany, 1979, 17, 467-508.	1.1	172
5	Systematics and Evolution of Seed Plants. , 1979, , 239-286.		0
6	Pollen Loads of Honey Possums (Tarsipes Spenserae) and Nonflying Mammal Pollination in Southwestern Australia. Annals of the Missouri Botanical Garden, 1979, 66, 830.	1.3	18
7	Birds as pollinators of Australian plants. New Zealand Journal of Botany, 1979, 17, 509-519.	1.1	146
8	Estimation of the Outcrossing Rate for Banksia attenuata R.Br. and Banksia menziesii R.Br. (Proteaceae). Australian Journal of Botany, 1980, 28, 53.	0.6	51
9	Flowering phenology, seed set and bird pollination of five Western Australian Banksia species. Austral Ecology, 1980, 5, 1-7.	1.5	54
10	Floral Ecology. , 1981, , 310-343.		0
11	Non-Flying Mammals as Pollinating Agents in the Amazonian Forest. Biotropica, 1981, 13, 1.	1.6	127
12	Nectarivory and Potential Pollination by a Neotropical Marsupial. Annals of the Missouri Botanical Garden, 1981, 68, 505.	1.3	32
13	The Reproductive Biology of Grevillea leucopteris (Proteaceae), Including Reference to its Glandular Hairs and Colonizing Potential. Flora: Morphology, Distribution, Functional Ecology of Plants, 1982, 172, 1-20.	1.2	30
14	A Comparison of Ecosystems in Mediterranean Australia and Southern Africa: Nutrient-Poor Sites at the Barrens and the Caledon Coast. Annual Review of Ecology, Evolution, and Systematics, 1983, 14, 57-76.	6.7	38
15	Chiropterophily and ornithophily inFreycinetia (Pandanaceae) in Samoa. Plant Systematics and Evolution, 1984, 144, 277-290.	0.9	33
16	Avian pollinators and the pollination syndromes of selected Mountain Fynbos plants. South African Journal of Botany, 1984, 3, 285-296.	2.5	44
17	Phenology of fynbos, renosterveld and subtropical thicket in the south eastern Cape. South African Journal of Botany, 1984, 3, 1-16.	2.5	42
18	Do pollinators influence seed-set in Banksia paludosa Sm. and Banksia spinulosa R. Br.?. Austral Feology 1986 11 181-186	1.5	32

TION RE

CITATION REPORT

#	Article	IF	CITATIONS
19	Pollination biology of the Proteaceae in Australia and southern Africa. Austral Ecology, 1987, 12, 387-421.	1.5	159
20	The Importance of Non-Flying Mammals in Pollination. Oikos, 1991, 61, 79.	2.7	71
21	Exploitation of <i>Mabea fistulifera</i> nectar by marmosets (<i>Callithrix flaviceps</i>) and muriquis (<i>Brachyteles arachnoides</i>) in south-east Brazil. Journal of Tropical Ecology, 1992, 8, 225-239.	1.1	35
22	Reproductive Biology of Ravenala madagascariensis Gmel. as an Alien Species. Biotropica, 1993, 25, 61.	1.6	10
23	Secondary Pollen Presentation in Angiosperms and Its Biological Significance. Australian Journal of Botany, 1993, 41, 417.	0.6	99
24	Pollen presenters in the South African flora. South African Journal of Botany, 1993, 59, 465-477.	2.5	19
25	Pollination of <i>Ravenala madagascariensis</i> (Strelitziaceae) by lemurs in Madagascar: evidence for an archaic coevolutionary system?. American Journal of Botany, 1994, 81, 542-551.	1.7	68
26	Mutualism between a leguminous tree and large African monkeys as pollinators. Behavioral Ecology and Sociobiology, 1994, 34, 203-210.	1.4	46
27	Convergence in community structure and dietary adaptation in Australian possums and gliders and Malagasy lemurs. Austral Ecology, 1996, 21, 31-46.	1.5	27
28	Non-flying mammals as pollinators. Trends in Ecology and Evolution, 1997, 12, 104-108.	8.7	114
29	Evidence of rodent pollination inCajophora coronata (Loasaceae). Plant Systematics and Evolution, 1998, 211, 113-128.	0.9	29
30	Sugar Preferences and Xylose Metabolism of a Mammal Pollinator, the Namaqua Rock Mouse (Aethomys namaquensis). Physiological and Biochemical Zoology, 1999, 72, 438-444.	1.5	24
31	Are pollination syndromes useful predictors of floral visitors in Tasmania?. Austral Ecology, 2000, 25, 600-609.	1.5	95
32	How important is the relationship between Protea humiflora (Proteaceae) and its non-flying mammal pollinators?. Oecologia, 2002, 132, 361-368.	2.0	41
33	Molecular genetics of Rhabdomys pumilio subspecies boundaries: mtDNA phylogeography and karyotypic analysis by fluorescence in situ hybridization. Molecular Phylogenetics and Evolution, 2003, 28, 564-575.	2.7	65
34	The effect of different oral antibiotics on the gastrointestinal microflora of a wild rodent (Aethomys namaquensis). Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2004, 138, 475-483.	1.8	27
35	African pollination studies: where are the gaps?. International Journal of Tropical Insect Science, 2004, 24, .	1.0	31
36	When Flowers Smell Fermented: The Chemistry and Ontogeny of Yeasty Floral Scent in Pawpaw (Asimina triloba: Annonaceae). International Journal of Plant Sciences. 2006. 167. 33-46.	1.3	87

#	Article	IF	CITATIONS
37	Pollination Systems of Colchicum (Colchicaceae) in Southern Africa: Evidence for Rodent Pollination. Annals of Botany, 2008, 102, 747-755.	2.9	44
38	Mice pollinate the Pagoda Lily, Whiteheadia bifolia (Hyacinthaceae) — First field observations with photographic documentation of rodent pollination in South Africa. South African Journal of Botany, 2009, 75, 713-719.	2.5	56
39	Rodent pollination in Protea nana. South African Journal of Botany, 2009, 75, 720-725.	2.5	34
40	Class Magnoliopsida (Dicotyledons). , 2009, , 7-588.		3
41	Nocturnal Mammals, Diurnal Lizards, and the Pollination Ecology of the Cryptic Flowering Acrotriche Serrulata (Ericaceae). International Journal of Plant Sciences, 2011, 172, 173-182.	1.3	10
42	Evidence for rodent pollination in Erica hanekomii (Ericaceae). Botanical Journal of the Linnean Society, 2011, 166, 163-170.	1.6	32
43	Two New Species ofStereospermum(Bignoniaceae) from Madagascar. Novon, 2012, 22, 141-147.	0.3	3
44	Non Bee Pollinators-Plant Interaction. , 2012, , 265-310.		4
45	Adaptation for rodent pollination in Leucospermum arenarium (Proteaceae) despite rapid pollen loss during grooming. Annals of Botany, 2014, 113, 931-938.	2.9	28
46	Pollen consumption by free-living mice. Acta Theriologica, 2014, 59, 361-365.	1.1	8
47	Diurnal pollination, primarily by a single species of rodent, documented in Protea foliosa using modified camera traps. South African Journal of Botany, 2015, 97, 9-15.	2.5	33
48	Of feathers and fur: Differential pollinator roles of birds and small mammals in the grassland succulent <i>Aloe peglerae</i> . Austral Ecology, 2016, 41, 952-963.	1.5	16
49	New evidence for mammal pollination of Protea species (Proteaceae) based on remote-camera analysis. Australian Journal of Botany, 2016, 64, 1.	0.6	30
50	Sunbird surprise: A test of the predictive power of the syndrome concept. Flora: Morphology, Distribution, Functional Ecology of Plants, 2017, 232, 22-29.	1.2	12
51	Stefan Vogel's analysis of floral syndromes in the South African flora: An appraisal based on 60 years of pollination studies. Flora: Morphology, Distribution, Functional Ecology of Plants, 2017, 232, 200-206.	1.2	37
52	First record of flower visitation by a rodent in Neotropical Proteaceae, <i>Oreocallis grandiflora</i> . Journal of Tropical Ecology, 2017, 33, 174-177.	1.1	6
53	Floral biology and breeding systems of geoflorous Protea species (Proteaceae). South African Journal of Botany, 2017, 112, 452-459.	2.5	6
54	Reproductive biology of three co-occurring, primarily small-mammal pollinated Protea species (Proteaceae). South African Journal of Botany, 2017, 113, 337-345.	2.5	8

CITATION REPORT

ARTICLE IF CITATIONS # Scent chemistry is key in the evolutionary transition between insect and mammal pollination in 55 7.3 22 African pineapple lilies. New Phytologist, 2019, 222, 1624-1637. Good heavens what animal can pollinate it? A fungusâ€like holoparasitic plant potentially pollinated by 3.2 opossums. Ecology, 2020, 101, e03001. The Floral Microbiome: Plant, Pollinator, and Microbial Perspectives. Annual Review of Ecology, 57 8.3 115 Evolution, and Systematics, 2020, 51, 363-386. Flowers are hidden in nonflying mammalâ€pollinated plants to deter birds. African Journal of Ecology, 0.9 2020, 58, 864-867. Temporal partitioning of diurnal bird and nocturnal small mammal visitors to a winter flowering 59 0.4 1 endemic succulent. African Zoology, 2021, 56, 146-156. Three old southern families-Myrtaceae, Proteaceae and Restionaceae. Monographiae Biologicae, 1981, , 0.1 427-469. 61 Phytogeography of southern Australia. Monographiae Biologicae, 1981, , 733-759. 0.1 17 Nectar-Ceeding and its evolution among Australian vertebrates. Monographiae Biologicae, 1981, 0.1 14 1637-1648. 63 THE ENIGMA OF THE FLOWER SPIROPLASMAS., 1981, , 259-279. 5 Are pollination syndromes useful predictors of floral visitors in Tasmania?. Austral Ecology, 2000, 25, 64 1.5 600-609. Bird and Mammal pollen vectors in Banksia communities at Cheyne Beach, Western Australia. 0.6 65 68 Australian Journal of Botany, 1980, 28, 61. Von MÄusen und Pavianschuhen: Erste GelÄndebeobachtung von Nager-BestÄubung in Sļdafrika. Der Palmengarten, 2009, 73, 120-125. Effects of different pollinators and herbivores on the fruit set height of the mammal-pollinated 68 1.4 2 tree-climbing vine <i>Mucuna macrocarpa</i>. Journal of Forest Research, 2020, 25, 315-321. Early colonization of Protea flowers enable dominance of competitively weak saprobic fungi in seed cones, benefitting their hosts. Fungal Biology, 2022, 126, 122-131. 2.5 Potential effects of nectar microbes on pollinator health. Philosophical Transactions of the Royal 70 4.0 26 Society B: Biological Sciences, 2022, 377, 20210155. Rodent responses to volatile compounds provide insights into the function of floral scent in mammal-pollinated plants. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20210167.

CITATION REPORT