Low-dose IFN-gamma induces tumor MHC expression i

Clinical Cancer Research 9, 84-92

Citation Report

#	Article	IF	CITATIONS
1	Canine transmissible venereal tumour: Cytogenetic origin, immunophenotype, and immunobiology. A review. Veterinary Quarterly, 2003, 25, 101-111.	3.0	63
2	A novel approach in the treatment of neuroendocrine gastrointestinal tumors: Additive antiproliferative effects of interferon-Î ³ and meta-iodobenzylguanidine. BMC Cancer, 2004, 4, 23.	1.1	31
3	Immunotherapy of cancer through targeting of minor histocompatibility antigens. Current Opinion in Immunology, 2005, 17, 202-210.	2.4	80
4	Plasma cytokine and P-selectin levels in advanced malignancy. Cancer, 2005, 104, 2275-2281.	2.0	13
5	Influence of CR3 (CD11b/CD18) Expression on Phagocytosis of Bordetella pertussis by Human Neutrophils. Infection and Immunity, 2005, 73, 7317-7323.	1.0	59
6	Targeted Delivery of IFN \hat{I}^3 to Tumor Vessels Uncouples Antitumor from Counterregulatory Mechanisms. Cancer Research, 2005, 65, 2906-2913.	0.4	87
7	Escape strategies and reasons for failure in the interaction between tumour cells and the immune system: how can we tilt the balance towards immune-mediated cancer control?. Expert Opinion on Biological Therapy, 2005, 5, 463-476.	1.4	63
8	Vaccination therapy in malignant disease. Journal of the Royal College of Surgeons of Edinburgh, 2006, 4, 309-320.	0.8	5
9	Adoptive T cell therapy of solid cancers. Cancer Immunology, Immunotherapy, 2006, 55, 96-103.	2.0	28
10	MDM2 is recognized as a tumor-associated antigen in chronic lymphocytic leukemia by CD8+ autologous T lymphocytes. Experimental Hematology, 2006, 34, 44-53.	0.2	35
11	Immune Escape Associated with Functional Defects in Antigen-Processing Machinery in Head and Neck Cancer. Clinical Cancer Research, 2006, 12, 3890-3895.	3.2	200
12	Signal Transducer and Activator of Transcription 1 Activation in Endothelial Cells Is a Negative Regulator of Angiogenesis. Cancer Research, 2006, 66, 3649-3657.	0.4	87
13	A Mycoplasma Peptide Elicits Heteroclitic CD4+ T Cell Responses against Tumor Antigen MAGE-A6. Clinical Cancer Research, 2007, 13, 6796-6806.	3.2	32
14	Adenovirus-mediated delivery of human IFNγ gene inhibits prostate cancer growth. Life Sciences, 2007, 81, 695-701.	2.0	22
15	Allogeneic retrovirally transduced, IL-2- and IFN-γ-secreting cancer cell vaccine in patients with hormone refractory prostate cancer—a phase I clinical trial. Journal of Gene Medicine, 2007, 9, 547-560.	1.4	21
16	Expression of MHC I and NK ligands on human CD133+ glioma cells: possible targets of immunotherapy. Journal of Neuro-Oncology, 2007, 83, 121-131.	1.4	138
18	Peritoneal inflammation and fatigue experiences following colorectal surgery: A pilot study. Psychoneuroendocrinology, 2008, 33, 446-454.	1.3	38
19	Epithelial Human Leukocyte Antigen-DR Expression Predicts Reduced Recurrence Rates and Prolonged Survival in Rectal Cancer Patients. Clinical Cancer Research, 2008, 14, 1073-1079.	3.2	23

#	Article	IF	Citations
20	Electroporationâ€mediated <i>ILâ€12</i> gene therapy in a transplantable canine cancer model. International Journal of Cancer, 2009, 125, 698-707.	2.3	48
21	Cancer, aging and immunotherapy: lessons learned from animal models. Cancer Immunology, Immunotherapy, 2009, 58, 1979-1989.	2.0	38
22	Immunotherapy of MHC class I-deficient tumors. Future Oncology, 2010, 6, 1577-1589.	1.1	16
23	Interferon-Î ³ Up-Regulates Major-Histocompatibility-Complex Class I-Related Chain A Expression and Enhances Major-Histocompatibility-Complex Class I-Related Chain A-Mediated Cytolysis of Human Corneal Epithelium by Natural Killer Cells In Vitro. Journal of Interferon and Cytokine Research, 2012, 32. 115-120.	0.5	3
24	Immune Sculpting of Norepinephrine on MHC-I, B7-1, IDO and B7-H1 Expression and Regulation of Proliferation and Invasion in Pancreatic Carcinoma Cells. PLoS ONE, 2012, 7, e45491.	1.1	21
25	MHC class II expression in pancreatic tumors: a link to intratumoral inflammation. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2012, 460, 47-60.	1.4	17
26	Peptide-Mediated Targeting of Cytokines to Tumor Vasculature: The NGR-hTNF Example. BioDrugs, 2013, 27, 591-603.	2.2	63
27	Deciphering and Reversing Tumor Immune Suppression. Immunity, 2013, 39, 61-73.	6.6	496
28	Methods to Improve Adoptive T-Cell Therapy for Melanoma: IFN-Î ³ Enhances Anticancer Responses of Cell Products for Infusion. Journal of Investigative Dermatology, 2013, 133, 545-552.	0.3	36
29	The antimelanoma activity of the histone deacetylase inhibitor panobinostat (LBH589) is mediated by direct tumor cytotoxicity and increased tumor immunogenicity. Melanoma Research, 2013, 23, 341-348.	0.6	89
30	USP18 is crucial for IFN- \hat{l}^3 -mediated inhibition of B16 melanoma tumorigenesis and antitumor immunity. Molecular Cancer, 2014, 13, 132.	7.9	31
31	Immune-Based Antitumor Effects of BRAF Inhibitors Rely on Signaling by CD40L and IFNÎ ³ . Cancer Research, 2014, 74, 3205-3217.	0.4	107
32	Targeting Epigenetic Processes in Photodynamic Therapy-Induced Anticancer Immunity. Frontiers in Oncology, 2015, 5, 176.	1.3	25
33	Stereotactic radiosurgery and immunotherapy for metastatic spinal melanoma. Neurosurgical Focus, 2015, 38, E6.	1.0	20
34	Characterization of MHC Class I and βâ€2â€Microglobulin Expression in Pediatric Solid Malignancies to Guide Selection of Immuneâ€Based Therapeutic Trials. Pediatric Blood and Cancer, 2016, 63, 618-626.	0.8	12
35	Neutrophil elastase enhances antigen presentation by upregulating human leukocyte antigen class I expression on tumor cells. Cancer Immunology, Immunotherapy, 2016, 65, 741-751.	2.0	25
36	Cytokine Regulation of Metastasis and Tumorigenicity. Advances in Cancer Research, 2016, 132, 265-367.	1.9	86
37	CD133+ liver cancer stem cells resist interferon-gamma-induced autophagy. BMC Cancer, 2016, 16, 15.	1.1	37

#	Article	IF	Citations
38	Antitumour actions of interferons: implications for cancer therapy. Nature Reviews Cancer, 2016, 16, 131-144.	12.8	688
39	The delicate balance of macrophages in colorectal cancer; their role in tumour development and therapeutic potential. Immunobiology, 2017, 222, 21-30.	0.8	31
40	The renaissance of antiâ€neoplastic immunity from tumor cell demise. Immunological Reviews, 2017, 280, 194-206.	2.8	53
41	Interferon Gamma Induces Changes in Natural Killer (NK) Cell Ligand Expression and Alters NK Cell-Mediated Lysis of Pediatric Cancer Cell Lines. Frontiers in Immunology, 2017, 8, 391.	2.2	42
42	Natural killer cell education in human health and disease. Current Opinion in Immunology, 2018, 50, 102-111.	2.4	102
43	Combination immunotherapies implementing adoptive T-cell transfer for advanced-stage melanoma. Melanoma Research, 2018, 28, 171-184.	0.6	18
44	Underlying Causes and Therapeutic Targeting of the Inflammatory Tumor Microenvironment. Frontiers in Cell and Developmental Biology, 2018, 6, 56.	1.8	54
45	STING: a master regulator in the cancer-immunity cycle. Molecular Cancer, 2019, 18, 152.	7.9	218
46	Loss of Janus Associated Kinase 1 Alters Urothelial Cell Function and Facilitates the Development of Bladder Cancer. Frontiers in Immunology, 2019, 10, 2065.	2.2	9
47	Systemic Interferon-Î ³ Increases MHC Class I Expression and T-cell Infiltration in Cold Tumors: Results of a Phase 0 Clinical Trial. Cancer Immunology Research, 2019, 7, 1237-1243.	1.6	82
48	Quantifying Antigen-Specific T Cell Responses When Using Antigen-Agnostic Immunotherapies. Molecular Therapy - Methods and Clinical Development, 2019, 13, 154-166.	1.8	15
49	Immunomodulation of intracranial melanoma in response to blood-tumor barrier opening with focused ultrasound. Theranostics, 2020, 10, 8821-8833.	4.6	25
50	Acquired Resistance to Immune Checkpoint Blockade Therapies. Cancers, 2020, 12, 1161.	1.7	9
51	MHC Class I Downregulation in Cancer: Underlying Mechanisms and Potential Targets for Cancer Immunotherapy. Cancers, 2020, 12, 1760.	1.7	213
52	Interferons: role in cancer therapy. Immunotherapy, 2020, 12, 833-855.	1.0	26
53	Double-edged effects of interferons on the regulation of cancer-immunity cycle. Oncolmmunology, 2021, 10, 1929005.	2.1	18
54	HLA class I loss in colorectal cancer: implications for immune escape and immunotherapy. Cellular and Molecular Immunology, 2021, 18, 556-565.	4.8	55
55	Understanding the Immune-Stroma Microenvironment in B Cell Malignancies for Effective Immunotherapy. Frontiers in Oncology, 2021, 11, 626818.	1.3	13

#	Article	IF	Citations
56	CD4 T Cell–Dependent Rejection of Beta-2 Microglobulin Null Mismatch Repair–Deficient Tumors. Cancer Discovery, 2021, 11, 1844-1859.	7.7	37
57	Cancer Immune Evasion Through Loss of MHC Class I Antigen Presentation. Frontiers in Immunology, 2021, 12, 636568.	2.2	394
58	Reprogramming the anti-tumor immune response via CRISPR genetic and epigenetic editing. Molecular Therapy - Methods and Clinical Development, 2021, 21, 592-606.	1.8	11
60	Interleukin-12 and Cancer Therapy., 2007,, 317-338.		1
61	Induction and characterization of anti-tumor endothelium immunity elicited by ValloVax therapeutic cancer vaccine. Oncotarget, 2017, 8, 28595-28613.	0.8	6
62	Quality of CTL Therapies: A Changing Landscape. Resistance To Targeted Anti-cancer Therapeutics, 2015, , 303-349.	0.1	0
63	Harnessing cytokines and chemokines for cancer therapy. Nature Reviews Clinical Oncology, 2022, 19, 237-253.	12.5	305
64	Mechanisms of MHC-l Downregulation and Role in Immunotherapy Response. Frontiers in Immunology, 2022, 13, 844866.	2.2	68
65	Cancer Therapy With TCR-Engineered T Cells: Current Strategies, Challenges, and Prospects. Frontiers in Immunology, 2022, 13, 835762.	2.2	62
66	The Spatial Landscape of Progression and Immunoediting in Primary Melanoma at Single-Cell Resolution. Cancer Discovery, 2022, 12, 1518-1541.	7.7	87
68	MHC class II molecules on pancreatic cancer cells indicate a potential for neo-antigen-based immunotherapy. Oncolmmunology, 2022, 11, .	2.1	8
69	Class II transactivator induces expression of MHC-I and MHC-II in transmissible Tasmanian devil facial tumours. Open Biology, 2022, 12, .	1.5	4