Growth And Development Of Indeterminate Bush And vulgaris</i>

Journal of Agricultural Science 88, 503-508 DOI: 10.1017/s0021859600035024

Citation Report

#	Article	IF	CITATIONS
1	Some problems and potentials of field beans (Phaseolus vulgaris L.) in Latin America. Field Crops Research, 1978, 1, 295-317.	5.1	29
2	Plant and nodule development and nitrogen fixation in climbing cultivars of Phaseolus vulgaris L. grown in monoculture, or associated with Zea mays L Journal of Agricultural Science, 1978, 90, 311-317.	1.3	22
3	Nodule development and nitrogen fixation in cultivars of Phaseolus vulgaris L. as influenced by planting density. Journal of Agricultural Science, 1978, 90, 19-29.	1.3	18
4	Influence of temperature on growth and nitrogen fixation in cultivars of <i>Phaseolus vulgaris</i> L., inoculated with <i>Rhizobium</i> . Journal of Agricultural Science, 1979, 93, 365-370.	1.3	24
5	EFFECT OF LOW LEVEL NITROGEN FERTILIZATION ON NODULATION, ACETYLENE REDUCTION AND DRY MATTER IN FABABEANS AND THREE OTHER LEGUMES. Canadian Journal of Plant Science, 1980, 60, 121-130.	0.9	29
6	Efficiency of Symbiotic Nitrogen Fixation in Legumes. Annual Review of Plant Physiology, 1980, 31, 29-49.	10.9	239
7	Some problems of nodulation and symbiotic nitrogen fixation in Phaseolus vulgaris L.: A review. Field Crops Research, 1981, 4, 93-112.	5.1	286
8	Nitrate reductase and nitrogenase activities of common beans (Phaseolus vulgaris L.) from different geographic locations. Plant and Soil, 1981, 63, 427-438.	3.7	6
9	Selection for dinitrogen-fixing ability in Phaseolus vulgaris L. at two low-temperature regimes. Euphytica, 1981, 30, 87-95.	1.2	17
10	Carbon and nitrogen nutrition of nodulated roots of grain legumes. Plant, Cell and Environment, 1981, 4, 5-26.	5.7	115
11	Dinitrogen fixation in pea beans (Phaseolus vulgaris) as affected by growth stage and temperature regime. Canadian Journal of Botany, 1981, 59, 1181-1188.	1.1	7
12	Nitrogen fixation by grain legumes in the U. K. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 1982, 296, 387-395.	2.3	15
13	Plant assimilation and nitrogen cycling. Plant and Soil, 1982, 67, 1-13.	3.7	8
14	The effect of Rhizobium inoculation and nitrogen fertiliser on nitrogen fixation and seed yield of dry beans (Phaseolus vulgaris). Annals of Applied Biology, 1983, 103, 419-429.	2.5	15
15	Breeding Common Bean for Improved Quantity and Quality of Seed Protein. , 1983, , 59-102.		29
16	The effect of plant population density on carbohydrate partitioning and nitrogen fixation of two bean (Phaseolus vulgaris L.) cultivars in two tropical locations. Journal of Agricultural Science, 1983, 100, 153-158.	1.3	2
17	Effects of Solar Radiation Regimes on Growth and N 2 Fixation of Soybean, Cowpea, and Bushbean 1. Agronomy Journal, 1984, 76, 529-535.	1.8	19
18	Improving nitrogen fixation in legumes by plant breeding; the relevance of host selection experiments in red clover (Trifolium pratense L.) and subterranean clover (T. subterraneum L.). Plant and Soil, 1984,	3.7	51

ARTICLE IF CITATIONS # Selection for improved nitrogen fixation inGlycine max (L.) Merr. and Phaseolus vulgaris L. Plant and 19 3.7 48 Soil, 1984, 82, 315-327. Genetics of nitrogen metabolism and physiological/biochemical selection for increased grain crop productivity. Theoretical and Applied Genetics, 1984, 67, 97-111. 3.6 64 21 F1 hybrid weakness in the common bean. Journal of Heredity, 1985, 76, 447-450. 2.4 185 TEMPERATURE-SENSITIVE NODULATION AND N₂ FIXATION OF <i>Rhizobium leguminosarum</i>
BIOVAR <i>Phaseoli</i>
STRAINS. Canadian Journal of Soil Science, 1986, 66, 217-224. Inheritance of N2 fixation efficiency in cowpea. Euphytica, 1986, 35, 551-560. 23 1.2 16 Response of Phaseolus vulgaris to inoculation with Rhizobium phaseoli under two tillage systems in 3.7 the dominican republic. Plant and Soil, 1986, 95, 77-85. The physiology of nitrogen fixation in tropical grain legumes. Critical Reviews in Plant Sciences, 1987, 25 5.7 45 6, 267-321. Nitrogen fixation in soybean as influenced by cultivar and Rhizobium strain. Plant and Soil, 1987, 99, 163-174. 3.7 34 Identification and characterization of common bean (Phaseolus vulgaris L.) lines well nodulated in 27 3.7 43 the presence of high nitrate. Plant and Soil, 1989, 119, 237-244. Indirect measures of N2 fixation in common bean (Phaseolus vulgaris L.) under field conditions: The 58 role of lateral root nodules. Plant and Soil, 1989, 113, 181-187. Legume Genetics and Breeding for Stress Tolerance and Nutrient Efficiency., 1990, 211-252. 29 15 Nitrogen Fixation by Legumes in Tropical and Subtropical Agriculture. Advances in Agronomy, 1990, 5.2 194 155-223. Intrapopulation Recombination for 15N-Determined Dinitrogen Fixation Ability in Common Bean. Plant $\mathbf{31}$ 1.9 26 Breeding, 1991, 106, 215-225. Growth and nutrient allocation in Phaseolus vulgaris L. colonized with endomycorrhizae or Rhizobium. Plant and Soil, 1991, 132, 127-137. Distribution of nitrogen in common bean (Phaseolus vulgaris L.) genotypes selected for differences in 33 3.7 22 nitrogen fixation ability. Plant and Soil, 1991, 138, 303-311. The decline in N2 fixation rate in common bean with the onset of pod-filling: Fact or artifact. Plant 28 and Soil, 1992, 147, 95-105. Breding common bean for improved biological nitrogen fixation. Plant and Soil, 1993, 152, 71-79. 35 3.7 143 A field evaluation using the 15N isotope dilution method of lines of Phaseolus vulgaris L. bred for increased nitrogen fixation. Plant and Soil, 1993, 152, 107-114.

CITATION REPORT

ARTICLE

37 Effect of seed size and plant growth on nodulation and nodule development in lima bean (Phaseolus) Tj ETQq0 0 0 ggBT /Overlock 10 Tf

38	Sustainable agriculture in the semi-arid tropics through biological nitrogen fixation in grain legumes. Plant and Soil, 1995, 174, 29-49.	3.7	135
39	Enhancing crop legume N2 fixation through selection and breeding. Plant and Soil, 1995, 174, 51-82.	3.7	72
41	Sustainable agriculture in the semi-arid tropics through biological nitrogen fixation in grain legumes. , 1995, , 29-49.		6
42	¹⁵ N-determined dinitrogen fixation capacity of common bean (<i>Phaseolus vulgaris</i>) cultivars under water stress. Journal of Agricultural Science, 1996, 126, 327-333.	1.3	42
43	Response to selection for seed yield and nitrogen (N2) fixation in common bean (Phaseolus vulgaris) Tj ETQq1 1	0.784314 5.1	rgBT /Over
44	Addressing edaphic constraints to bean production: the Bean/Cowpea CRSP project in perspective. Field Crops Research, 2003, 82, 179-192.	5.1	62
45	Breeding for Better Nitrogen Fixation in Grain Legumes: Where do the Rhizobia Fit In?. Crop Management, 2004, 3, 1-6.	0.3	29
46	Breeding Legumes for Improved Nitrogen Fixation. , 2004, , 719-748.		1
47	Identification and Confirmation of Quantitative Trait Loci for Root Rot Resistance in Snap Bean. Crop Science, 2008, 48, 962-972.	1.8	24
48	Response of Determinate and Indeterminate Common Bean Genotypes to <i>Rhizobium</i> Inoculant in a Short Season Rainfed Production System in the Canadian Prairie. Journal of Plant Nutrition, 2009, 32, 44-57.	1.9	8
50	Identifying quantitative trait loci for symbiotic nitrogen fixation capacity and related traits in common bean. Molecular Breeding, 2013, 31, 163-180.	2.1	51
51	<i>Ex Ante</i> Appraisal of Agricultural Research and Extension. Outlook on Agriculture, 2015, 44, 61-67.	3.4	10
52	Genome-wide association analysis of symbiotic nitrogen fixation in common bean. Theoretical and Applied Genetics, 2015, 128, 1999-2017.	3.6	91
53	Abiotic Stress Responses in Legumes: Strategies Used toÂCope with Environmental Challenges. Critical Reviews in Plant Sciences, 2015, 34, 237-280.	5.7	212
54	Response of determinate and indeterminate soybean cultivars to basal and topdressing N fertilization compared to sole inoculation with Bradyrhizobium. Field Crops Research, 2016, 195, 21-27.	5.1	67
55	Profitability of diammonium phosphate use in bush and climbing bean-maize rotations in smallholder farms of Central Burundi. Field Crops Research, 2017, 212, 52-60.	5.1	9
56	Genotypic differences in symbiotic nitrogen fixation ability and seed yield of climbing bean. Plant and Soil, 2018, 428, 223-239.	3.7	27

#	Article	IF	CITATIONS
57	Agronomic Performance and Nitrogen Fixation of Heirloom and Conventional Dry Bean Varieties Under Low-Nitrogen Field Conditions. Frontiers in Plant Science, 2019, 10, 952.	3.6	39
58	Identification of quantitative trait loci for symbiotic nitrogen fixation in common bean. Theoretical and Applied Genetics, 2019, 132, 1375-1387.	3.6	39
59	Genetic Interaction Studies Reveal Superior Performance of Rhizobium tropici CIAT899 on a Range of Diverse East African Common Bean (Phaseolus vulgaris L.) Genotypes. Applied and Environmental Microbiology, 2019, 85, .	3.1	29
60	Plant microbiota modified by plant domestication. Systematic and Applied Microbiology, 2020, 43, 126106.	2.8	47
61	Climbing bean breeding for disease resistance and grain quality traits. , 2022, 4, e122.		4
62	Selecting and breeding grain legumes for enhanced nitrogen fixation. Current Plant Science and Biotechnology in Agriculture, 1988, , 1001-1012.	0.0	13
63	Transfer of Quantitative Traits in Wide Crosses Involving the Common Bean (Phaseolus vulgaris). Current Plant Science and Biotechnology in Agriculture, 1988, , 543-560.	0.0	4
64	Selection for improved nitrogen fixation in Glycine max (L.) Merr. and Phaseolus vulgaris L. , 1984, , 43-55.		2
65	Sustainable agriculture in the semi-arid tropics through biological nitrogen fixation in grain legumes. , 1995, , 29-49.		24
66	Enhancing crop legume N2 fixation through selection and breeding. , 1995, , 51-82.		10
67	Breeding to Improve Yield. Developments in Plant Breeding, 1999, , 185-222.	0.2	10
68	Mechanisms Improving Nutrient Use by Crop and Herbage Legumes. , 1990, , 253-311.		27
69	Nodule infection by bean yellow mosaic virus in Phaseolus vulgaris. Applied and Environmental Microbiology, 1978, 36, 814-818.	3.1	11
70	<i>Bradyrhizobium japonicum</i> Inoculant Mobility, Nodule Occupancy, and Acetylene Reduction in the Soybean Root System. Applied and Environmental Microbiology, 1989, 55, 2493-2498.	3.1	78
71	Contribuciones del Programa de Investigaciones en Frijol en Centro América y El Caribe. Ceiba, 2013, 52, 65-73.	0.2	6
72	Fraccionamiento de nitrógeno en frijol (Phaseolus vulgaris L.) en el valle de San Juan Agronomy Mesoamerican, 2006, 11, 151.	0.2	0
74	PLANT–MICROBIAL INTERACTIONS. , 1981, , 67-78.		0
75	Plant assimilation and nitrogen cycling. , 1982, , 1-13.		1

CITATION REPORT

#	Article	IF	Citations
76	Improving nitrogen fixation in legumes by plant breeding; the relevance of host selection experiments in red clover (Trifolium pratense L.) and subterranean clover (T. subterraneum L.). , 1984, , 13-29.		0
77	Nitrogen fixation in soybean as influenced by cultivar and Rhizobium strain. , 1987, , 511-522.		6
78	Breeding common bean for improved biological nitrogen fixation. , 1993, , 71-79.		20
79	A field evaluation using the 15N isotope dilution method of lines of Phaseolus vulgaris L. bred for increased nitrogen fixation. , 1993, , 107-114.		9
80	Enhancing crop legume N2 fixation through selection and breeding. , 1995, , 51-82.		5
81	Symbiotic performance of some modified Rhizobium etli strains in assays with Phaseolus vulgaris beans that have a high capacity to fix N2. , 1998, , 89-94.		6
84	Proteomic analysis of common bean (Phaseolus vulgaris L.) leaves showed a more stable metabolism in a variety responsive to biological nitrogen fixation. Symbiosis, 2023, 90, 71-80.	2.3	0

CITATION REPORT