Rationale Developed by the Environmental Protection A Carcinogenic Risks

Journal of the National Cancer Institute 58, 1537-1541 DOI: 10.1093/jnci/58.5.1537

Citation Report

#	Article	IF	CITATIONS
1	Saccharin and Cancer. New England Journal of Medicine, 1977, 297, 560-561.	27.0	5
2	Carcinogens in the Workplace. Ca-A Cancer Journal for Clinicians, 1979, 29, 144-168.	329.8	21
3	The problem of estimating safe dose levels in chemical carcinogenesis. Journal of Cancer Research and Clinical Oncology, 1979, 95, 101-107.	2.5	7
4	Is the role of the environment in carcinogenesis overestimated?. Medical Hypotheses, 1979, 5, 5-14.	1.5	Ο
5	Chapter 3 Aspects of Epidemiology, Risk-Assessment and "Threshold Dose― Studies in Environmental Science, 1979, 4, 42-78.	0.0	0
6	Human health hazards associated with chemical contamination of aquatic environment Environmental Health Perspectives, 1980, 34, 145-158.	6.0	19
7	Public Health and Public Wealth: Social Costs as a Basis for Restrictive Policies. The Milbank Memorial Fund Quarterly Health and Society, 1980, 58, 268.	0.8	3
8	Developing guidelines for working with antineoplastic drugs. American Journal of Health-System Pharmacy, 1981, 38, 1686-1693.	1.0	1
9	Review of Pesticide Poisonings in U.S.A. and Regulatory Approaches. Journal of the Japanese Association of Rural Medicine, 1981, 30, 212-222.	0.0	0
10	Quantitative Approaches in Use to Assess Cancer Risk. Risk Analysis, 1983, 3, 277-295.	2.7	270
11	A unifying concept for carcinogenic risk assessments. Journal of Theoretical Biology, 1983, 105, 35-61.	1.7	28
12	Consensus Report: Mutagenicity and Carcinogenicity of Car Exhausts and Coal Combustion Emissions. Environmental Health Perspectives, 1983, 47, 1.	6.0	41
13	Consensus report: mutagenicity and carcinogenicity of car exhausts and coal combustion emissions Environmental Health Perspectives, 1983, 47, 1-30.	6.0	16
14	The importance of trophic transfer in the bioaccumulation of chemical contaminants in aquatic ecosystems. , 1984, 91, 103-145.		47
15	Permissible Concentrations of Chemicals in Air and Water Derived From Rtecs Entries: a "Rash" Chemical Scoring System. Toxicology and Industrial Health, 1985, 1, 213-234.	1.4	24
16	Analysis of the decision making process in chemical safety. Science of the Total Environment, 1986, 51, 27-62.	8.0	1
17	A Methodology for Assessing Carcinogenic Hazards of Chemicals. Toxicology and Industrial Health, 1986, 2, 205-218.	1.4	3
18	Scientific Trends in Risk Assessment Research. Toxicology and Industrial Health, 1989, 5, 777-790.	1.4	5

#	Article	IF	CITATIONS
19	Risk Assessment Issues Associated with Cleaning up Inactive Hazardous Waste Sites. Geneva Papers on Risk and Insurance: Issues and Practice, 1989, 14, 104-119.	2.1	2
20	Risk Assessment of Carcinogenic and Noncarcinogenic Chemicals. Critical Reviews in Toxicology, 1990, 20, 341-367.	3.9	45
21	Arsenic: opportunity for risk assessment. Archives of Toxicology, 1991, 65, 525-531.	4.2	61
22	General Introduction To Risk Assessment and Risk Management. Toxicology and Industrial Health, 1991, 7, 293-296.	1.4	0
24	Why Not Use Sensible Criteria for Assessing the Carcinogenicity for Indoor Air Pollutants. Indoor and Built Environment, 1992, 1, 119-122.	2.8	0
25	Carcinogen Risk Assessment in the U.S. Environmental Protection Agency. Critical Reviews in Toxicology, 1994, 24, 75-85.	3.9	76
26	Historical perspective on risk assessment in the federal government. Toxicology, 1995, 102, 29-52.	4.2	25
27	Benzene and Leukaemia. , 1997, , 73-95.		0
28	Harmonization: Developing Consistent Guidelines for Applying Mode of Action and Dosimetry Information to Cancer and Noncancer Risk Assessment. Human and Ecological Risk Assessment (HERA), 1998, 4, 75-115.	3.4	32
29	Industry Viewpoint on Thresholds for Genotoxic Carcinogens. Toxicologic Pathology, 2000, 28, 396-404.	1.8	3
30	Introduction $\hat{a} \in \hat{a}$ Risk Anaysis and Society: An Interdisciplinary Characterization of the Field. , 2003, , 1-12.		3
32	In Vitro Neurotoxicology. , 2004, , .		3
33	The Contrast Between Risk Assessment and Rules of Evidence in the Context of International Trade Disputes: Can the U.S. Experience Inform the Process?. Risk Analysis, 2004, 24, 449-459.	2.7	9
34	Interdisciplinary Vision: The First 25 Years of the Society for Risk Analysis (SRA), 1980-2005. Risk Analysis, 2005, 25, 1333-1386.	2.7	43
35	2006 American College of Toxicology Distinguished Service Award Lecture: Has Quantitative Risk Assessment Been of Benefit to the Science of Toxicology?. International Journal of Toxicology, 2007, 26, 3-12.	1.2	33
37	If Cumulative Risk Assessment Is the Answer, What Is the Question?. Environmental Health Perspectives, 2007, 115, 799-806.	6.0	114
38	Probabilistic Exposure Analysis for Chemical Risk Characterization. Toxicological Sciences, 2009, 109, 4-17.	3.1	27
39	Chlorination disinfection by-products, public health risk tradeoffs and me. Water Research, 2009, 43, 2057-2092.	11.3	370

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
41	The Evolution of Risk Assessment and Management at the USEPA: A 40th Anniversary Reflection. Human and Ecological Risk Assessment (HERA), 2010, 16, 1215-1220.	3.4	0
42	A Molecular Perspective on Exposure–Dose–Response. , 2010, , 9-26.		0
43	Making Credible Scientific Judgments about Important Health and Ecological Risks and Ways to Efficiently Reduce Those Risks. Human and Ecological Risk Assessment (HERA), 2011, 17, 800-806.	3.4	5
44	Origin of the linearity no threshold (LNT) dose–response concept. Archives of Toxicology, 2013, 87, 1621-1633.	4.2	80
45	A review and critique of U.S. EPA's risk assessments for asbestos. Critical Reviews in Toxicology, 2014, 44, 499-522.	3.9	18
46	Development of risk assessment for nuclear power: insights from history. Journal of Environmental Studies and Sciences, 2014, 4, 273-287.	2.0	8
47	Whither Risk Assessment: New Challenges and Opportunities a Third of a Century After the Red Book. Risk Analysis, 2015, 35, 1959-1968.	2.7	11
48	Approaches for characterizing threshold dose–response relationships for DNA-damage pathways involved in carcinogenicityin vivoand micronuclei formationin vitro. Mutagenesis, 2016, 31, 333-340.	2.6	15
49	Using exposure bands for rapid decision making in the RISK21 tiered exposure assessment. Critical Reviews in Toxicology, 2017, 47, 317-341.	3.9	11
50	The 10th anniversary of the publication of genes and environment: memoir of establishing the Japanese environmental mutagen society and a proposal for a new collaborative study on mutagenic hormesis. Genes and Environment, 2017, 39, 9.	2.1	5
51	The Mistaken Birth and Adoption of LNT: An Abridged Version. Dose-Response, 2017, 15, 155932581773547.	1.6	12
52	Levels and Determinants of DDT and DDE Exposure in the VHEMBE Cohort. Environmental Health Perspectives, 2017, 125, 077006.	6.0	35
53	From Muller to mechanism: How LNT became the default model for cancer risk assessment. Environmental Pollution, 2018, 241, 289-302.	7.5	49
54	The additive to background assumption in cancer risk assessment: A reappraisal. Environmental Research, 2018, 166, 175-204.	7.5	18
55	When Risk Assessment Came to Washington: A Look Back. Dose-Response, 2019, 17, 155932581882493.	1.6	6
56	Dose-dependence of chemical carcinogenicity: Biological mechanisms for thresholds and implications for risk assessment. Chemico-Biological Interactions, 2019, 301, 112-127.	4.0	29
57	Improving Health Risk Assessment as a Basis for Public Health Decisions in the 21st Century. Risk Analysis, 2020, 40, 2272-2299.	2.7	6
58	Consideration of the Aerosol Transmission for COVIDâ€19 and Public Health. Risk Analysis, 2020, 40, 902-907.	2.7	340

#	Article	IF	CITATIONS
59	Historical perspective on the role of cell proliferation in carcinogenesis for DNA-reactive and non-DNA-reactive carcinogens: Arsenic as an example. Toxicology, 2021, 456, 152783.	4.2	8
62	Comprehensive Risk Assessment. , 1987, , 391-434.		8
63	The Risk Analysis Process. , 1988, , 3-17.		2
64	AN EPIGENETIC MECHANISM OF CARCINOGENICITY OF ORGANOCHLORINE PESTICIDES. , 1981, , 161-170.		2
65	The Use of Statistical Insignificance in the Formulation of Risk-Based Standards for Carcinogens. , 2018, , 199-208.		1
66	A Molecular Perspective on Exposure–Dose–Responseâ~†. , 2014, , .		0
67	Cancer Information Centers and Systems. Lecture Notes in Medical Informatics, 1980, , 156-169.	0.1	0
68	Mathematical Models in Oncology: State of the Art. Lecture Notes in Medical Informatics, 1981, , 98-120.	0.1	1
69	A Biological Basis for the Linear Non-Threshold Dose-Response Relationship for Low-Level Carcinogen Exposure. , 1981, , 535-544.		1
70	The Time to Tumor Approach in Risk Assessment. , 1986, 38, 551-556.		0
72	Organ Culture: Use in Experimental Oncology for Comparisons Among Species. , 1989, , 23-27.		0
73	Risk Assessment Issues Associated with Cleaning Up Inactive Hazardous Waste Sites. , 1990, , 15-40.		0
75	Influence of the system of material flows on the environment of industrial areas. Technology Audit and Production Reserves, 2019, 4, 12-19.	0.1	0
76	A regulatory relic: After 60Âyears of research on cancer risk, the Delaney Clause continues to keep us in the past. Toxicology and Applied Pharmacology, 2021, 433, 115779.	2.8	2
77	Assessing the cancer risk from foods. Journal of the American Dietetic Association, 1985, 85, 1122-1127.	1.1	2
79	Physicochemical and pharmacotechnical characterization of Prussian blue for future Prussian blue oral dosage forms formulation. Heliyon, 2024, 10, e24284.	3.2	0

CITATION REPORT