Extinction: bad genes or bad luck?

New Scientist 131, 46-9

Citation Report

#	Article	IF	Citations
1	Venomous mammals. , 1992, 53, 199-215.		64
2	The biotic crisis and the future of evolution. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 5389-5392.	3.3	263
3	Mutation, specialization, and hypersensitivity in highly optimized tolerance. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 2049-2054.	3.3	37
4	Large extinctions in an evolutionary model: The role of innovation and keystone species. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 2055-2060.	3.3	78
5	On the dependence of speciation rates on species abundance and characteristic population size. Journal of Biosciences, 2004, 29, 119-128.	0.5	19
6	Evolutionary ecologyin silico: Does mathematical modelling help in understanding â€~generic' trends?. Journal of Biosciences, 2005, 30, 277-287.	0.5	15
7	Astrobiological Phase Transition: Towards Resolution of Fermi's Paradox. Origins of Life and Evolution of Biospheres, 2008, 38, 535-547.	0.8	30
8	Extinction as the loss of evolutionary history. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 11520-11527.	3.3	61
9	Diversity sustains an evolving network. Journal of the Royal Society Interface, 2009, 6, 793-799.	1.5	7
10	EXPLOSIVE RADIATION OR CRYPTIC MASS EXTINCTION? INTERPRETING SIGNATURES IN MOLECULAR PHYLOGENIES. Evolution; International Journal of Organic Evolution, 2009, 63, 2257-2265.	1.1	151
11	The origins of modern biodiversity on land. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 3667-3679.	1.8	126
12	Predicting how populations decline to extinction. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 2577-2586.	1.8	95
13	Data issues in the life sciences. ZooKeys, 2011, 150, 15-51.	0.5	88
14	Biological Robustness: Paradigms, Mechanisms, and Systems Principles. Frontiers in Genetics, 2012, 3, 67.	1.1	135
15	Astrobiological Complexity with Probabilistic Cellular Automata. Origins of Life and Evolution of Biospheres, 2012, 42, 347-371.	0.8	18
16	Deep-Time Phylogenetic Clustering of Extinctions in an Evolutionarily Dynamic Clade (Early Jurassic) Tj ETQq1 1 (0.784314	rgBT/Overloc
17	Cretaceous/Paleogene Floral Turnover in Patagonia: Drop in Diversity, Low Extinction, and a Classopollis Spike. PLoS ONE, 2012, 7, e52455.	1.1	126
18	Model for macroevolutionary dynamics. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2460-9.	3.3	28

#	Article	IF	CITATIONS
19	Plant Ecological Strategies Shift Across the Cretaceous–Paleogene Boundary. PLoS Biology, 2014, 12, e1001949.	2.6	42
20	Spaces of the possible: universal Darwinism and the wall between technological and biological innovation. Journal of the Royal Society Interface, 2014, 11, 20131190.	1.5	51
21	The telomeric sync model of speciation: species-wide telomere erosion triggers cycles of transposon-mediated genomic rearrangements, which underlie the saltatory appearance of nonadaptive characters. Die Naturwissenschaften, 2014, 101, 163-186.	0.6	14
22	Can oncology recapitulate paleontology? Lessons from species extinctions. Nature Reviews Clinical Oncology, 2015, 12, 273-285.	12.5	31
23	Origin and diversification of living cycads: a cautionary tale on the impact of the branching process prior in Bayesian molecular dating. BMC Evolutionary Biology, 2015, 15, 65.	3.2	189
24	Dinosaurs in decline tens of millions of years before their final extinction. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5036-5040.	3.3	80
25	Reconsidering the Loss of Evolutionary History: How Does Non-random Extinction Prune the Tree-of-Life?. Topics in Biodiversity and Conservation, 2016, , 57-80.	0.3	13
26	Correlates and catalysts of hominin evolution in Africa. Theory in Biosciences, 2017, 136, 123-140.	0.6	1
27	An upper bound for the background rate of human extinction. Scientific Reports, 2019, 9, 11054.	1.6	10
28	First Strike–Second Strike Strategies in Metastatic Cancer: Lessons from the Evolutionary Dynamics of Extinction. Cancer Research, 2019, 79, 3174-3177.	0.4	46
29	The rise of angiosperms pushed conifers to decline during global cooling. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28867-28875.	3.3	79
30	Novel evolutionary dynamics of small populations in breast cancer adjuvant and neoadjuvant therapy. Npj Breast Cancer, 2021, 7, 26.	2.3	7
31	The Taxonomic Significance of Species That Have Only Been Observed Once: The Genus Gymnodinium (Dinoflagellata) as an Example. PLoS ONE, 2012, 7, e44015.	1.1	43
32	Ghost Lineages Highly Influence the Interpretation of Introgression Tests. Systematic Biology, 2022, 71, 1147-1158.	2.7	49