Water penetration and escape in proteins

Proteins: Structure, Function and Bioinformatics 38, 261-72

Citation Report

#	Article	IF	CITATIONS
1	High Apparent Dielectric Constants in the Interior of a Protein Reflect Water Penetration. Biophysical Journal, 2000, 79, 1610-1620.	0.2	295
2	Functional Dynamics of the Hydrophobic Cleft in the N-Domain of Calmodulin. Biophysical Journal, 2001, 80, 2082-2092.	0.2	78
3	Femtosecond Dynamics of Intracellular Water Probed with Nonlinear Optical Kerr Effect Microspectroscopy. Biophysical Journal, 2001, 80, 3019-3024.	0.2	59
4	Gaussian fluctuations and linear response in an electron transfer protein. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 6544-6549.	3.3	92
5	Protein folding mediated by solvation: Water expulsion and formation of the hydrophobic core occur after the structural collapse. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 685-690.	3.3	461
6	Molecular Dynamics Study of Desulfovibrio africanus Cytochrome c3 in Oxidized and Reduced Forms. Biophysical Journal, 2002, 83, 3049-3065.	0.2	12
7	Properties of Water Molecules in the Active Site Gorge of Acetylcholinesterase from Computer Simulation. Biophysical Journal, 2002, 82, 2671-2682.	0.2	48
8	Experimental pKa Values of Buried Residues: Analysis with Continuum Methods and Role of Water Penetration. Biophysical Journal, 2002, 82, 3289-3304.	0.2	193
9	Posttransition State Desolvation of the Hydrophobic Core of the src-SH3 Protein Domain. Biophysical Journal, 2003, 85, 61-69.	0.2	40
10	A discrete water exit pathway in the membrane protein cytochrome c oxidase. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 15539-15542.	3.3	69
11	Molecular structure and hydrophobic solvation thermodynamics at an octane–water interface. Journal of Chemical Physics, 2003, 119, 9199-9206.	1.2	77
12	Water and proteins: A love-hate relationship. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 3325-3326.	3.3	168
13	Water clusters in nonpolar cavities. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 17002-17005.	3.3	222
14	Incorporation of the fluorescent amino acid 7-azatryptophan into the core domain 1-47 of hirudin as a probe of hirudin folding and thrombin recognition. Protein Science, 2004, 13, 1489-1502.	3.1	50
15	Two different proteins that compete for binding to thrombin have opposite kinetic and thermodynamic profiles. Protein Science, 2004, 13, 166-176.	3.1	45
16	Hydration of Enzyme in Nonaqueous Media Is Consistent with Solvent Dependence of Its Activity. Biophysical Journal, 2004, 87, 812-821.	0.2	219
17	Dynamic Water Networks in Cytochrome c Oxidase from Paracoccus denitrificans Investigated by Molecular Dynamics Simulations. Biophysical Journal, 2004, 86, 1873-1889.	0.2	93
18	Water Molecules and Hydrogen-Bonded Networks in Bacteriorhodopsin—Molecular Dynamics Simulations of the Ground State and the M-Intermediate. Biophysical Journal, 2005, 88, 3252-3261.	0.2	51

CITATION REPORT

#	Article	IF	CITATIONS
19	Local Compressibilities of Proteins: Comparison of Optical Experiments and Simulations for Horse Heart Cytochrome-c. Biophysical Journal, 2005, 89, 64-75.	0.2	27
20	Anesthetic Interaction with Ketosteroid Isomerase: Insights from Molecular Dynamics Simulations. Biophysical Journal, 2005, 89, 2350-2356.	0.2	18
21	Role of Protein Cavities on Unfolding Volume Change and on Internal Dynamics under Pressure. Biophysical Journal, 2006, 91, 3390-3396.	0.2	15
22	The Dewetting Transition and The Hydrophobic Effect. Journal of the American Chemical Society, 2007, 129, 4847-4852.	6.6	139
23	Role of Flexibility and Polarity as Determinants of the Hydration of Internal Cavities and Pockets in Proteins. Biophysical Journal, 2007, 93, 2791-2804.	0.2	38
24	Heat capacity changes upon burial of polar and nonpolar groups in proteins. Protein Science, 2008, 10, 1343-1352.	3.1	120
25	Mechanism of Auxin Interaction with Auxin Binding Protein (ABP1): A Molecular Dynamics Simulation Study. Biophysical Journal, 2008, 94, 27-37.	0.2	46
26	Crystallographic Study of Hydration of an Internal Cavity in Engineered Proteins with Buried Polar or Ionizable Groups. Biophysical Journal, 2008, 94, 3208-3216.	0.2	28
27	Dynamics at the Protein-Water Interface from 170 Spin Relaxation in Deeply Supercooled Solutions. Biophysical Journal, 2008, 95, 2951-2963.	0.2	132
28	Minimizing frustration by folding in an aqueous environment. Archives of Biochemistry and Biophysics, 2008, 469, 118-131.	1.4	18
29	Glutamic acid 242 is a valve in the proton pump of cytochrome <i>c</i> oxidase. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6255-6259.	3.3	125
30	Structural coupling between FKBP12 and buried water. Proteins: Structure, Function and Bioinformatics, 2009, 74, 603-611.	1.5	63
31	Computations of Standard Binding Free Energies with Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2009, 113, 2234-2246.	1.2	481
32	Hydrated and Dehydrated Tertiary Interactions–Opening and Closing–of a Four-Helix Bundle Peptide. Biophysical Journal, 2009, 97, 572-580.	0.2	2
33	Structural and dynamic properties of water around acetylcholinesterase. Protein Science, 2009, 11, 2080-2090.	3.1	95
34	Water in the Polar and Nonpolar Cavities of the Protein Interleukin-1β. Journal of Physical Chemistry B, 2010, 114, 16290-16297.	1.2	39
35	Molecular Dynamics Free Energy Calculations to Assess the Possibility of Water Existence in Protein Nonpolar Cavities. Biophysical Journal, 2010, 98, 2974-2983.	0.2	10
36	Simulations of the confinement of ubiquitin in self-assembled reverse micelles. Journal of Chemical Physics, 2011, 134, 225101.	1.2	54

		CITATION REPORT		
#	Article	IF	CITATIONS	
37	Water in the Active Site of Ketosteroid Isomerase. Biochemistry, 2011, 50, 6689-6700.	1.2	7	
38	Comparative void-volume analysis of psychrophilic and mesophilic enzymes: Structural bioinformatics of psychrophilic enzymes reveals sources of core flexibility. BMC Structural Biology, 2011, 11, 42.	2.3	67	
39	The Role of Conserved Waters in Conformational Transitions of Q61H K-ras. PLoS Computational Biology, 2012, 8, e1002394.	1.5	48	
40	Early Turn Formation and Chain Collapse Drive Fast Folding of the Major Cold Shock Protein CspA of <i>Escherichia coli</i> . Biochemistry, 2012, 51, 9104-9111.	1.2	20	
41	The effect of protein composition on hydration dynamics. Physical Chemistry Chemical Physics, 2013, 15, 3570.	1.3	25	
42	Thermodynamic framework for identifying free energy inventories of enzyme catalytic cycles. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12271-12276.	3.3	13	
43	Interaction of Amyloid Inhibitor Proteins with Amyloid Beta Peptides: Insight from Molecular Dynamics Simulations. PLoS ONE, 2014, 9, e113041.	1.1	40	
44	Water Dynamics in Protein Hydration Shells: The Molecular Origins of the Dynamical Perturbation. Journal of Physical Chemistry B, 2014, 118, 7715-7729.	1.2	207	
45	Stay Wet, Stay Stable? How Internal Water Helps the Stability of Thermophilic Proteins. Journal of Physical Chemistry B, 2015, 119, 12760-12770.	1.2	21	
46	Role of Internal Water on Protein Thermal Stability: The Case of Homologous G Domains. Journal of Physical Chemistry B, 2015, 119, 8939-8949.	1.2	21	
47	Effect of Glycosylation on an Immunodominant Region in the V1V2 Variable Domain of the HIV-1 Envelope gp120 Protein. PLoS Computational Biology, 2016, 12, e1005094.	1.5	17	
48	Water Determines the Structure and Dynamics of Proteins. Chemical Reviews, 2016, 116, 7673-7697.	23.0	645	
49	Water Dynamics in the Hydration Shells of Biomolecules. Chemical Reviews, 2017, 117, 10694-10725.	23.0	574	
50	In Silico Studies of Small Molecule Interactions with Enzymes Reveal Aspects of Catalytic Function. Catalysts, 2017, 7, 212.	1.6	21	