Differential interactions between Brother proteins and Drosophila embryo and eye

Development (Cambridge) 126, 3313-22

Citation Report

#	Article	IF	CITATIONS
1	Structural basis for the heterodimeric interaction between the acute leukaemia-associated transcription factors AML1 and CBFbeta. EMBO Journal, 2000, 19, 3004-3015.	7.8	95
2	Auto-Inhibition and Partner Proteins, Core-Binding Factor β (CBFβ) and Ets-1, Modulate DNA Binding by CBFα2 (AML1). Molecular and Cellular Biology, 2000, 20, 91-103.	2.3	138
3	Genome-wide analysis of clustered Dorsal binding sites identifies putative target genes in the Drosophila embryo. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 763-768.	7.1	349
4	Alternative splicing removes an Ets interaction domain from Lozenge during Drosophila eye development. Development Genes and Evolution, 2005, 215, 423-435.	0.9	17
5	PEBP2-β/CBF-β–dependent phosphorylation of RUNX1 and p300 by HIPK2: implications for leukemogenesis. Blood, 2008, 112, 3777-3787.	1.4	61
6	CBFÎ ² is critical for AML1-ETO and TEL-AML1 activity. Blood, 2009, 113, 3070-3079.	1.4	51
7	Distinct Contributions of Conserved Modules to Runt Transcription Factor Activity. Molecular Biology of the Cell, 2010, 21, 2315-2326.	2.1	11
8	Non-additive interactions involving two distinct elements mediate sloppy-paired regulation by pair-rule transcription factors. Developmental Biology, 2010, 344, 1048-1059.	2.0	33
9	Hairless is a cofactor for Runt-dependent transcriptional regulation. Molecular Biology of the Cell, 2011, 22, 1364-1374.	2.1	14
10	Control of RUNX-induced repression of Notch signaling by MLF and its partner DnaJ-1 during Drosophila hematopoiesis. PLoS Genetics, 2017, 13, e1006932.	3.5	19
11	Interdependent regulation of stereotyped and stochastic photoreceptor fates in the fly eye. Developmental Biology, 2021, 471, 89-96.	2.0	5
12	A dual role for DNA binding by Runt in activation and repression of <i>sloppy paired</i> transcription. Molecular Biology of the Cell, 2021, 32, ar26.	2.1	1