Sarin poisoning in Tokyo subway

Lancet, The 345, 980-1

Citation Report

#	Article	IF	CITATIONS
1	Secondary exposure of medical staff to sarin vapor in the emergency room. Intensive Care Medicine, 1995, 21, 1032-1035.	8.2	180
2	Chemical/Biological Terrorism: Coping with a New Threat. Politics and the Life Sciences, 1996, 15, 167-183.	0.7	29
3	Sarin: guidelines on the management of victims of a nerve gas attack Emergency Medicine Journal, 1996, 13, 202-206.	1.0	53
4	Epidemiological Study of Sarin Poisoning in Matsumoto City, Japan. Journal of Epidemiology, 1998, 8, 33-41.	2.4	37
5	An Overview of Chemical Warfare Agents. Hong Kong Journal of Emergency Medicine, 2002, 9, 201-205.	0.6	7
6	A Review Article on Nerve Agents. Hong Kong Journal of Emergency Medicine, 2002, 9, 83-89.	0.6	9
7	Confidence Test for Personal Protective Equipment. Hong Kong Journal of Emergency Medicine, 2002, 9, 195-200.	0.6	0
8	Pralidoxime iodide (2-pAM) penetrates across the blood-brain barrier. Neurochemical Research, 2003, 28, 1401-1407.	3.3	176
9	Nuclear, Biological and Chemical Weapons: What the Surgeon Needs to Know. Scandinavian Journal of Surgery, 2005, 94, 293-299.	2.6	2
10	Rapid Synthesis of O,O′-Dialkyl Alkylphosphonates on TLC with Analytical Purity for the Verification Analysis of Chemical Weapons Convention. Australian Journal of Chemistry, 2008, 61, 324.	0.9	5
11	Comparison of selected skin decontaminant products and regimens against VX in domestic swine. Human and Experimental Toxicology, 2008, 27, 253-261.	2.2	68
12	Interethnic Variability of Plasma Paraoxonase (PON1) Activity towards Organophosphates and PON1 Polymorphisms among Asian Populationsâ"A Short Review. Industrial Health, 2008, 46, 309-317.	1.0	31
13	Central Cholinesterase Inhibition Enhances Glutamatergic Synaptic Transmission. Journal of Neurophysiology, 2010, 103, 1748-1757.	1.8	42
14	Characterization of status epilepticus induced by two organophosphates in rats. Epilepsy Research, 2012, 101, 268-276.	1.6	67
15	α-Linolenic Acid, A Nutraceutical with Pleiotropic Properties That Targets Endogenous Neuroprotective Pathways to Protect against Organophosphate Nerve Agent-Induced Neuropathology. Molecules, 2015, 20, 20355-20380.	3.8	23
16	Janus gas: reversible redox transition of Sarin enables its selective detection by an ethanol modified nanoporous SnO ₂ chemiresistor. Chemical Communications, 2015, 51, 8193-8196.	4.1	31
17	Toxicology of organophosphorus compounds in view of an increasing terrorist threat. Archives of Toxicology, 2016, 90, 2131-2145.	4.2	93
18	A rodent model of human organophosphate exposure producing status epilepticus and neuropathology. NeuroToxicology, 2016, 56, 196-203.	3.0	39

#	Article	IF	CITATIONS
19	Naturally Occurring Genetic Variants of Human Acetylcholinesterase and Butyrylcholinesterase and Their Potential Impact on the Risk of Toxicity from Cholinesterase Inhibitors. Chemical Research in Toxicology, 2016, 29, 1381-1392.	3.3	71
20	Binding of chemical warfare agent simulants as guests in a coordination cage: contributions to binding and a fluorescence-based response. Chemical Communications, 2016, 52, 6225-6228.	4.1	53
21	Acute and longâ€ŧerm consequences of exposure to organophosphate nerve agents in humans. Epilepsia, 2018, 59, 92-99.	5.1	83
22	Neuropathy target esterase (NTE/PNPLA6) and organophosphorus compound-induced delayed neurotoxicity (OPIDN). Advances in Neurotoxicology, 2020, 4, 1-78.	1.9	35
23	Poisons centre will monitor cases. BMJ: British Medical Journal, 1995, 311, 871-871.	2.3	8
24	Soman (GD) Rat Model to Mimic Civilian Exposure to Nerve Agent: Mortality, Video-EEG Based Status Epilepticus Severity, Sex Differences, Spontaneously Recurring Seizures, and Brain Pathology. Frontiers in Cellular Neuroscience, 2021, 15, 798247.	3.7	10
25	Sarin: a never-ending story. Archives of Toxicology, 2023, 97, 1-2.	4.2	4

CITATION REPORT