Control of Methane Sediment-Water Bubble Transport Lookout Bight, North Carolina

Science

192, 998-1000

DOI: 10.1126/science.192.4243.998

Citation Report

#	Article	IF	Citations
1	Methane oxidation in Cape Lookout Bight, North Carolina 1. Limnology and Oceanography, 1978, 23, 349-355.	3.1	52
2	Sulfide releases from Lake Ontario sediments 1. Limnology and Oceanography, 1978, 23, 375-377.	3.1	1
3	THE EFFECTS OF ANIMAL-SEDIMENT INTERACTIONS ON GEOCHEMICAL PROCESSES NEAR THE SEDIMENT-WATER INTERFACE. , 1978 , , 157 - 172 .		41
4	Review of marine geochemistry. Reviews of Geophysics, 1979, 17, 1447-1473.	23.0	6
6	Sediment-Water Chemical Exchange in the Coastal Zone Traced by in situ Radon-222 Flux Measurements. Science, 1980, 208, 285-288.	12.6	168
7	Biogeochemical cycling in an organic-rich coastal marine basin—I. Methane sediment-water exchange processes. Geochimica Et Cosmochimica Acta, 1980, 44, 471-490.	3.9	343
8	Quantifying solute distributions in the bioturbated zone of marine sediments by defining an average microenvironment. Geochimica Et Cosmochimica Acta, 1980, 44, 1955-1965.	3.9	327
9	Atmospherically-derived radionuclides as tracers of sediment mixing and accumulation in near-shore marine and lake sediments: Evidence from7Be,210Pb, and239,240Pu. Earth and Planetary Science Letters, 1980, 47, 307-318.	4.4	109
10	Methane in the upper water column of the northwestern Gulf of Mexico. Journal of Geophysical Research, 1981, 86, 11029-11040.	3.3	78
11	Biogeochemical cycling in an organic rich coastal marine basin—II. Nutrient sediment-water exchange processes. Geochimica Et Cosmochimica Acta, 1981, 45, 101-121.	3.9	237
12	Methane Production from Acetate and Associated Methane Fluxes from Anoxic Coastal Sediments. Science, 1981, 211, 707-709.	12.6	127
13	Biogeochemical cycling in an organic-rich coastal marine basin—3. Dissolved gas transport in methane-saturated sediments. Geochimica Et Cosmochimica Acta, 1982, 46, 2049-2060.	3.9	61
14	Radon-222 as a tracer for mixing in the water column and benthic exchange in the southern California borderland. Earth and Planetary Science Letters, 1982, 61, 41-54.	4.4	66
15	Volatile fatty acid cycling in organic-rich marine sediments. Geochimica Et Cosmochimica Acta, 1982, 46, 1575-1589.	3.9	143
16	Methane emission from rice paddies. Journal of Atmospheric Chemistry, 1983, 1, 241-268.	3.2	292
17	Geochemistry of burrow waters vented by a bioturbating shrimp in Bermudian sediments. Marine Biology, 1983, 72, 219-225.	1.5	51
18	Spatial and temporal fluctuations of methane production in anoxic coastal marine sediments. Limnology and Oceanography, 1983, 28, 1117-1130.	3.1	97
19	Biogeochemical cycling in an organic-rich coastal marine basin 4. An organic carbon budget for sediments dominated by sulfate reduction and methanogenesis. Geochimica Et Cosmochimica Acta, 1984, 48, 1987-2004.	3.9	227

#	ARTICLE	IF	Citations
21	Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation—Isotope evidence. Geochimica Et Cosmochimica Acta, 1986, 50, 693-709.	3.9	1,652
22	Methane oxidation in sediment and water column environments—Isotope evidence. Organic Geochemistry, 1986, 10, 759-768.	1.8	362
23	Methane production from bicarbonate and acetate in an anoxic marine sediment. Geochimica Et Cosmochimica Acta, 1986, 50, 2089-2097.	3.9	99
24	Biogeochemical cycling in an organic-rich coastal marine basin. 7. Sulfur mass balance, oxygen uptake and sulfide retention. Geochimica Et Cosmochimica Acta, 1987, 51, 1187-1199.	3.9	128
25	Seasonal variations of D/H and $13C/12C$ ratios of microbial methane in surface sediments. Nature, 1988, 332, 829-831.	27.8	61
26	Petroleum-related hydrocarbon seep age in a Recent North Sea sediment. Chemical Geology, 1988, 71, 53-64.	3.3	28
27	Radon as a tracer of biogenic gas equilibration and transport from methaneâ€saturated sediments. Journal of Geophysical Research, 1989, 94, 3451-3459.	3.3	32
28	Prospecting for Zones of Contaminated Ground-Water Discharge to Streams Using Btottom-Sediment Gas Bubbles. Ground Water, 1991, 29, 333-340.	1.3	12
29	The importance of episodic events in controlling the flux of methane from an anoxic basin. Global Biogeochemical Cycles, 1993, 7, 491-507.	4.9	36
30	Methane emission by bubbling from Gatun Lake, Panama. Journal of Geophysical Research, 1994, 99, 8307.	3.3	189
31	The limitations to organic loading on a bottom of a coastal ecosystem. Marine Pollution Bulletin, 1994, 28, 73-80.	5.0	14
32	Bioturbation : Changes Produced by Benthos in Sediment Environments. Benthos Research, 1994, 1994, 59-79.	0.2	3
33	Authigenic carbonates derived from oxidized methane vented from the Makran accretionary prism off Pakistan. Marine Geology, 1996, 136, 55-77.	2.1	111
34	Biogeochemical processes controlling methane in gassy coastal sedimentsâ€"Part 1. A model coupling organic matter flux to gas production, oxidation and transport. Continental Shelf Research, 1998, 18, 1741-1770.	1.8	129
35	The Î'13C of biogenic methane in marine sediments: the influence of Corg deposition rate. Chemical Geology, 1998, 152, 139-150.	3.3	35
36	Distribution of free gas in marine sediments: a global overview. Geo-Marine Letters, 2001, 21, 103-122.	1.1	201
37	Impacts of Macrobenthic Bioturbation in Marine Sediment on Bacterial Metabolic Activity. Microbes and Environments, 2005, 20, 191-199.	1.6	33
38	Sediment porewater exchange and solute release during ebullition. Marine Chemistry, 2006, 102, 60-71.	2.3	29

#	Article	IF	CITATIONS
39	Bubble-induced porewater mixing: A 3-D model for deep porewater irrigation. Geochimica Et Cosmochimica Acta, 2007, 71, 5135-5154.	3.9	89
40	Relating sulfate and methane dynamics to geology: Accretionary prism offshore SW Taiwan. Geochemistry, Geophysics, Geosystems, 2013, 14, 2523-2545.	2.5	57
41	Modeling benthic–pelagic nutrient exchange processes and porewater distributions in a seasonally hypoxic sediment: evidence for massive phosphate release by & amp;lt;i>Beggiatoa?. Biogeosciences, 2013, 10, 629-651.	3.3	57
42	Marine Ecological Processes. , 2015, , .		19
43	Geomicrobiology of Sulfur. , 2015, , 494-531.		0
44	The utility of estuarine settling basins for constructing multi-decadal, high-resolution records of sedimentation. Estuarine, Coastal and Shelf Science, 2015, 164, 105-114.	2.1	6
45	Methane emission through ebullition from an estuarine mudflat: 1. A conceptual model to explain tidal forcing based on effective stress changes. Water Resources Research, 2016, 52, 4469-4485.	4.2	19
46	Modelling Marine Sediment Biogeochemistry: Current Knowledge Gaps, Challenges, and Some Methodological Advice for Advancement. Frontiers in Marine Science, 2018, 5, .	2.5	36
47	Highly Dynamic Methane Emission from the West Siberian Boreal Floodplains. Wetlands, 2019, 39, 217-226.	1.5	10
48	The Nature and Significance of Gas-Generated Microvoids as "Secondary―Microfabric Features in Modern and Pleistocene Marine and Estuarine Sediments. Frontiers in Sedimentary Geology, 1991, , 55-59.	0.2	5
50	Biogeochemistry and Ecophysiology of Atmospheric CO and H2. Advances in Microbial Ecology, 1988, , 231-283.	0.1	80
51	Growth of Desulfovibrio in Lactate or Ethanol Media Low in Sulfate in Association with H ₂ -Utilizing Methanogenic Bacteria. Applied and Environmental Microbiology, 1977, 33, 1162-1169.	3.1	460
52	Comparison of In Situ and In Vitro Rates of Methane Release in Freshwater Sediments. Applied and Environmental Microbiology, 1980, 40, 287-293.	3.1	35
55	Geomicrobiology of Fossil Fuels. , 2002, , 683-732.		0
56	Geomicrobiology of Fossil Fuels. , 2008, , 537-576.		0
57	Carbon and Hydrogen Isotope Variations in Marine Sediment Gases. , 1990, , 205-213.		1
60	Mechanism of Faster CH4 Bubble Growth Under Surface Waves in Muddy Aquatic Sediments: Effects of Wave Amplitude, Period, and Water Depth. Frontiers in Earth Science, 2022, 10, .	1.8	3