CITATION REPORT List of articles citing

Methods for predicting the thermal conductivity of composite systems: A review

DOI: 10.1002/pen.760160905 Polymer Engineering and Science, 1976, 16, 615-625.

Source: https://exaly.com/paper-pdf/12804476/citation-report.pdf

Version: 2024-04-28

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
569	Thermal conductivity of some porous metals. 1977 , 4, 417-423		10
568	Conductive polymeric compositions. <i>Polymer Engineering and Science</i> , 1977 , 17, 842-847	2.3	108
567	An analysis of the dependence of thermal transport parameters on organic content for Green River oil shales. <i>Journal of Applied Physics</i> , 1979 , 50, 2776-2781	2.5	6
566	Mechanical, thermal, and electrical properties of metal fiber-filled polymer composites. <i>Polymer Engineering and Science</i> , 1979 , 19, 1188-1192	2.3	162
565	Mechanical and conductive properties of metal fibre-filled polymer composites. 1979 , 10, 95-100		37
564	The effect of particle shape on the mechanical properties of filled polymers. 1980 , 15, 1873-1888		128
563	Extinction of diffusion flames adjacent to flat surfaces of burning polymers. 1981 , 19, 2955-2976		10
562	Heat transfer in polymeric composites containing E hermally activel F illers. <i>Polymer Composites</i> , 1981 , 2, 58-60	3	
561	Estimation of thermal conductivity of polyethylene resins. <i>Polymer Engineering and Science</i> , 1981 , 21, 124-128	2.3	4
560	Thermal Conductivity of Frozen Beef Liver. 1983 , 48, 1779-1782		12
559	Properties of mat reinforced reaction injection molded materials. <i>Polymer Composites</i> , 1983 , 4, 190-19	5 3	10
558	The effect of structure on the conductivity of a dispersion. 1983 , 94, 90-104		93
557	A Proposed Model for the Thermal Conductivity of Dry And Water-Saturated Tuff*. 1983 , 26, 967		
556	Generalized combining rules for predicting transport properties of composite materials. 1985 , 22, 3-21		112
555	Thermally conductive polymer compositions. <i>Polymer Composites</i> , 1986 , 7, 125-140	3	172
554	Prediction of Thermal Conductivity of Vegetable Foods by the Effective Medium Theory. 1986 , 51, 113	-115	45
553	An apparatus for measurements of thermal conductivity of neat epoxies and their composites. <i>Polymer Composites</i> , 1987 , 8, 53-56	3	3

552	•	21
551	A Note on the Thermal Conductivity of Filled Polymers. 1988 , 22, 616-628	14
550	Applications of polymeric materials for condensing heat exchangers. <i>Polymer Engineering and Science</i> , 1989 , 29, 1111-1116	21
549	Reaction engineering of advanced ceramic materials. 1990 , 45, 1979-1999	14
548	A model of transverse thermal conductivity in unidirectional fibre-reinforced composites. 1990 , 38, 199-209	27
547	Effective thermal conductivity of binary dispersed composites over wide ranges of volume fraction, temperature, and pressure. <i>Journal of Applied Physics</i> , 1990 , 68, 3285-3292	31
546	Thermal transport properties of carbon-carbon fibre composites III. Mathematical modelling. 1990 , 430, 199-211	15
545	Thermal conductivity of copper reinforced carbon electrodes. 1990 , 10, 93-98	4
544	Composites based on thermally hyperconductive carbon fibres. 1990 , 21, 339-343	33
543	Stable, highly concentrated suspensions for electronic and ceramic materials applications. 1991 , 6, 1082-1093	22
542		15
541	Thermal Diffusivities of Composites with Various Types of Filler. 1992 , 26, 612-625	73
540	Thermal transport properties of thermally sprayed coatings. 1992 , 37, 271-289	64
539	Non-stationary heat conduction of a porous medium. 1992 , 54, 6-18	2
538	Elastic moduli and thermal conductivity of injection-molded short-fiberEeinforced thermoplastics. Polymer Composites, 1992, 13, 69-80	52
537	Design charts for the thermal conductivity of particulate composites. 1992 , 13, 221-225	3
536	Thermal conductivity of epoxy adhesives filled with silver particles. 1992 , 12, 99-104	56
535	Prediction of the effective moisture diffusivity in gelatinized food systems. 1993 , 18, 159-179	41

 $\frac{\text{TRANSVER THERMAL CONDUCTANCE OF THERMOSETTING COMPOSITE MATERIALS DURING }}{\text{534}}$

533	. 1993 , 4, 1266-1268	5
532	The Effect of Fiber Concentration on the Thermal Conductivity of a Polycarbonate/Pitch-Based Carbon Fiber Composite. 1993 , 27, 668-683	20
531	Comparison of Processing Parameters for Pultruded Graphite/Epoxy and Fiberglass/Epoxy: A Heat Transfer and Curing Model. 1994 , 13, 288-300	13
530	Transverse thermal conductance of thermosetting composite materials during their cure. 1994 , 8, 358-365	11
529	Fabrication of particulate aluminium-matrix composites by liquid metal infiltration. 1994 , 29, 3128-3150	56
528	An assessment of expressions for the apparent thermal conductivity of cellular materials. 1994 , 29, 2261-227	384
527	An assessment of expressions for the apparent thermal conductivity of cellular materials. 1994 , 29, 486-498	72
526	Estimation of the transport properties of polymer composites by geodesic propagation. 1994 , 176, 167-177	6
525	Closed-form solutions of the in-plane effective thermal conductivities of woven-fabric composites. 1995 , 55, 41-48	52
524	A Closed-Form Solution of the Transverse Effective Thermal Conductivity of Woven Fabric Composites. 1995 , 29, 2280-2294	50
523	CONJUGATE HEAT TRANSFER AND PARTICLE TRANSPORT IN OUTSIDE VAPOR DEPOSITION PROCESS. 1995 , 28, 39-54	6
522	Finite Element Analysis of Effective Thermal Conductivity of Filled Polymeric Composites. 1995 , 29, 1725-174	· 0 56
521	Thermal conductivity of heterophase polymer compositions. 1995 , 1-30	109
520	Properties and processing of short metal fibre filled polymer composites. 1996 , 144-167	3
519	Hygrothermal and Quality Properties Applicable to Drying. Data Sources and Measurement Techniques. 1996 , 14, 1403-1418	10
518	Hot Isostatic Pressing Modifications of Pore Size Distribution in Plasma Sprayed Coatings* * Presented in part at the 9th International Conference on Surface Modification Technologies (SMT-09), Cleveland, OH, USA 1997 , 12, 291-307	7
517	Thermal and mechanical properties of copper powder filled poly (ethylene) composites. 1997 , 91, 63-67	105

(2001-1997)

516	Polymer Engineering and Science, 1997 , 37, 757-771	15
515	Computer simulations of NiCrAl multiphase diffusion couples. 1997 , 45, 1189-1199	59
514	Multi-layer modeling of diffusion of water in acrylamide-grafted aliphatic polyesters. <i>Polymer Engineering and Science</i> , 1998 , 38, 1313-1323	18
513	Transport properties of methanol in blends of a liquid crystalline copolyester and polyethersulfone. Polymer Engineering and Science, 1998 , 38, 1640-1648	12
512	Effective thermal conductivity of isotropic polymer composites. <i>International Communications in Heat and Mass Transfer</i> , 1998 , 25, 723-732	67
511	Hot isostatic pressing of plasma sprayed yttria-stabilized zirconia. 1998 , 34, 263-268	14
510	A general analytical model for predicting the transverse effective thermal conductivities of woven fabric composites. 1998 , 29, 315-322	28
509	Thermal conductivity of metal powder-polymer feedstock for powder injection moulding. 1999 , 34, 1-5	41
508	A new theoretical equation for thermal conductivity of two-phase systems. 1999 , 72, 1689-1697	31
507	Mass diffusivity of food products. 1999 , 15, 19-66	28
507 506	Mass diffusivity of food products. 1999 , 15, 19-66 Transport properties of hyperbranched and dendrimer-like star polymers. 2000 , 41, 1827-1840	28
506	Transport properties of hyperbranched and dendrimer-like star polymers. 2000 , 41, 1827-1840 Barrier properties of blends based on liquid crystalline polymers and polyethylene. <i>Polymer</i>	
506	Transport properties of hyperbranched and dendrimer-like star polymers. 2000 , 41, 1827-1840 Barrier properties of blends based on liquid crystalline polymers and polyethylene. <i>Polymer Engineering and Science</i> , 2000 , 40, 1969-1978	24
506 505 504	Transport properties of hyperbranched and dendrimer-like star polymers. 2000 , 41, 1827-1840 Barrier properties of blends based on liquid crystalline polymers and polyethylene. <i>Polymer Engineering and Science</i> , 2000 , 40, 1969-1978 2.3 Effect of extended annealing cycles on the thermal conductivity of AlN/Y2O3 ceramics. 2000 , 20, 1319-1325	44 24 39
506 505 504 503	Transport properties of hyperbranched and dendrimer-like star polymers. 2000, 41, 1827-1840 Barrier properties of blends based on liquid crystalline polymers and polyethylene. <i>Polymer Engineering and Science</i> , 2000, 40, 1969-1978 2-3 Effect of extended annealing cycles on the thermal conductivity of AlN/Y2O3 ceramics. 2000, 20, 1319-1325 DICTRA, a tool for simulation of diffusional transformations in alloys. 2000, 21, 269-280	442439548
506 505 504 503 502	Transport properties of hyperbranched and dendrimer-like star polymers. 2000, 41, 1827-1840 Barrier properties of blends based on liquid crystalline polymers and polyethylene. <i>Polymer Engineering and Science</i> , 2000, 40, 1969-1978 2.3 Effect of extended annealing cycles on the thermal conductivity of AlN/Y2O3 ceramics. 2000, 20, 1319-1325 DICTRA, a tool for simulation of diffusional transformations in alloys. 2000, 21, 269-280 PROCESSING, STRUCTURE, AND ELECTRICAL PROPERTIES OF METAL-FILLED POLYMERS. 2001, 40, 591-602 Barrier Properties of Blends Based on Liquid Crystalline Polymers and Poly(ethylene	 44 24 39 548 16

498	Processing and characterization of aligned vapor grown carbon fiber reinforced polypropylene. 2002 , 33, 53-62		150
497	PROCESSING. 2002 , 201-306		1
496	Thermal diffusivity of lead titanate/polyvinylidene fluoride-trifluoroethylene nanocomposites by the mirage method. <i>Polymer Composites</i> , 2002 , 23, 925-933	3	3
495	Percolation phenomena in polymers containing dispersed iron. <i>Polymer Engineering and Science</i> , 2002 , 42, 90-100	2.3	92
494	Electrical and thermal conductivity of polymers filled with metal powders. 2002, 38, 1887-1897		731
493	THERMAL CONDUCTIVITY OF THERMOPLASTIC COMPOSITES WITH SUBMICROMETER CARBON FIBERS. 2002 , 15, 19-30		22
492	Thermally conductive nylon 6,6 and polycarbonate based resins. II. Modeling. 2003, 88, 123-130		39
491	Thermal conductivity of misaligned short-fiber-reinforced polymer composites. 2003 , 88, 1497-1505		59
490	An analysis of the influence of material structure on the effective thermal conductivity of theoretical porous materials using finite element simulations. 2003 , 26, 873-880		48
489	Thermal conductivity of particle filled polyethylene composite materials. 2003 , 63, 113-117		184
489 488	Thermal conductivity of particle filled polyethylene composite materials. 2003 , 63, 113-117 Production of barrier films by chaotic mixing of plastics. <i>Polymer Engineering and Science</i> , 2003 , 43, 144.	3 ₂₁ 459	
		3 ₂ 1 ₉ 459	
488	Production of barrier films by chaotic mixing of plastics. <i>Polymer Engineering and Science</i> , 2003 , 43, 144.	3 <u>≉</u> 1 ∮ 59	9 18
488 487	Production of barrier films by chaotic mixing of plastics. <i>Polymer Engineering and Science</i> , 2003 , 43, 144. Thermal Resistance of Particle Laden Polymeric Thermal Interface Materials. 2003 , 125, 1170-1177 Dependence of Thermal Conductivity and Mechanical Rigidity of Particle-Laden Polymeric Thermal	3 ₂ 1 4 59	9 18 89
488 487 486	Production of barrier films by chaotic mixing of plastics. <i>Polymer Engineering and Science</i> , 2003 , 43, 144. Thermal Resistance of Particle Laden Polymeric Thermal Interface Materials. 2003 , 125, 1170-1177 Dependence of Thermal Conductivity and Mechanical Rigidity of Particle-Laden Polymeric Thermal Interface Material on Particle Volume Fraction. 2003 , 125, 386-391	3 ₂ 1 4 59	9 18 89 47
488 487 486 485	Production of barrier films by chaotic mixing of plastics. <i>Polymer Engineering and Science</i> , 2003 , 43, 144. Thermal Resistance of Particle Laden Polymeric Thermal Interface Materials. 2003 , 125, 1170-1177 Dependence of Thermal Conductivity and Mechanical Rigidity of Particle-Laden Polymeric Thermal Interface Material on Particle Volume Fraction. 2003 , 125, 386-391 Thermal Resistance of Particle Laden Polymeric Thermal Interface Materials. 2003 , 431 Characterisation of 316L powder injection moulding feedstock for purpose of numerical simulation	3 ₂ 1 4 59	89 47 6
488 487 486 485 484	Production of barrier films by chaotic mixing of plastics. <i>Polymer Engineering and Science</i> , 2003 , 43, 144 Thermal Resistance of Particle Laden Polymeric Thermal Interface Materials. 2003 , 125, 1170-1177 Dependence of Thermal Conductivity and Mechanical Rigidity of Particle-Laden Polymeric Thermal Interface Material on Particle Volume Fraction. 2003 , 125, 386-391 Thermal Resistance of Particle Laden Polymeric Thermal Interface Materials. 2003 , 431 Characterisation of 316L powder injection moulding feedstock for purpose of numerical simulation of PIM process. 2003 , 46, 236-240	3 <u>2</u> 1 <u>4</u> 59	89 47 6

480	Experimental measurements of the effective thermal conductivity of a pseudo-porous food analogue over a range of porosities and mean pore sizes. 2004 , 63, 87-95	35
479	Measuring film thickness using infrared imaging. 2005 , 473, 196-200	10
478	Thermal conductivity bounds for isotropic, porous materials. <i>International Journal of Heat and Mass Transfer</i> , 2005 , 48, 2150-2158	401
477	Thermal Conductivity of Needle Punched Preforms made of Carbon and OxiPAN Fibres. 2005 , 13, 83-92	6
476	Thermal conductivity and compressive strain of foam neoprene insulation under hydrostatic pressure. 2005 , 38, 3832-3840	28
475	Rheology based modeling and design of particle laden polymeric thermal interface materials. 2005 , 28, 230-237	10
474	Simulation of Electrical and Thermal Behavior of Conductive Polymer Composites Heating Elements. 2005 , 19, 375-381	16
473	Silicone rubber dielectrics modified by inorganic fillers for outdoor high voltage insulation applications.	10
472	Silicone rubber dielectrics modified by inorganic fillers for outdoor high voltage insulation applications. 2005 , 1108-1115	90
471	A Numerical and Experimental Study on Thermal Conductivity of Particle Filled Polymer Composites. 2006 , 19, 441-455	127
470	Cylindrical Orthotropic Thermal Conductivity of Spiral Woven Composites. Part II: A Mathematical Model for their Effective Transverse Thermal Conductivity. 2006 , 14, 349-364	2
469	Thermal conductivity enhancement of electrically insulating syndiotactic poly(styrene) matrix for diphasic conductive polymer composites. 2006 , 17, 732-745	69
468	A homogenization approach to diffusion simulations applied to ⊕ IFeIIrNi diffusion couples. 2006 , 54, 2431-2439	65
467	Review of effective thermal conductivity models for foods. 2006 , 29, 958-967	82
466	A new approach to modelling the effective thermal conductivity of heterogeneous materials. **International Journal of Heat and Mass Transfer, 2006, 49, 3075-3083** 4.9	360
465	Thermal Interface Materials: Historical Perspective, Status, and Future Directions. 2006 , 94, 1571-1586	573
464	Thermal conduction and moisture diffusion in fibrous materials. 2006 , 225-270	6
463	The Preparation and Properties of Si3N4-Filled Epoxy Resin Composites for Electronic Packaging. 2007 , 336-338, 1346-1349	1

462	Electrically Conductive Carbon Nanofiber Composites with High-Density Polyethylene and Glass Fibers. 2007 , 22, 62-65	16
461	Effect of Particle Shape on Thermal Conductivity of Copper Reinforced Polymer Composites. 2007 , 26, 113-121	157
460	New Models for Thermal Conductivity of Particulate Composites. 2007 , 26, 643-651	103
459	A variational asymptotic micromechanics model for predicting conductivities of composite materials. 2007 , 2, 1813-1830	37
458	Cylindrical Orthotropic Thermal Conductivity of Spiral Woven Composites. Part III: An Estimation of their Thermal Properties. 2007 , 15, 167-182	1
457	Thermal conductivity models for carbon/liquid crystal polymer composites. 2007, 105, 3309-3316	27
456	Thermally conductive rubber-based composite friction materials for railroad brakes Thermal conduction characteristics. 2007 , 67, 2665-2674	49
455	Thermal diffusivity of antifriction polymer composites. 2007 , 33, 869-871	9
454	Thermal conductivity of ceramic particle filled polymer composites and theoretical predictions. 2007 , 42, 6749-6754	71
453	Preparation and properties of Si3N4/PS composites used for electronic packaging. 2007 , 67, 2493-2499	120
453 452	Preparation and properties of Si3N4/PS composites used for electronic packaging. 2007 , 67, 2493-2499 Modelling Thermal Conductivity in Heterogeneous Media with the Finite Element Method. 2008 , 1, 161-170	120
452	Modelling Thermal Conductivity in Heterogeneous Media with the Finite Element Method. 2008 , 1, 161-170 Thermal conductivity of polymer nanocomposites made with carbon nanofibers. <i>Polymer</i>	29
452 451	Modelling Thermal Conductivity in Heterogeneous Media with the Finite Element Method. 2008 , 1, 161-170 Thermal conductivity of polymer nanocomposites made with carbon nanofibers. <i>Polymer Engineering and Science</i> , 2008 , 48, 2474-2481 Thermal properties of polytetrafluoroethylene/Sr2Ce2Ti5O16 polymer/ceramic composites. 2008 ,	29 78
45 ² 45 ¹ 45 ⁰	Modelling Thermal Conductivity in Heterogeneous Media with the Finite Element Method. 2008, 1, 161-170 Thermal conductivity of polymer nanocomposites made with carbon nanofibers. <i>Polymer Engineering and Science</i> , 2008, 48, 2474-2481 Thermal properties of polytetrafluoroethylene/Sr2Ce2Ti5O16 polymer/ceramic composites. 2008, 108, 1716-1721	29 78 41
45 ² 45 ¹ 45 ⁰ 449	Modelling Thermal Conductivity in Heterogeneous Media with the Finite Element Method. 2008, 1, 161-170 Thermal conductivity of polymer nanocomposites made with carbon nanofibers. <i>Polymer Engineering and Science</i> , 2008, 48, 2474-2481 Thermal properties of polytetrafluoroethylene/Sr2Ce2Ti5O16 polymer/ceramic composites. 2008, 108, 1716-1721 Thermal conductivity of three-component composites of core-shell particles. 2008, 498, 135-141 Correlation between transport properties of Ethylene Vinyl Acetate/glass, silver-coated glass	29784129
45 ² 45 ¹ 45 ⁰ 449	Modelling Thermal Conductivity in Heterogeneous Media with the Finite Element Method. 2008, 1, 161-170 Thermal conductivity of polymer nanocomposites made with carbon nanofibers. Polymer Engineering and Science, 2008, 48, 2474-2481 Thermal properties of polytetrafluoroethylene/Sr2Ce2Ti5O16 polymer/ceramic composites. 2008, 108, 1716-1721 Thermal conductivity of three-component composites of core-shell particles. 2008, 498, 135-141 Correlation between transport properties of Ethylene Vinyl Acetate/glass, silver-coated glass spheres composites. 2008, 39, 342-351 Application of Eshelby's Tensor and Rotation Matrix for the Evaluation of Thermal Transport	2978412931

(2010-2009)

444	Assessment of structure effects on the thermal conductivity of two-phase porous geomaterials. <i>International Journal of Heat and Mass Transfer</i> , 2009 , 52, 796-804	4.9	61
443	Epoxy- and polyester-based composites reinforced with glass, carbon and aramid fabrics: Measurement of heat capacity and thermal conductivity of composites by differential scanning calorimetry. <i>Polymer Composites</i> , 2009 , 30, 1299-1311	3	19
442	Measurement, modeling, and variability of thermal conductivity for structural polymer composites. <i>Polymer Composites</i> , 2009 , 31, NA-NA	3	5
441	Review of fire structural modelling of polymer composites. 2009 , 40, 1800-1814		186
440	Thermal Conductivity of Polymer Nanocomposites. 2009,		1
439	Predicting the Thermal Conductivity of Foam Neoprene at Elevated Ambient Pressure. 2010 , 2,		2
438	A new local meshless method for steady-state heat conduction in heterogeneous materials. 2010 , 34, 1105-1112		12
437	Simple determination of the thermal conductivity of the solid phase of particulate materials. <i>International Communications in Heat and Mass Transfer</i> , 2010 , 37, 1226-1229	5.8	19
436	Numerical analysis on thermal conductivity of poly-mineral rock. 2010 , 23, 223-232		2
435	Heat transfer in nanoparticle suspensions: Modeling the thermal conductivity of nanofluids. 2010 , 56, 3243-3256		48
434	Thermal properties of graphite-loaded nitrile rubber/poly(vinyl chloride) blends. 2010, 116, NA-NA		4
433	Thermal properties of low loss PTFE-CeO2 dielectric ceramic composites for microwave substrate applications. 2010 , 118, n/a-n/a		1
432	A study on a possible correlation between thermal conductivity and wear resistance of particulate filled polymer composites. 2010 , 31, 837-849		23
431	Dielectric, thermal, and mechanical properties of CeO2-filled HDPE composites for microwave substrate applications. 2010 , 48, 998-1008		42
430	Enhancement of electrical and thermal conductivities of a polysiloxane/metal complex with metal oxides. <i>Polymer Composites</i> , 2010 , 31, 1669-1677	3	6
429	Polymer©eramic Composites of 0B Connectivity for Circuits in Electronics: A Review. 2010 , 7, 415		182
428	Dielectric, Mechanical, and Thermal Properties of Low-Permittivity Polymer C eramic Composites for Microelectronic Applications. 2010 , 7, 461		25
427	Advances in structural silicone adhesives. 2010 , 66-95		10

426	Analysis of temperature profiles and protective mechanism against dry-band arcing in silicone rubber nanocomposites. 2010 , 17, 597-606	8
425	Notice of Retraction: A new truly meshless metod for heat conduction in solid structures. 2010 ,	
424	Continuum Modeling of Diffusive Transport in Inhomogeneous Solids. 2010 , 3-32	
423	An Investigation on Thermal Conductivity and Viscosity of Water Based Nanofluids. 2010 , 139-162	17
422	A computational and experimental investigation on thermal conductivity of particle reinforced epoxy composites. <i>Computational Materials Science</i> , 2010 , 48, 576-581	67
421	FEMDEM modeling of thermal conductivity of porous pigmented coatings. <i>Computational Materials Science</i> , 2010 , 49, 392-399	9
420	Integral Transforms and Bayesian Inference in the Identification of Variable Thermal Conductivity in Two-Phase Dispersed Systems. 2010 , 57, 173-202	16
419	Heat transfer in composite materials using a new truly local meshless method. 2011 , 21, 293-309	6
418	Computation of Thermal Conductivity of Gas Diffusion Layers of PEM Fuel Cells. 2011,	1
417	Thermophysical Properties of Multiphase Polymer Systems. 2011 , 387-423	4
416	Thermophysical Properties Identiflation in the Frequency Domain. 2011, 633-668	
415	An experimental investigation of properties of polyethylene reinforced with Al powders. 2011 , 12, 583-592	4
414	Study on thermal conductive BN/novolac resin composites. 2011 , 523, 111-115	61
413	Effective thermal conductivity and coefficient of linear thermal expansion of high-density polyethylene Ifly ash composites. 2011 , 85, 559-573	27
412	Thermophysical properties of composites formed from ethylenellinyl acetate copolymer and silver-coated hollow glass microspheres. 2011 , 122, 685-697	4
411	Thermal conductivity measurements of porous dust aggregates: I. Technique, model and first results. 2011 , 214, 286-296	65
410	Inverse analysis with integral transformed temperature fields: Identification of thermophysical properties in heterogeneous media. <i>International Journal of Heat and Mass Transfer</i> , 2011 , 54, 1506-1519 ⁴⁻⁹	30
409	A poly(vinylidene fluoride) composite with added self-passivated microaluminum and nanoaluminum particles for enhanced thermal conductivity. 2011 , 98, 182906	51

408	The Effective Thermal Conductivity of Composite Materials with Spherical Dispersed Phase. 2011 , 239-242, 1870-1874	2
407	The Experimental Study of the Soil Thermal Conductivity Based on the Analysis of Actual Internal Fabric. 2011 , 261-263, 1826-1830	
406	Thermal conductivity and mechanical properties of BN-filled epoxy composite: effects of filler content, mixing conditions, and BN agglomerate size. 2011 , 45, 1967-1980	67
405	Numerical Simulation on the Effective Thermal Conductivity of Porous Material. 2012 , 557-559, 2388-2395	
404	Numerical Study of the Influence of Material Structure on Effective Thermal Conductivity of Concrete. 2012 , 33, 732-747	23
403	Thermal Conductivity of Al\$_{2}\$O\$_{3}\$/Poly(vinyl butyral) Composites. 2012 , 51, 09ML01	2
402	An Analytical Modeling for Effective Thermal Conductivity of Multi-Phase Transversely Isotropic Fiberous Composites Using Generalized Self-Consistent Method. 2012 , 249-250, 904-909	2
401	Metallic Particle-Filled Polymer Microcomposites. 2012 , 575-612	4
400	Modeling the in-plane thermal conductivity of a graphite/polymer composite sheet with a very high content of natural flake graphite. 2012 , 50, 5052-5061	53
399	Effect of TiO2 and oMMT nanofiller on thermal conductivity and heat deflection temperature of nanodielectric composites. 2012 ,	O
398	New theoretical equation for effective thermal conductivity of two-phase composite materials. 2012 , 28, 620-626	6
397	A detailed thermal analysis of nanocomposites filled with SiO2, AlN or boehmite at varied contents and a review of selected rules of mixture. 2012 , 72, 1324-1330	33
396	A Numerical Study on Heat Conductivity Characterization of Aluminium Filled Polypropylene Composites. 2012 , 585, 14-18	2
395	Percolation based enhancement in effective thermal conductivity of HDPE/LBSMO composites. 2012 , 35, 601-609	6
394	A simulation study on thermal conductivity of glass bead embedded polymeric system. 2012 , 16, 24-38	3
393	Comparison of the Mechanical and Thermo-Mechanical Properties of Unfilled and SiC Filled Short Glass Polyester Composites. 2012 , 4, 175-188	18
392	Thermophysical and Thermal Expansion Properties. 2012 , 1	O
391	Polymeric Composites: Heat Transfer This is a revision of an article of the same title by M. R. Tant and J. B. Henderson originally published in The International Encyclopedia of Composites, Stuart M. Lee, Ed., VCH Publishers, 1991 2012 , 1	

390	A Theoretical and Experimental Investigation of Unidirectional Freezing of Nanoparticle-Enhanced Phase Change Materials. 2012 , 134,	60
389	Thermal Conductivity of Porous Si3N4-Bonded SiC Sidewall Materials in Aluminum Electrolysis Cells. 2012 , 95, 730-738	6
388	Preparation and thermal conductivity of novolac/Ni/graphite nanosheet composites. 2012, 124, 4403-4408	12
387	Numerical calculations of effective thermal conductivity of porous ceramics by image-based finite element method. 2012 , 6, 79-86	5
386	. 2013 , 49, 2505-2515	153
385	Effect of Ba(Zn1/3Ta2/3)O3 and SiO2 ceramic fillers on the microwave dielectric properties of butyl rubber composites. 2013 , 24, 4351-4360	3
384	Effective Thermal Conductivity Modelling for Closed-Cell Porous Media with Analytical Shape Factors. 2013 , 100, 211-224	27
383	Thermal Conductivity of Composites of Beryllia and Lithium Titanate. 2013 , 22, 3455-3460	2
382	Thermal conductivity of sorghum and sorghum Ehermoplastic composite panels. 2013, 45, 455-460	17
381	Thermal conductivity of graphite filled liquid crystal polymer composites and theoretical predictions. 2013 , 88, 113-119	43
380	An experimental investigation of melting of nanoparticle-enhanced phase change materials (NePCMs) in a bottom-heated vertical cylindrical cavity. <i>International Journal of Heat and Mass</i> Transfer, 2013, 66, 111-117	86
379	Copper shell networks in polymer composites for efficient thermal conduction. 2013 , 5, 11618-22	76
378	Numerical modelling of the effective thermal conductivity of heterogeneous materials. 2013, 26, 336-345	22
377	Modelling the thermal conductivity of epoxy nanocomposites with low filler concentrations. 2013,	3
376	Prediction of Thermal Conductivity of Aluminum Nanocluster-Filled Mesoporous Silica (Al/MCM-41). <i>International Journal of Thermophysics</i> , 2013 , 34, 2371-2384	5
375	Thermo-mechanical properties of Isotropic Conductive Adhesive filled with Metallized Polymer Spheres. 2013 ,	5
374	A simplified heat transfer model for predicting temperature change inside food package kept in cold room. 2013 , 50, 257-65	9
373	A genetic fuzzy based modeling of effective thermal conductivity for polymer composites. 2013 , 25, 259-270	2

(2014-2013)

372	Experimental evaluation of dense asphalt concrete properties for induction heating purposes. <i>Construction and Building Materials</i> , 2013 , 46, 48-54	6.7	61
371	Evaluation of common mixing models for calculating bulk thermal conductivity of sedimentary rocks: Correction charts and new conversion equations. <i>Geothermics</i> , 2013 , 47, 40-52	4.3	74
370	Thermal conductivity, coefficient of linear thermal expansion and mechanical properties of LDPE/Ni composites. 2013 , 87, 435-445		17
369	Thermal conductivity enhancement of nanostructure-based colloidal suspensions utilized as phase change materials for thermal energy storage: A review. 2013 , 24, 418-444		269
368	A simplistic analytical unit cell based model for the effective thermal conductivity of high porosity open-cell metal foams. 2013 , 46, 255302		57
367	An approach to enhance through-thickness thermal conductivity of polymeric fiber composites. <i>International Journal of Heat and Mass Transfer</i> , 2013 , 59, 20-28	4.9	18
366	Electrical, Thermal and Induction Heating Properties of Dense Asphalt Concrete. 2013 , 723, 303-311		2
365	Thermal stretching in two-phase porous media: Physical basis for Maxwell model. 2013 , 3, 021011		18
364	Thermal conductivity prediction of mesoporous composites (Cu/MCM-41). 2014 , 66, 30902		1
363	Thermal and dielectric behavior of epoxy composites filled with ceramic micro particulates. 2014 , 48, 3755-3769		24
362	Isotropic conductivities in chopped carbon fiber composites using expanded polypropylene. 2014 , 23, 409-420		О
361	A Novel Model for Predicting the Thermal Conductivity of Fiber Reinforced Ceramic Materials. 2014 , 936, 154-163		
360	Effective thermal conductivity of wire-woven bulk Kagome sandwich panels. 2014 , 4, 051010		6
359	Effective thermal conductivity of random two-phase composites. 2014 , 33, 69-80		18
358	Electrical and Thermal Conductivity. 2014 , 131-168		
357	Development of butyl rubberflutile composites for flexible microwave substrate applications. <i>Ceramics International</i> , 2014 , 40, 7439-7448	5.1	9
356	An Analytical Unit Cell Model for the Effective Thermal Conductivity of High Porosity Open-Cell Metal Foams. 2014 , 102, 403-426		69
355	Modeling the thermal conductivity of polymeric composites based on experimental observations. 2014 , 21, 412-423		39

354	Modeling phase change material in micro-foam under constant temperature condition. <i>International Journal of Heat and Mass Transfer</i> , 2014 , 68, 677-682	4.9	33
353	A novel effective medium theory for modelling the thermal conductivity of porous materials. <i>International Journal of Heat and Mass Transfer</i> , 2014 , 68, 295-298	4.9	99
352	Environmental performance of kenaf-fiber reinforced polyurethane: allife cycle assessment approach. 2014 , 66, 164-173		50
351	An ideal nano-porous insulation material: Design, modeling and numerical validation. 2014 , 72, 34-40		10
350	Physical and Thermal Characterization of Red Mud Reinforced Epoxy Composites: An Experimental Investigation. 2014 , 5, 755-763		11
349	Fabrication, interface characterization and modeling of oriented graphite flakes/Si/Al composites for thermal management applications. 2014 , 63, 719-728		81
348	Thermal conductivity in nanostructured films: from single cellulose nanocrystals to bulk films. 2014 , 15, 4096-101		89
347	Thermal Properties of Solids at Room and Cryogenic Temperatures. 2014,		17
346	Thermal conductivity of polymer composites with oriented boron nitride. 2014 , 590, 138-144		66
345	Numerical Study of Thermal Conductivities of Carbon-Based Mesoporous Composites. <i>International Journal of Thermophysics</i> , 2014 , 35, 1863-1878	2.1	2
344	Modeling the influence of particulate geometry on the thermal conductivity of composites. 2014 , 49, 5586-5597		12
343	The development of effective model for thermal conduction analysis for 2.5D packaging using TSV interposer. 2014 , 54, 425-434		9
342	Effective thermal conductivity of three-component composites containing spherical capsules. <i>International Journal of Heat and Mass Transfer</i> , 2014 , 73, 177-185	4.9	60
341	Effective conductivity of CuBe and SnAl miscibility gap alloys. <i>International Journal of Heat and Mass Transfer</i> , 2014 , 77, 395-405	4.9	20
340	The thermal conductivity of Earth's lower mantle. 2014 , 41, 2746-2752		32
339	Thermal Conductivity of Composites. 2014 , 287-304		
338	Measurement and numerical prediction of fiber-reinforced thermoplastics' thermal conductivity in injection molded parts. 2014 , 131, n/a-n/a		3
337	Effect of amounts and types of silicon nitride on thermal conductivity of Si3N4/epoxy resin composite. 2015 , 123, 908-912		12

336	Enhanced thermal conductivity of epoxyhatrix composites with hybrid fillers. 2015 , 26, 26-31		46
335	Dielectric, thermal and mechanical properties of zirconium silicate reinforced high density polyethylene composites for antenna applications. 2015 , 17, 14943-50		28
334	Thermally conductive polyamide 6/carbon filler composites based on a hybrid filler system. 2015 , 16, 065001		20
333	Thermal conductivity of in situ epoxy composites filled with ZrB2 particles. 2015 , 107, 61-66		31
332	Experimental measurement and numerical modeling of the effective thermal conductivity of TRISO fuel compacts. <i>Journal of Nuclear Materials</i> , 2015 , 458, 198-205	3.3	21
331	Towards predictive modeling of crystallization fouling: A pseudo-dynamic approach. 2015 , 93, 188-196		17
330	Effect of the Carbon Nanotube Distribution on the Thermal Conductivity of Composite Materials. 2015 , 137,		3
329	Multifunctional cyanate ester nanocomposites reinforced by hexagonal boron nitride after noncovalent biomimetic functionalization. 2015 , 7, 5915-26		134
328	Thermal Conductivity Coefficients of Unidirectional Fiber Composites Defined by the Concept of Interphase. 2015 , 91, 262-291		10
327	Preparation and properties of BaTiO3 filled butyl rubber composites for flexible electronic circuit applications. 2015 , 26, 4629-4637		16
326	Mesoscopic numerical simulation of effective thermal conductivity of tensile cracked concrete. Construction and Building Materials, 2015, 95, 467-475	5.7	31
325	Modeling the effect of gas on the effective thermal conductivity of heterogeneous materials. International Journal of Heat and Mass Transfer, 2015 , 90, 358-363	4.9	5
324	Freeze-cast alumina pore networks: Effects of freezing conditions and dispersion medium. 2015 , 35, 3595-3605		43
323	Effective thermal conductivity of dispersed materials with contrast inclusions. 2015 , 53, 45-50		7
322	Prediction of effective through-thickness thermal conductivity of woven fabric reinforced composites with embedded particles. <i>Composite Structures</i> , 2015 , 127, 132-140	5.3	25
321	Comparison of two finite element homogenization prediction approaches for through thickness thermal conductivity of particle embedded textile composites. <i>Composite Structures</i> , 2015 , 133, 719-726.	5.3	6
320	Functional composites with corellhell fillers: I. Particle synthesis and thermal conductivity measurements. 2015 , 50, 7779-7789		26
319	Laser heat treatment of aerosol-jet additive manufactured graphene patterns. 2015 , 48, 375503		8

318	Microstructural efficiency: Structured morphologies. <i>International Journal of Heat and Mass Transfer</i> , 2015 , 81, 820-828	4.9	3
317	Steady- and transient-state analyses of fully ceramic microencapsulated fuel loaded reactor core via two-temperature homogenized thermal-conductivity model. 2015 , 76, 283-296		11
316	Thermal conductivity of an organic phase change material/expanded graphite composite across the phase change temperature range and a novel thermal conductivity model. 2015 , 102, 202-208		180
315	Computational thermal conductivity in porous materials using homogenization techniques: Numerical and statistical approaches. <i>Computational Materials Science</i> , 2015 , 97, 148-158	3.2	54
314	On the determination of parameters required for numerical studies of heat and mass transfer through textiles [Methodologies and experimental procedures. <i>International Journal of Heat and Mass Transfer</i> , 2015 , 81, 272-282	4.9	24
313	Effects of inclusion size on thermal conductivity and rheological behavior of ethylene glycol-based suspensions containing silver nanowires with various specific surface areas. <i>International Journal of Heat and Mass Transfer</i> , 2015 , 81, 554-562	4.9	14
312	Modeling and analysis of synergistic effect in thermal conductivity enhancement of polymer composites with hybrid filler. <i>International Journal of Heat and Mass Transfer</i> , 2015 , 81, 457-464	4.9	55
311	Premature detonation of an NHMOLemulsion in reactive ground. 2015 , 283, 314-20		8
310	Analytical study of structural thermal insulating syntactic foams. Composite Structures, 2015, 119, 551-	·5 <i>5</i> ₆ 3	6
309	Transparent Silicone Calcium Fluoride Nanocomposite with Improved Thermal Conductivity. 2015 , 300, 80-85		12
308	. 2016,		10
307	An experimental investigation on the effect of particle size on the thermal properties and void content of Solid Glass Microsphere filled epoxy Composites. 2016 , 115, 012011		2
306	Modeling of Thermal Conductivity of CVI-Densified Composites at Fiber and Bundle Level. 2016 , 9,		4
305	A review of the use and design of produce simulators for horticultural forced-air cooling studies. 2016 , 190, 80-93		20
304	Effect of carbon nanotube dispersion and network formation on thermal conductivity of thermoplastic polyurethane/carbon nanotube nanocomposites. <i>Polymer Engineering and Science</i> , 2016 , 56, 394-407	2.3	19
303	Design of a durable roof slab insulation system for tropical climatic conditions. 2016 , 3, 1196526		13
302	Mechanically Stretchable and Electrically Insulating Thermal Elastomer Composite by Liquid Alloy Droplet Embedment. 2015 , 5, 18257		84
301	Experimental Determination and Modeling of Thermophysical Properties. 2016 , 29-76		1

300 Characterization of structure and thermophysical properties of three ESR slags. **2016**, 143, 012007

299	Influence of carbon fillers on the thermal conductivity of Poly (methyl methacrylate)/carbon composites. 2016 ,		3
298	Comparative analysis of methods for determination of the thermal characteristics of filled polymer composites. 2016 ,		1
297	Effect of fiber transverse isotropy on effective thermal conductivity of metal matrix composites reinforced by randomly distributed fibers. <i>Composite Structures</i> , 2016 , 152, 637-644	5.3	16
296	Nucleate pool boiling of R134a on cold sprayed CullNTBiC and CullNTBlN composite coatings. 2016 , 103, 684-694		19
295	Measuring the sedimentation rate in a magnetorheological fluid column via thermal conductivity monitoring. 2016 , 25, 055007		12
294	Microwave Dielectric Properties of Polystyrene Horsterite (Mg2SiO4) Composite. 2016, 45, 729-735		8
293	Influence of embedded MoSi2 particles on the high temperature thermal conductivity of SPS produced yttria-stabilised zirconia model thermal barrier coatings. 2016 , 308, 31-39		15
292	Development of mass production type rigid polyurethane foam for LNG carrier using ozone depletion free blowing agent. 2016 , 80, 44-51		10
291	Experimental study on the thermal and mechanical properties of MWCNT/polymer and Cu/polymer composites. 2016 , 107, 907-917		24
290	Synthesis and thermal properties of the MA/HDPE composites with nano-additives as form-stable PCM with improved thermal conductivity. 2016 , 180, 116-129		91
289	Effective thermal conductivity of two-phase composites containing highly conductive inclusions. 2016 , 35, 1586-1599		10
288	Nanodielectrics: The Role of Structure in Determining Electrical Properties. 2016 , 237-262		
287	Physical properties of clay aerogel composites: An overview. 2016 , 102, 29-37		28
286	Comparisons of thermal conductive behaviors of epoxy resin in unidirectional composite materials. 2016 , 124, 775-789		13
285	Steady- and Transient-State Analyses of Fully Ceramic Microencapsulated Fuel with Randomly Dispersed Tristructural Isotropic Particles via Two-Temperature Homogenized Model Theory and Method. 2016 , 48, 650-659		8
284	Three-point geometric parameter for the transverse cross section of a fibrous composite. 2016 , 227, 1919-1926		1
283	Thermal properties and morphologies of MABA eutectics/CNTs as composite PCMs in thermal energy storage. <i>Energy and Buildings</i> , 2016 , 127, 603-610	7	48

282	Experimental and modeling of thermal and dielectric properties of aluminum nitride-reinforced polybenzoxazine hybrids. 2016 , 126, 561-570		10
281	Toward multi-functional polymer composites through selectively distributing functional fillers. 2016 , 82, 20-33		8
280	Photothermal spectroscopy of polymer nanocomposites. 2016 , 312-361		3
279	Mechanical, thermal and microwave dielectric properties of Mg 2 SiO 4 filled Polyteterafluoroethylene composites. <i>Ceramics International</i> , 2016 , 42, 7551-7563	5.1	41
278	Thermal conductivity of transparent and flexible polymers containing fillers: A literature review. <i>International Journal of Heat and Mass Transfer</i> , 2016 , 98, 219-226	4.9	117
277	Optimization of thermal and mechanical properties of bio-polymer based nanocomposites. <i>Polymer Degradation and Stability</i> , 2016 , 127, 105-112	4.7	12
276	Terahertz characterization of Y2O3-added AlN ceramics. 2016 , 388, 741-745		13
275	Improvement of Insulating and Thermal Properties of SiO2-Coated Copper Nanowire Composites. 2016 , 55, 2713-2720		30
274	Effect of mechanical activation of high specific surface area aluminium with PTFE on composite solid propellant. 2016 , 166, 203-215		39
273	A review of the composite phase change materials: Fabrication, characterization, mathematical modeling and application to performance enhancement. 2016 , 165, 472-510		328
272	Impacts of pore- and petro-fabrics, mineral composition and diagenetic history on the bulk thermal conductivity of sandstones. 2016 , 115, 48-62		29
271	Analytic modeling for the anisotropic thermal conductivity of polymer composites containing aligned hexagonal boron nitride. 2016 , 122, 42-49		43
270	Ablation modeling of state of the art EPDM based elastomeric heat shielding materials for solid rocket motors. <i>Computational Materials Science</i> , 2016 , 111, 460-480	3.2	29
269	Material property models for polyethylene-based conductive blends suitable for PEM fuel cell bipolar plates. 2016 , 230, 131-141		O
268	Novel organicIhorganic composites with high thermal conductivity for electronic packaging applications: A key issue review. <i>Polymer Composites</i> , 2017 , 38, 803-813	3	57
267	Evaluation of effective thermal diffusivity and conductivity of fibrous materials through computational micromechanics. 2017 , 53, 277-290		6
266	Modeling of anisotropic thermal conductivity of polymer composites containing aligned boron nitride platelets: Effect of processing methods. <i>Polymer Composites</i> , 2017 , 38, 2670-2678	3	5
265	Improvement in thermal conductivity and mechanical properties of ethylene-propylenediene monomer rubber by expanded graphite. <i>Polymer Composites</i> , 2017 , 38, 870-876	3	15

(2017-2017)

264	Experimental and modeling study of effective thermal conductivity of polymer filled with date palm fibers. <i>Polymer Composites</i> , 2017 , 38, 1712-1719	3	12
263	Tomography based analysis of conduction anisotropy in fibrous insulation. <i>International Journal of Heat and Mass Transfer</i> , 2017 , 108, 1740-1749	4.9	6
262	Breaking through the Solid/Liquid Processability Barrier: Thermal Conductivity and Rheology in Hybrid Graphene-Graphite Polymer Composites. 2017 , 9, 7556-7564		42
261	Enhanced thermal conductivity of polymer composites via hybrid fillers of anisotropic aluminum nitride whiskers and isotropic spheres. 2017 , 114, 237-246		72
260	Numerical Simulation of the Freeze-Thaw Behavior of Mortar Containing Deicing Salt Solution. 2017 , 50, 1		32
259	Use of simple thermal conductivity models to assess the reliability of measured thermal conductivity data. 2017 , 74, 458-464		10
258	Microstructure and Thermal Conductivity of Alliraphene Composites Fabricated by Powder Metallurgy and Hot Rolling Techniques. 2017 , 30, 675-687		57
257	Thermal performance of scrap tire blocks as roof insulator. <i>Energy and Buildings</i> , 2017 , 149, 384-390	7	16
256	Polymerteramic Composites for Microwave Applications. 2017 , 481-535		4
255	Thermal conductivity of polymer composite pigmented with titanium dioxide. 2017 , 123, 1		
254	Thermal contact theory for estimating the thermal conductivity of nanofluids and composite materials. 2017 , 120, 179-186		4
253	Numerical investigation of effective thermal conductivity for two-phase composites using a discrete model. 2017 , 115, 1-8		13
252	Modeling of the thermal and mechanical properties of clay ceramics incorporating organic additives. 2017 , 708, 375-382		8
251	Validation of a 3D pore scale prediction model for the thermal conductivity of porous building materials. 2017 , 132, 225-230		5
250	Enhancement of thermal transport in Gel Polymer Electrolytes with embedded BN/Al2O3 nano-and micro-particles. 2017 , 362, 219-227		25
250249			25
	and micro-particles. 2017 , 362, 219-227 Gaseous swelling of U3Si2 during steady-state LWR operation: A rate theory investigation. 2017 ,		

246	Modified Maxwell model for predicting thermal conductivity of nanocomposites considering aggregation. 2017 , 26, 114401		7
245	Zinc Composites With Enhanced Thermal Conductivity for Use in Fused Deposition Modeling Systems. 2017 ,		
244	A modified normalized model for predicting effective soil thermal conductivity. 2017 , 12, 1281-1300		59
243	A modified Hashin-Shtrikman model for predicting the thermal conductivity of polymer composites reinforced with randomly distributed hybrid fillers. <i>International Journal of Heat and Mass Transfer</i> , 2017 , 114, 727-734	4.9	50
242	Calculation of the characteristics of the ignition of a metallized composite propellant using various methods for describing its thermophysical properties. 2017 , 11, 133-139		2
241	Effects of the bubbles in slag on slag flow and heat transfer in the membrane wall entrained-flow gasifier. 2017 , 112, 1178-1186		16
240	Thermal Conductivity of Biocomposite Materials. 2017 , 129-153		2
239	Thermal conductivity analysis of SiC ceramics and fully ceramic microencapsulated fuel composites. 2017 , 311, 9-15		27
238	Transient Thermal Multiscale Analysis for Rocket Motor Case: Mechanical Homogenization Approach. 2017 , 31, 324-336		3
237	Fabrication of alumina/copper heat dissipation substrates by freeze tape casting and melt infiltration for high-power LED. 2017 , 690, 469-477		10
236	Predicting the effective thermal conductivity of multicomponent textured tribocomposites. 2017 , 37, 957-961		2
235	Phase changing nanocomposites for low temperature thermal energy storage and release. 2017 , 11, 738-752		32
234	Tensile and conductivity properties of epoxy composites containing carbon black and graphene nanoplatelets. 2018 , 52, 3909-3918		13
233	Thermal conductivity estimation of high solid loading particulate composites: A numerical approach. <i>International Journal of Thermal Sciences</i> , 2018 , 127, 252-265	4.1	9
232	Polymer Composite Heat Exchangers. 2018 , 53-116		4
231	Numerical prediction of thermal conductivity in ZrB2-particulate-reinforced epoxy composites based on finite element models. 2018 , 25, 337-342		1
230	A novel surface-integrated spray-on thermocouple for heat transfer measurements. 2018 , 93, 356-365		8
229	Higher Temperature Thermal Barrier Coatings with the Combined Use of Yttrium Aluminum Garnet and the Solution Precursor Plasma Spray Process. 2018 , 27, 543-555		35

228	Role of silica nanoparticle in multi-component epoxy composites for electrical insulation with high thermal conductivity. 2018 , 101, 2450-2458	14
227	Thermoelectric properties of CoSb with BiTe nanoinclusions. 2018 , 30, 095701	11
226	Thermal transport in polymeric materials and across composite interfaces. 2018 , 12, 92-130	177
225	PuMA: the Porous Microstructure Analysis software. 2018 , 7, 81-87	22
224	Performance improvement in nano-alumina filled silicone rubber composites by using vinyl tri-methoxysilane. 2018 , 67, 295-301	52
223	Effect of solute atoms and second phases on the thermal conductivity of Mg-RE alloys: A quantitative study. 2018 , 747, 431-437	38
222	Thermo-physical properties of short bananafute fiber-reinforced epoxy-based hybrid composites. 2018 , 232, 939-951	12
221	From lignocellulose to biocomposite: Multi-level modelling and experimental investigation of the thermal properties of kenaf fiber reinforced composites based on constituent materials. 2018 , 128, 1372-138	1 ¹⁹
220	A Novel CultiNPs Nanocomposite with Improved Thermal and Mechanical Properties. 2018, 31, 148-152	18
219	Durability of sandwich composites under extreme conditions: Towards the prediction of fire resistance properties based on thermo-mechanical measurements. <i>Composite Structures</i> , 2018 , 186, 233-245	9
218	Self-heating of a polymeric particulate composite under mechanical excitations. 2018, 117, 116-125	11
217	Practical Thermal MultiBcale Analysis for Composite MaterialsMechanical-Orientated Approach. 2018 , 39, 998-1010	2
216	Influence of the Morphology of Alumina Filler on Electrical and Thermal Properties of Epoxy Resin Composites. 2018 , 922, 163-168	2
215	Analytical heat conduction model of particle reinforced tertiary composite materials based on complete spatial randomness of fillers in base matrix and its application in the development of cryosorption pump. 2018 , 95, 116-126	
214	Carbon Nanotube-Based Organic Thermoelectric Materials for Energy Harvesting. 2018, 10,	51
213	Modelling and testing of fibre metal laminates and their constituent materials in fire. <i>Composite Structures</i> , 2018 , 200, 25-35	3
212	Experimental and Modeling Studies on the Microstructures and Properties of Oxidized Aluminum Nitride Ceramic Substrates. 2018 , 27, 3297-3303	5
211	Theoretical and empirical thermal conductivity models of red mud filled polymer composites. 2018 , 665, 76-84	12

210	Effect of graphite flakes particle sizes on the microstructure and properties of graphite flakes/copper composites. 2018 , 766, 382-390	34
209	Thermal Conductivity of Graphite Microlattices. 2018,	
208	Thermal Conductivity of Aluminosilicate- and Aluminum Oxide-Filled Thermosets for Injection Molding: Effect of Filler Content, Filler Size and Filler Geometry. 2018 , 10,	10
207	Modeling the Effect of Infrared Opacifiers on Coupled Conduction-Radiation Heat Transfer in Expanded Polystyrene. 2018 , 140,	2
206	An Overview of Metal Matrix Nanocomposites Reinforced with Graphene Nanoplatelets; Mechanical, Electrical and Thermophysical Properties. 2018 , 8, 423	37
205	Development and Application of the Heat Pulse Method for Soil Physical Measurements. 2018 , 56, 567-620	59
204	Improved thermal conductivity of carbon-based thermal interface materials by high-magnetic-field alignment. 2018 , 140, 24-29	33
203	Aiming at understanding thermo-mechanical loads in the first wall of DEMO: StressEtrain evolution in a Eurofer-tungsten test component featuring a functionally graded interlayer. 2018 , 135, 141-153	18
202	Recent Progress in Applications of the Cold Sintering Process for Ceramic Polymer Composites. 2018 , 28, 1801724	56
201	Implementation and validation of a 3D image-based prediction model for the thermal conductivity of cellular and granular porous building blocks. <i>Construction and Building Materials</i> , 2018 , 182, 427-440	12
200	Noble-gas-infused neoprene closed-cell foams achieving ultra-low thermal conductivity fabrics <i>RSC Advances</i> , 2018 , 8, 21389-21398	8
199	Grain-growth-induced high electrical conductivity in SiCBN composites. <i>Ceramics International</i> , 2018, 44, 16394-16399	17
198	Effects of polysiloxane on thermal conductivity and compressive strength of porous silica ceramics. Ceramics International, 2019 , 45, 21270-21277 5.1	23
197	A generalized model for estimating effective soil thermal conductivity based on the Kasubuchi algorithm. 2019 , 353, 227-242	22
196	Directional xylitol crystal propagation in oriented micro-channels of boron nitride aerogel for isotropic heat conduction. 2019 , 182, 107715	10
195	Thermal transport in hollow metallic microlattices. 2019 , 7, 101108	6
194	Unique Design Strategy for Laser-Driven Color Converters Enabling Superhigh-Luminance and High-Directionality White Light. 2019 , 13, 1900147	46
193	Modeling Thermal Conductivity of Highly Filled Polymer Composites. <i>Polymer Engineering and Science</i> , 2019 , 59, 2174-2179	4

192	An investigation on effective thermal conductivity of hybrid-filler polymer composites under effects of random particle distribution, particle size and thermal contact resistance. <i>International Journal of Heat and Mass Transfer</i> , 2019 , 144, 118605	4.9	16	
191	General, Vertical, Three-Dimensional Printing of Two-Dimensional Materials with Multiscale Alignment. 2019 , 13, 12653-12661		49	
190	Thermal conductivity and expansion of short fibre-reinforced polymer composites. 2019 , 213-240			
189	Structural-modelling and experimental validation of percolation threshold for nanotube-polyurethane shape memory system. 2019 , 35, 2024-2037		2	
188	Numerical evaluation on the effective thermal conductivity of the composites with discontinuous inclusions: Periodic boundary condition and its numerical algorithm. <i>International Journal of Heat and Mass Transfer</i> , 2019 , 134, 735-751	4.9	16	
187	Recent Advances in the Processing and Properties of Alumina?CNT/SiC Nanocomposites. 2019, 9,		18	
186	Predicting the Effective Thermal Conductivity of Tribocomposites with Coated Antifrictional Inclusions. 2019 , 39, 117-121		2	
185	A physics investigation for influence of carbon nanotube agglomeration on thermal properties of composites. 2019 , 236, 121777		7	
184	Effect of particle size distribution on thermo-mechanical properties of NiO filled LDPE composites. 2019 , 42, 1		2	
183	Pressureless sintered silicon carbide matrix with a new quaternary additive for fully ceramic microencapsulated fuels. 2019 , 39, 3971-3980		15	
182	Developing a durable thermally insulated roof slab system using bamboo insulation panels. 2019 , 10, 511-522		6	
181	Thermophysical Properties of Powder-Polymer Mixture for Fabrication of Parts of 42CrMo4 Steel by the MIM Method. 2019 , 10, 285-290		2	
180	A new thermal conductivity model for sandy and peat soils. 2019 , 274, 95-105		17	
179	Processing Influence on Thermal Conductivity of Polymer Nanocomposites. 2019 , 463-487		6	
178	Theoretical analysis and development of thermally conductive polymer composites. 2019 , 176, 110-117		18	
177	Copper and Nickel Coating of Carbon Fiber for Thermally and Electrically Conductive Fiber Reinforced Composites. 2019 , 11,		8	
176	Electrical and Thermal Conductivity of Epoxy-Carbon Filler Composites Processed by Calendaring. 2019 , 12,		35	
175	Analytical and numerical assessment of the effect of highly conductive inclusions distribution on the thermal conductivity of particulate composites. 2019 , 53, 3499-3514		5	

174	The alignment of AlN platelets in polymer matrix and its anisotropic thermal properties. 2019, 5, 679-0	587	11
173	Improving the thermal and electrical properties of polymer composites by ordered distribution of carbon micro- and nanofillers. <i>International Journal of Heat and Mass Transfer</i> , 2019 , 138, 75-84	4.9	18
172	Numerical analysis for the effects of particle distribution and particle size on effective thermal conductivity of hybrid-filler polymer composites. <i>International Journal of Thermal Sciences</i> , 2019 , 142, 42-53	4.1	7
171	Thermal conductivity of crumb-rubber-modified mortar using an inverse meso-scale heat conduction model. <i>Construction and Building Materials</i> , 2019 , 212, 522-530	6.7	O
170	Atmospheric plasma spraying of functionally graded steel/tungsten layers for the first wall of future fusion reactors. 2019 , 366, 170-178		27
169	Composites. 2019 , 481-578		
168	Development of Date Pit P olystyrene Thermoplastic Heat Insulator Material: Physical and Thermal Properties. 2019 , 2019, 1-10		13
167	Conductive nanofilm/melamine foam hybrid thermoelectric as a thermal insulator generating electricity: theoretical analysis and development. 2019 , 54, 8187-8201		5
166	Hexagonal boron nitride nanosheets doped pyroelectric ceramic composite for high-performance thermal energy harvesting. 2019 , 60, 144-152		23
165	An in situ method on kinetics of gas hydrates. 2019 , 90, 035111		1
164	Polymer-Based Nano-Composites for Thermal Insulation. 2019 , 21, 1801162		27
163	Quantitative Study of Microstructure-Dependent Thermal Conductivity in Mg-4Ce-xAl-0.5Mn Alloys. 2019 , 50, 1970-1984		10
162	Thermal Optimization for Al12SiMg with Influence of Magnesium Oxide Particulate Composites. <i>Materials Today: Proceedings</i> , 2019 , 18, 3160-3166	1.4	1
161	Polyurethane-based bionic material simulating the Vis-NIR spectrum and thermal infrared properties of vegetation <i>RSC Advances</i> , 2019 , 9, 41438-41446	3.7	1
160	Image-based numerical prediction for effective thermal conductivity of heterogeneous materials: A quadtree based scaled boundary finite element method. <i>International Journal of Heat and Mass Transfer</i> , 2019 , 128, 335-343	4.9	13
159	Component level modelling of heat transfer during vapour phase soldering with finite difference ADI approach. <i>International Journal of Heat and Mass Transfer</i> , 2019 , 128, 562-569	4.9	7
158	Ultra-fast sintered functionally graded Fe/W composites for the first wall of future fusion reactors. 2019 , 164, 205-214		33
157	High-performance epoxy/binary spherical alumina composite as underfill material for electronic packaging. 2019 , 118, 67-74		59

(2020-2019)

Heat conduction model based on percolation theory for thermal conductivity of composites with high volume fraction of filler in base matrix. <i>International Journal of Thermal Sciences</i> , 2019 , 136, 389-395.	13
Effective thermal conductivity of fibrous fireproofing materials. <i>International Journal of Thermal Sciences</i> , 2019 , 136, 107-120	9
A percolation threshold model that effectively characterizes the full concentration range for electrical-conducting polymer composites. 2019 , 136, 47184	4
Durability of composite assemblies under extreme conditions: Thermomechanical damage prediction of a double-lap bonded composite assembly subject to impact and high temperature. 5.3 Composite Structures, 2019 , 213, 58-70	5
Thermal properties of sandy and peat soils under unfrozen and frozen conditions. 2019, 189, 64-72	22
Effects of geometry and fraction of polypropylene fibers on permeability of ultra-high performance concrete after heat exposure. 2019 , 116, 168-178	39
Preparation and properties of thermally conductive PLA/PA 610 biomass composites. 2020 , 52, 53-69	5
Tailoring the electrical and thermal conductivity of multi-component and multi-phase polymer composites. 2020 , 65, 129-163	39
Experimental investigation on natural fibre composite for thermal insulation performance enhancement. 2020 , 41, 1304-1307	1
Thermal Transport in 3D Nanostructures. 2020 , 30, 1903841	54
Thermophysical Properties of Zirconia Toughened Alumina Ceramics with Boron Nitride Nanotubes Addition. 2020 , 41, 1354-1364	2
Effects of porosity on electrical and thermal conductivities of porous SiC ceramics. 2020 , 40, 996-1004	31
Dynamic Thermal-Regulating Textiles with Metallic Fibers Based on a Switchable Transmittance. 2020 , 14,	3
Comparison of different thermal conductivity models with one specific electrical conduction model to elucidate differences between thermal and electrical conduction in polymer composites. 2020 , 31, 19213-19231	
Research progress of diamond/copper composites with high thermal conductivity. 2020 , 108, 107993	12
Effective factors on thermal conductivity of stochastic structures open cell metal foams. 2020 , 21, 410	2
New frontier in printed thermoelectrics: formation of EAg2Se through thermally stimulated dissociative adsorption leads to high ZT. 2020 , 8, 16366-16375	21
Geometric optimization of aerogel composites for high temperature thermal insulation applications. 2020 , 547, 120306	12
	Effective thermal conductivity of fibrous fireproofing materials. International Journal of Thermal Sciences, 2019, 136, 107-120 4.1 A percolation threshold model that effectively characterizes the full concentration range for electrical-conducting polymer composites. 2019, 136, 47184 A percolation threshold model that effectively characterizes the full concentration range for electrical-conducting polymer composites. 2019, 136, 47184 Durability of composite assemblies under extreme conditions: Thermomechanical damage prediction of a double-lap bonded composite assembly subject to impact and high temperature. Composite Structures, 2019, 213, 58-70 Thermal properties of sandy and peat soils under unfrozen and frozen conditions. 2019, 189, 64-72 Effects of geometry and fraction of polypropylene fibers on permeability of ultra-high performance concrete after heat exposure. 2019, 116, 168-178 Preparation and properties of thermally conductive PLA/PA 610 biomass composites. 2020, 52, 53-69 Tailoring the electrical and thermal conductivity of multi-component and multi-phase polymer composites. 2020, 65, 129-163 Experimental investigation on natural fibre composite for thermal insulation performance enhancement. 2020, 41, 1304-1307 Thermal Transport in 3D Nanostructures. 2020, 30, 1903841 Thermophysical Properties of Zirconia Toughened Alumina Ceramics with Boron Nitride Nanotubes Addition. 2020, 41, 1354-1364 Effects of porosity on electrical and thermal conductivities of porous SiC ceramics. 2020, 40, 996-1004 Dynamic Thermal-Regulating Textiles with Metallic Fibers Based on a Switchable Transmittance. 2020, 14, 19213-19231 Research progress of diamond/copper composites with high thermal conductivity. 2020, 108, 107993 Effective factors on thermal conductivity of stochastic structures open cell metal foams. 2020, 21, 410 New frontier in printed thermoelectrics: formation of Eng25e through thermally stimulated dissociative adsorption leads to high ZT. 2020, 8, 16366-16375 Geometric optimization of aer

138	Computational Effective Thermal Conductivity of Polyurethane Mixed Cell Foams. 2020 , 783, 012024		0
137	Highly efficient thermo-electrochemical energy harvesting from graphenellarbon nanotube Bybridlaerogels. 2020 , 126, 1		5
136	Suppression Characteristics of Flaming Combustion and Thermal Decomposition of Forest Fuels. 2020 , 56, 163-171		
135	Compostable, fully biobased foams using PLA and micro cellulose for zero energy buildings. 2020 , 10, 17771		8
134	Flash Welding of Microcomposite Wires for Pulsed Power Applications. 2020, 10, 1053		
133	The Heat Pulse Method for Soil Physical Measurements: A Bibliometric Analysis. 2020 , 10, 6171		6
132	Effective Thermal Conductivity for Low Density Silicon Nitride Porous Ceramics. <i>Journal of Physics: Conference Series</i> , 2020 , 1681, 012003	0.3	
131	Recent Advances in Preparation, Mechanisms, and Applications of Thermally Conductive Polymer Composites: A Review. 2020 , 4, 180		25
130	Modelling of Effective Thermal Conductivity of Composites Filled with Core-Shell Fillers. 2020 , 13,		2
129	Mechanically Cloaked Multiphase Magnetic Elastomer Soft Composites for Wearable Wireless Power Transfer. 2020 , 12, 50909-50917		10
128	Room for improvement: A review and evaluation of 24 soil thermal conductivity parameterization schemes commonly used in land-surface, hydrological, and soil-vegetation-atmosphere transfer models. 2020 , 211, 103419		12
127	Numerical Evaluation of the Thermal Properties of UD-Fibers Reinforced Composites for Different Morphologies. 2020 , 12, 2050032		2
126	Influence of forest fuel structure on thermophysical characteristics. 2020 , 366, 832-839		1
125	Polyester composites filled with walnut shell powder: Preparation and thermal characterization. <i>Polymer Composites</i> , 2020 , 41, 3294-3308	3	3
124	Thermal conductivity of polycaprolactone/three-dimensional hexagonal boron nitride composites and multi-orientation model investigation. 2020 , 197, 108245		14
123	Graphene-incorporated aluminum with enhanced thermal and mechanical properties for solar heat collectors. 2020 , 10, 065016		7
122	Enhancing the Thermo-Mechanical Property of Polymer by Weaving and Mixing High Length-Diameter Ratio Filler. 2020 , 12,		2
121	Optimization of thermal insulation performance of porous geopolymers under the guidance of thermal conductivity calculation. <i>Ceramics International</i> , 2020 , 46, 16537-16547	5.1	10

120	Characteristics and mechanical properties of composites based on nitrile butadiene rubber using graphene nanoplatelets. 2020 , 54, 3351-3364	5
119	Effective thermal conductivity of polymer composites: a review of analytical methods. 2021 , 42, 961-972	3
118	Numerical study using finite element method for heat conduction on heterogeneous materials with varying volume fraction, shape and size of fillers. <i>International Journal of Thermal Sciences</i> , 2021 , 4.1 159, 106545	1
117	Multifractal characteristics of the self-assembly material texture of ESi3N4/SUS316L austenitic stainless steel composites. 2021 , 853, 156570	6
116	Phase change materials for high-temperature operation. 2021 , 85-111	1
115	State of the art in composition, fabrication, characterization, and modeling methods of cement-based thermoelectric materials for low-temperature applications. 2021 , 137, 110361	11
114	Relationship between hygrothermal and acoustical behavior of hemp and sunflower composites. 2021 , 188, 107462	5
113	Thermal conductivity of spark plasma sintered SiC ceramics with Alumina and Yttria. 2021 , 41, 3264-3273	4
112	Thermal Conductivity of SandBilt Mixtures. 2021 , 147, 06020031	5
111	Thermal and Electrical behaviors of Boron Nitride/Epoxy reinforced polymer matrix composite review. <i>Polymer Composites</i> , 2021 , 42, 1659-1669	6
110	Carbon nanothreads enable remarkable enhancement in the thermal conductivity of polyethylene. 2021 , 13, 6934-6943	2
109	Effect of General Thermal Boundary Conditions on the Dynamic and Buckling of Polymeric Hybrid Nanocomposite Beam with Variable Thickness. 2021 , 102, 305-321	
108	Fluorescent paint for determination on the effective thermal conductivity of YBCO coated conductor. 2021 , 34, 035029	O
107	Pronghorn: A Multidimensional Coarse-Mesh Application for Advanced Reactor Thermal Hydraulics. 2021 , 207, 1015-1046	8
106	Thermomechanical Multifunctionality in 3D-Printed Polystyrene-Boron Nitride Nanotubes (BNNT) Composites. 2021 , 5, 61	3
105	Review of calculating the electrical conductivity of mineral aggregates from constituent conductivities. 2021 ,	2
104	. 2021 , 11, 606-615	1
103	Optimal Design for Higher Resistance to Thermal Impulse: A Lesson Learned from the Shells of Deep-Sea Hydrothermal-Vent Snails. 2021 , 73, 1714-1722	1

Modelling and Simulation of Thermo-Physical Property of Composite Material. **2021**, 1145, 012035

101	Numerical and Experimental Evaluation of Thermal Conductivity: An Application to Al-Sn Alloys. 2021 , 11, 650		3
100	Numerical Study Using Microstructure Based Finite Element Modeling of the Onset of Convective Heat Transfer in Closed-Cell Polymeric Foam. 2021 , 13,		0
99	Carbon Fibers Enhance the Propagation of High Loading Nanothermites: In Situ Observation of Microscopic Combustion. 2021 , 13, 30504-30511		4
98	Review on the temperature-dependent thermophysical properties of liquid paraffins and composite phase change materials with metallic porous structures. 2021 , 20, 100642		9
97	Modelling the conditions for natural convection onset in open-cell porous Al/paraffin composite phase change materials: Effects of temperature, paraffin type and metallic structure geometry. <i>International Journal of Heat and Mass Transfer</i> , 2021 , 173, 121279	4.9	3
96	Polycarbonate/poly(methyl methacrylate)/silica aerogel blend composites for advanced transparent thermal insulations: Mechanical, thermal, and optical studies. <i>Polymer Composites</i> , 2021 , 42, 5323	3	10
95	Molding process of WC-Co%9 feedstock with HSS insert in inserted powder injection molding. 2021 , 98, 105553		
94	Thermally sprayed metal matrix composite coatings as heating systems. 2021 , 196, 117321		2
93	Current Status of Research on the Modification of Thermal Properties of Epoxy Resin-Based Syntactic Foam Insulation Materials. 2021 , 13,		
92	Inkjet deposition of lines onto thin moving porous media - experiments and simulations. <i>International Journal of Heat and Mass Transfer</i> , 2021 , 176, 121466	4.9	2
91	FEA-aided investigation of the effective thermal conductivity in a medium with embedded spheres. 2021 , 381, 111355		2
90	Reduced-order models for microstructure-sensitive effective thermal conductivity of woven ceramic matrix composites with residual porosity. <i>Composite Structures</i> , 2021 , 274, 114399	5.3	1
89	Flame resistance of geopolymer foam coatings for the fire protection of steel. 2021 , 222, 109045		15
88	A general effective thermal conductivity model for composites reinforced by non-contact spherical particles. <i>International Journal of Thermal Sciences</i> , 2021 , 168, 107088	4.1	1
87	Analysis of lithium-ion battery thermal models inaccuracy caused by physical properties uncertainty. 2021 , 198, 117513		1
86	Thermal design of superconducting cryogenic rotor: Solutions to conduction cooling challenges. 2021 , 28, 101423		0
85	Tungsten/copper composite sheets prepared by a novel encapsulation rolling technique. 2021 , 884, 161	051	1

(2011-2021)

84	Processing and characterization of TiO2 filled polymer composites. <i>Materials Today: Proceedings</i> , 2021 , 44, 4945-4951	1.4	1
83	Influence of Filler Content on Thermo-Physical Properties of Hollow Glass Microsphere- Silicone Matrix Composite. 1		1
82	Poly(Isobutylene-co-Isoprene) Composites for Flexible Electronic Applications. 2016 , 335-364		2
81	Thermal Conductivity of Polymer©arbon Composites. 2019 , 369-396		1
80	Thermal insulation using biodegradable poly(lactic acid)/date pit composites. <i>Construction and Building Materials</i> , 2020 , 261, 120533	6.7	14
79	Multimodal epidermal devices for hydration monitoring. 2017 , 3, 17014		40
78	Combinatory Models for Predicting the Effective Thermal Conductivity of Frozen and Unfrozen Food Materials. 2010 , 2, 901376		4
77	Thermal and Rheological Properties of Foodstuffs. 1997 ,		3
76	Mechanical and Thermal Properties of Individual Phases Formed in Sintered Tungsten-Steel Composites. 2015 , 128, 718-721		10
75	Thermal Conductivity Performance of Polypropylene Composites Filled with Polydopamine-Functionalized Hexagonal Boron Nitride. 2017 , 12, e0170523		25
74	Influence of Steel Wool Fibers on the Mechanical, Termal, and Healing Properties of Dense Asphalt Concrete. 2014 , 42, 20130197		51
73	Thermal Conductivity of Al2O3/Poly(vinyl butyral) Composites. 2012, 51, 09ML01		2
72	Use of EPS Based Light-Weight Concrete Panels as a Roof Insulation Material for NERD Slab System. <i>Lecture Notes in Civil Engineering</i> , 2022 , 375-384	0.3	1
71	Fabrication of thermally conductive polymer composites based on hexagonal boron nitride: recent progresses and prospects. 2021 , 2, 042002		O
70	Preparation and characterization of graphitized polyimide film/epoxy resin composites with high thermal conductivities. 2021 , 36, 971-978		
69	A new model for prediction of soil thermal conductivity. <i>International Communications in Heat and Mass Transfer</i> , 2021 , 129, 105661	5.8	1
68	Summary and Perspective for the Microstructural Dependence of Mechanical Properties of Dense Monolithic and Composite Ceramics. 2000 , 657-690		
67	Thermal conductivity of mesoporous material MCM-41. Wuli Xuebao/Acta Physica Sinica, 2011 , 60, 11440	0d .6	9

66	Some Theoretical and Numerical Approaches to Describing the Viscoelastic Properties of Polymer Systems. 1993 , 1-56		
65	Synergistic Combinations of Thermally Conductive Fillers in Polymer Matrices. <i>Microelectronics International</i> , 1996 , 13, 27-29	0.8	1
64	Thermal and electrical conductivity of the polymer-metal composites with 1D structure of filler formed in a magnetic field. <i>Polymer Journal</i> , 2016 , 38, 3-17	0.3	2
63	Chapter 6 Theoretical Aspects of Interfaces. 2016 , 159-194		
62	Polymer Composite Materials for Microelectronics Packaging Applications. <i>Advances in Chemical and Materials Engineering Book Series</i> , 2018 , 177-211	0.2	
61	Electrical Conduction and Thermal Conduction of Metal P olymer Composites. <i>Metallofizika I Noveishie Tekhnologii</i> , 2018 , 40, 311-326	0.5	О
60	Numerical Investigations of Ellipsoid Shaped Filler on Heat Transport Behavior of Reinforced Polymer Composites. <i>Lecture Notes in Networks and Systems</i> , 2019 , 408-414	0.5	
59	Thermal insulation performances of carbonized sawdust packed bed for energy saving in buildings. <i>Energy and Buildings</i> , 2021 , 254, 111625	7	1
58	Determination of thermal conductivity of composites with dispersed spherical inclusions. <i>Journal of Physics: Conference Series</i> , 2020 , 1683, 042090	0.3	1
57	Numerical simulation of flattened heat pipe with double heat sources for CPU and GPU cooling application in laptop computers. <i>Journal of Computational Design and Engineering</i> , 2021 , 8, 524-535	4.6	2
56	Simultaneous optimization of thermal and electrical conductivity of high density polyethylene-carbon particle composites by artificial neural networks and multi-objective genetic algorithm. <i>Computational Materials Science</i> , 2022 , 201, 110956	3.2	2
55	Investigation of the thermal conductivity of composite materials with a spherical filler. <i>Computational Continuum Mechanics</i> , 2020 , 13, 34-43	0.5	О
54	Literature Review. <i>Springer Theses</i> , 2020 , 7-42	0.1	
53	A review on cement-based materials used in steel structures as fireproof coating. <i>Construction and Building Materials</i> , 2021 , 125623	6.7	1
52	Elastic modulus prediction based on thermal conductivity for silica aerogels and fiber reinforced composites. <i>Ceramics International</i> , 2021 ,	5.1	2
51	Thermal degradation of phenolics and their carbon fiber derived composites: A feasible protocol to assess the heat capacity as a function of temperature through the use of common DSC and TGA analysis. <i>Polymer Degradation and Stability</i> , 2021 , 195, 109793	4.7	1
50	Preparation of boron nitride nanosheets polyethyleneimine assisted sand milling: towards thermal conductivity and insulation applications <i>RSC Advances</i> , 2021 , 11, 38374-38382	3.7	
49	Flame stand-off effects on propagation of 3D printed 94 wt% nanosized pyrolants loading composites. <i>Chemical Engineering Journal</i> , 2022 , 434, 134487	14.7	1

 ${\rm Study\ on\ Fuzzy\ Models\ of\ Thermal\ Condactivity\ of\ Thin\ Composites\ Based\ on\ Analitical\ Dependences.\ \textbf{2020},}$

47	Experimental Investigation of a Slotless Skewed Stator with a Composite Winding Layer. 2021 ,		
46	Investigation on thermal conductivity of ceramic particles reinforced polymer composites. <i>Materials Today: Proceedings</i> , 2022 ,	1.4	O
45	Efficient Numerical Methodology for the Determination of Thermal Conductivity of Asphalt Mixtures. <i>Lecture Notes in Civil Engineering</i> , 2022 , 691-702	0.3	
44	Thermal conductivity of Cu-matrix composites reinforced with coated SiC particles: Numerical modeling and experimental verification. <i>International Journal of Heat and Mass Transfer</i> , 2022 , 188, 122	633	1
43	Soft Liquid Metal Infused Conductive Sponges. Advanced Materials Technologies, 2101500	6.8	6
42	Characterization of Al/B4C composite materials fabricated by powder metallurgy process technique for nuclear applications. <i>Journal of Nuclear Materials</i> , 2022 , 153724	3.3	О
41	Estimation of thermal conductivity of plutonic drill cuttings from their mineralogy: A case study for the FORGE Well 58B2, Milford, Utah. <i>Geothermics</i> , 2022 , 102, 102407	4.3	O
40	Stochastic full-range multiscale modeling of thermal conductivity of Polymeric carbon nanotubes composites: A machine learning approach. <i>Composite Structures</i> , 2022 , 289, 115393	5.3	2
39	Physical property model and evaluation of a novel WMoCu alloy. Solid State Sciences, 2021, 122, 106770	3.4	
38	Experimental and Numerical Analysis of Mechanical, Thermal and Thermomechanical Properties of Hybrid Glass/Metal Fiber Reinforced Epoxy Composites. <i>Fibers and Polymers</i> , 1	2	0
37	Investigating applicability of sawdust and retro-reflective materials as external wall insulation under tropical climatic conditions. <i>Asian Journal of Civil Engineering</i> , 2022 , 23, 531	1.5	
36	Finite-size effects on heat and mass transfer in porous electrodes. <i>International Journal of Thermal Sciences</i> , 2022 , 179, 107610	4.1	1
35	Thermal Insulation Performance of Silica Aerogel Composites Doped with Hollow Opacifiers: Theoretical Approach. <i>Gels</i> , 2022 , 8, 295	4.2	1
34	Synthesis and investigation of form-stable myristic acid based composite phase change material containing styrene ethylene butylene styrene with enhanced properties for thermal energy storage. <i>Journal of Energy Storage</i> , 2022 , 52, 104594	7.8	1
33	Modelling Thermal Diffusivity of Heterogeneous Materials Based on Thermal Diffusivities of Components with Implications for Thermal Diffusivity and Thermal Conductivity Measurement. <i>International Journal of Thermophysics</i> , 2022 , 43,	2.1	О
32	Thermophysical properties of hybrid silica phenolic ablative composite: Theoretical and experimental analysis. <i>Polymer Composites</i> ,	3	0
31	Electrical and thermal percolation in two-phase materials: A perspective. <i>Journal of Applied Physics</i> , 2022 , 131, 230901	2.5	3

30	A Review on Heat Transfer in Nanoporous Silica Aerogel Insulation Materials and Its Modeling. 2022 ,	O
29	Experimental assessment for the thermal performance of scrap tire blocks as external wall insulators. <i>Engineering Reports</i> ,	1.2
28	Numerical model for tracing the response of Ultra-High performance concrete beams exposed to fire.	0
27	Representation of the Characteristic Temperature of Correlative Thermal Conductivity of Opacifier-Fiber Doped Silica Aerogel by Steady-State Method at Large Temperature Differences. 2022 , 43,	
26	Study of Elastomeric Heat Shielding Materials for Solid Rocket Motor Insulation. 2022 , 2305, 012037	
25	Exploring the applicability of expanded polystyrene (EPS) based concrete panels as roof slab insulation in the tropics. 2022 , 17, e01361	O
24	Investigation of high temperature thermal insulation performance of fiber-reinforced silica aerogel composites. 2023 , 183, 107827	2
23	Theoretical and experimental study on the anisotropic thermal conductivity of composite phase change materials prepared by hot-pressing method. 2022 , 198, 123380	О
22	Enhancing direct solar thermochemical performance of modified CaCO3 with thermal transport networks composed of tetrapod-shaped ZnO whiskers. 2022 , 248, 111981	0
21	Evaluating the Thermal Conductivity of Three-phase Insulation Composite using Analytical and Numerical Methods. 2022 ,	O
20	Modelling of the effective thermal conductivity of composites reinforced with fibers and particles by two-step homogenization method. 2022 , 109766	O
19	Unified modeling and experimental realization of electrical and thermal percolation in polymer composites. 2022 , 9, 041403	O
18	An analytical model for sensing microvascular blood flow in flaps and organ grafts. 2023 , 170, 105119	O
17	Recent progress in low-dimensional nanomaterials filled multifunctional metal matrix nanocomposites. 2023 , 132, 101034	0
16	Parametric study of effective thermal conductivity for VHTR fuel pebbles based on a neutronic and thermal coupling method. 2023 , 181, 109530	O
15	Modification of heat storage system involving Trombe wall in existence of paraffin enhanced with nanoparticles. 2023 , 58, 106419	3
14	Templating strategies for 3D-structured thermally conductive composites: Recent advances and thermal energy applications. 2023 , 133, 101054	О
13	Modeling Thermal Conductivity of Al-Ni, Al-Fe, and Al-Co Spark Plasma Sintered Alloys.	O

CITATION REPORT

12	Mechanical, Thermal, and Acoustic Properties of Hemp and Biocomposite Materials: A Review. 2022 , 6, 373	2
11	Numerical Simulation of Thermal Conductivity and Thermal Stress in Lightweight Refractory Concrete with Cenospheres. 2023 , 16, 190	O
10	The Effect of Few-Layer Graphene on the Complex of Hardness, Strength, and Thermo Physical Properties of Polymer Composite Materials Produced by Digital Light Processing (DLP) 3D Printing. 2023 , 16, 1157	1
9	Solid and gas thermal conductivity models improvement and validation in various porous insulation materials. 2023 , 187, 108164	О
8	X-ray Computed Tomography Characterization of Slag Crust and the Effect of Bubbles and Metallic Iron in Slag on Heat Transfer to Copper Stave. 2200710	0
7	Pixel-based boundary element method for computing effective thermal conductivity of heterogeneous materials. 2023 , 149, 298-308	0
6	Recycling Textile Waste to Enhance Building Thermal Insulation and Reduce Carbon Emissions: Experimentation and Model-Based Dynamic Assessment. 2023 , 13, 535	0
5	Thermal Conductivity Prediction of Metal Matrix Particulate Composites: Theoretical Methodology and Application.	Ο
4	Lightweight diamond/Cu interface tuning for outstanding heat conduction.	O
3	Investigation of the Thermal Conductivity of Composite Materials with a Spherical Filler. 2022, 63, 1101-1110	O
2	Analyzing efficiency of solar heat storage unit within a building including trombe wall equipped with phase change material in existence of fins. 2023 , 71, 106406	0
1	Ultralight Ceramic Fiber Aerogel for High-Temperature Thermal Superinsulation. 2023 , 13, 1305	Ο