Xenopus laevis contains two nonallelic preproinsulin ge evolutionary perspective

Journal of Biological Chemistry 264, 9428-32

Citation Report

#	Article	IF	CITATIONS
1	Evidence that Xenopus laevis contains two different nonallelic insulin-like growth factor-I genes. Biochemical and Biophysical Research Communications, 1990, 166, 223-230.	2.1	32
2	RNA template-specific polymerase chain reaction (RS-PCR): a novel strategy to reduce dramatically false positives. Gene, 1990, 91, 139-142.	2.2	29
3	Two nonallelic insulin genes in Xenopus laevis are expressed differentially during neurulation in prepancreatic embryos Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 7679-7683.	7.1	50
4	Genes encoding receptors for insulin and insulin-like growth factor I are expressed in Xenopus oocytes and embryos Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 6214-6218.	7.1	72
5	Insulin and insulin-like-growth-factor-I (IGF-I) receptors in Xenopus laevis oocytes. Comparison with insulin receptors from liver and muscle. Biochemical Journal, 1991, 273, 673-678.	3.7	62
6	Ligase-free subcloning: A versatile method to subclone polymerase chain reaction (PCR) products in a single day. Analytical Biochemistry, 1991, 194, 9-15.	2.4	24
7	Expression of two nonallelic type II procollagen genes during Xenopus laevis embryogenesis is characterized by stage-specific production of alternatively spliced transcripts Journal of Cell Biology, 1991, 115, 565-575.	5.2	81
8	Chapter 2 Structure and evolution of insulin and insulin-like growth factors in chordates. Progress in Brain Research, 1992, 92, 15-24.	1.4	41
9	Phylogeny of the insulin-like growth factors (IGFS) and receptors: A molecular approach. Molecular Reproduction and Development, 1993, 35, 332-338.	2.0	49
10	Insulin, but Not Insulin-like Growth Factor-I, Is Expressed during Early Nervous System Development in Prepancreatic Xenopus Embryos. Annals of the New York Academy of Sciences, 1993, 692, 268-269.	3.8	2
11	Cloning and Expression of a Xenopus Liver cDNA Encoding a Fructose-Phosphate-Insensitive Regulatory Protein of Glucokinase. FEBS Journal, 1994, 225, 43-51.	0.2	28
12	D1A, D1B, and D1C dopamine receptors from Xenopus laevis Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 10536-10540.	7.1	63
13	Characterization of an insulin from the three-toed amphiuma (Amphibia: Urodela) with an N-terminally extended A-chain and high receptor-binding affinity. Biochemical Journal, 1996, 313, 283-287.	3.7	19
14	XLS13A and XLS13B: SRY-related genes of Xenopus laevis. Gene, 1997, 197, 65-71.	2.2	28
15	Elephantfish Proinsulin Possesses a Monobasic Processing Site. General and Comparative Endocrinology, 1997, 108, 199-208.	1.8	1
16	Molecular Cloning and Characterization of Xenopus Insulin-Like Growth Factor-1 Receptor: Its Role in Mediating Insulin-Induced Xenopus Oocyte Maturation and Expression during Embryogenesis*. Endocrinology, 1998, 139, 949-954.	2.8	34
17	Molecular cloning and expression of Xenopus laevis Requiem cDNA. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1999, 1445, 172-176.	2.4	4
18	Development of the pancreas inXenopus laevis. Developmental Dynamics, 2000, 218, 615-627.	1.8	62

#	Article	IF	CITATIONS
19	Proinsulin cDNAs from the leopard frog, Rana pipiens: evolution of proinsulin processing. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2000, 125, 405-410.	1.6	1
20	Anomalous rates of evolution of pancreatic polypeptide and peptide tyrosine-tyrosine (PYY) in a tetraploid frog, Xenopus laevis (Anura:Pipidae). Peptides, 2001, 22, 317-323.	2.4	10
22	Expression of amylase and other pancreatic genes in Xenopus. Mechanisms of Development, 2002, 113, 153-157.	1.7	32
23	Expression and characterization of Xenopus laevis SRY-related cDNAs, xSox17l̂±1, xSox17l̂±2, xSox18l̂± and xSox18l². Gene, 2002, 290, 163-172.	2.2	13
24	Cloning and characterization of androgen receptor from bullfrog, Rana catesbeiana. General and Comparative Endocrinology, 2003, 134, 10-17.	1.8	3
25	Evolution of preproinsulin gene in birds. Molecular Phylogenetics and Evolution, 2004, 30, 755-766.	2.7	22
26	Identification of multiple cytochrome P450 genes belonging to the CYP4 family in Xenopus laevis: cDNA cloning of CYP4F42 and CYP4V4. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2004, 138, 129-136.	1.6	22
27	Expression of the Insulin Receptor-Related Receptor Is Induced by the Preovulatory Surge of Luteinizing Hormone in Thecal-Interstitial Cells of the Rat Ovary. Endocrinology, 2006, 147, 155-165.	2.8	18
28	Early developmental expression of two insulins in zebrafish (Danio rerio). Physiological Genomics, 2006, 27, 79-85.	2.3	61
29	Retinoic acid induced expression of Hnf1β and Fzd4 is required for pancreas development in <i>Xenopus laevis</i> . Development (Cambridge), 2018, 145, .	2.5	12
30	Evolution of the Insulin Gene: Changes in Gene Number, Sequence, and Processing. Frontiers in Endocrinology, 2021, 12, 649255.	3.5	12
31	Sequence and specificity of a soluble lactose-binding lectin from Xenopus laevis skin Journal of Biological Chemistry, 1992, 267, 12942-12949.	3.4	56
32	The polymorphic integumentary mucin B.1 from Xenopus laevis contains the short consensus repeat Journal of Biological Chemistry, 1992, 267, 6310-6316.	3.4	23
33	Evolution of the insulin gene superfamily. Sequence of a preproinsulin-like growth factor cDNA from the Atlantic hagfish. Journal of Biological Chemistry, 1991, 266, 2397-2402.	3.4	84
34	Novel Human Insulin Isoforms and Cα-Peptide Product in Islets of Langerhans and Choroid Plexus. Diabetes, 2021, 70, 2947-2956.	0.6	6
35	Isolation of a cDNA Encoding Chicken Insulin Precursor. Nihon Chikusan Gakkaiho, 1991, 62, 867-869.	0.2	1

CITATION REPORT