Interstitial pressure gradients in tissue-isolated and sul for therapy

Cancer Research 50, 4478-84

Citation Report

#	Article	IF	CITATIONS
1	Vascular and interstitial barriers to delivery of therapeutic agents in tumors. Cancer and Metastasis Reviews, 1990, 9, 253-266.	2.7	461
2	Transport of fluid and macromolecules in tumors. II. Role of heterogeneous perfusion and lymphatics. Microvascular Research, 1990, 40, 246-263.	1.1	309
3	Transport of fluid and macromolecules in tumors. Microvascular Research, 1991, 41, 5-23.	1.1	203
4	Transport of fluid and macromolecules in tumors. IV. A microscopic model of the perivascular distribution. Microvascular Research, 1991, 41, 252-272.	1.1	116
5	The Influence of Vasoactive Agents on the Perfusion of Tumours Growing in Three Sites in the Mouse. International Journal of Radiation Biology, 1991, 60, 211-218.	1.0	24
6	Haemodynamic and Transport Barriers to the Treatment of Solid Tumours. International Journal of Radiation Biology, 1991, 60, 85-100.	1.0	114
7	New trends in photobiology. Journal of Photochemistry and Photobiology B: Biology, 1991, 11, 3-30.	1.7	39
8	Differential thermal sensitivity of tumour and normal tissue microvascular response during hyperthermia. International Journal of Hyperthermia, 1992, 8, 501-514.	1.1	71
9	Effects of clonidine-induced hypotension and dopamine-induced hypertension on blood flows in prostatic adenocarcinoma (dunning R3327) and normal tissues. Prostate, 1992, 20, 225-232.	1.2	8
10	Physical barriers to drug delivery in tumors. Critical Reviews in Oncology/Hematology, 1993, 14, 29-39.	2.0	20
11	Quantitative single-photon emission tomography for tumour blood flow measurement in bronchial carcinoma. European Journal of Nuclear Medicine and Molecular Imaging, 1993, 20, 591-9.	2.2	3
12	Reduction in tumor blood flow in skin flap tumor after hydralazine is not due to a vascular steal phenomenon. Radiation Oncology Investigations, 1993, 1, 270-278.	1.3	10
13	THE EFFECTS OF ASPIRIN ON MICROVASCULATURE AFTER PHOTODYNAMIC THERAPY. Photochemistry and Photobiology, 1993, 57, 856-861.	1.3	9
14	Relationship of perfusion to edema in the 9L gliosarcoma. Journal of Neuro-Oncology, 1993, 16, 81-87.	1.4	5
15	Tumour blood flow: measurement and manipulation for therapeutic gain. Cancer Treatment Reviews, 1993, 19, 299-349.	3.4	38
16	Modification of tumour blood flow using the hypertensive agent, angiotensin II. British Journal of Cancer, 1993, 67, 981-988.	2.9	40
17	Resistance to flow through tissue-isolated transplanted rat tumours located in two different sites. British Journal of Cancer, 1993, 67, 1337-1341.	2.9	9
18	The morphological effects of the anti–tumor agents flavone acetic acid and 5,6–dimethyl xanthenone acetic acid on the colon 38 mouse tumor. Pathology, 1994, 26, 161-169.	0.3	19

	СПАНО	N KEPOKI	
#	Article	IF	CITATIONS
19	Future directions in hyperthermia biology. International Journal of Hyperthermia, 1994, 10, 339-345.	1.1	32
20	Magnetic Resonance Imaging of Human Melanoma Xenografts <i>in Vivo</i> : Proton Spin—lattice and Spin—spin Relaxation Times Versus Fractional Tumour Water Content and Fraction of Necrotic Tumour Tissue. International Journal of Radiation Biology, 1994, 65, 387-401.	1.0	74
21	Estramustine potentiates the effects of irradiation on the dunning (R3327) rat prostatic adenocarcinoma. Prostate, 1994, 24, 79-83.	1.2	15
22	A critique of the role of the blood-brain barrier in the chemotherapy of human brain tumors. Journal of Neuro-Oncology, 1994, 20, 121-139.	1.4	109
23	Interstitial fluid pressure in breast cancer, benign breast conditions, and breast parenchyma. Annals of Surgical Oncology, 1994, 1, 333-338.	0.7	159
24	Transport Phenomena in Tumors. Advances in Chemical Engineering, 1994, 19, 129-200.	0.5	25
25	The radiosensitizer nicotinamide inhibits arterial vasoconstriction. British Journal of Radiology, 1994, 67, 795-799.	1.0	34
26	Differences in leucocyte-endothelium interactions between normal and adenocarcinoma bearing tissues in response to radiation. British Journal of Cancer, 1994, 69, 883-889.	2.9	40
27	Changes in tumour blood flow, oxygenation and interstitial fluid pressure induced by pentoxifylline. British Journal of Cancer, 1994, 69, 492-496.	2.9	69
28	Macromolecular drug carrier systems in cancer chemotherapy: macromolecular prodrugs. Critical Reviews in Oncology/Hematology, 1995, 18, 207-231.	2.0	113
29	Tumor oxygenation in a transplanted rat rhabdomyosarcoma during fractionated irradiation. International Journal of Radiation Oncology Biology Physics, 1995, 32, 1391-1400.	0.4	54
30	MRI of human tumor xenografts in vivo: Proton relaxation times and extracellular tumor volume. Magnetic Resonance Imaging, 1995, 13, 693-700.	1.0	28
31	Hyperthermic modulation of radiolabelled antibody uptake in a human glioma xenograft and normal tissues. International Journal of Hyperthermia, 1995, 11, 59-72.	1.1	29
32	Effects of cellular pharmacology on drug distribution in tissues. Biophysical Journal, 1995, 69, 825-839.	0.2	22
33	Antitumor effect of intratumoral administration of fluorouracil/epinephrine injectable gel in C3H mice. Cancer Chemotherapy and Pharmacology, 1995, 36, 27-34.	1.1	29
34	The Modification of Blood Flow in Tumours and Their Supplying Arteries by Nicotinamide. Acta Oncológica, 1995, 34, 397-400.	0.8	11
35	Interstitial Fluid Pressure in Human Melanoma Xenografts Relationship to fractional tumor water content, tumor size, and tumor volume-doubling time. Acta Oncológica, 1995, 34, 361-365.	0.8	11
36	Compatibility and the genesis of residual stress by volumetric growth. Journal of Mathematical Biology, 1996, 34, 889-914.	0.8	168

#	Article	IF	Citations
37	Rates of flow of technetium 99m-labeled human serum albumin from peripheral injection sites to sentinel lymph nodes. Annals of Surgical Oncology, 1996, 3, 329-335.	0.7	43
38	1995 Whitaker lecture: Delivery of molecules, particles, and cells to solid tumors. Annals of Biomedical Engineering, 1996, 24, 457-473.	1.3	66
39	Pharmacokinetic analysis of drug disposition after intratumoral injection in a tissue-isolated tumor perfusion system. Pharmaceutical Research, 1996, 13, 1438-1444.	1.7	14
40	Trends in Drug Targeting for Cancer Treatment. Drug Delivery, 1996, 3, 289-304.	2.5	13
42	Expression of melanoma-associated antigen of thermotolerant human cells. International Journal of Hyperthermia, 1996, 12, 539-549.	1.1	0
43	Transmural Coupling of Fluid Flow in Microcirculatory Network and Interstitium in Tumors. Microvascular Research, 1997, 53, 128-141.	1.1	132
44	Effects of Needle Insertion in Tumors on Interstitial Fluid Pressure. Microvascular Research, 1997, 54, 174-177.	1.1	10
45	Difluoromethylornithine enhanced uptake of tritiated putrescine in 9L rat brain tumors. International Journal of Radiation Oncology Biology Physics, 1997, 38, 169-174.	0.4	10
46	Solid stress inhibits the growth of multicellular tumor spheroids. Nature Biotechnology, 1997, 15, 778-783.	9.4	709
47	Interstitial fluid pressure in intracranial tumours in patients and in rodents. British Journal of Cancer, 1997, 75, 829-836.	2.9	160
48	Proton relaxation times and interstitial fluid pressure in human melanoma xenografts. British Journal of Cancer, 1997, 75, 180-183.	2.9	14
49	Delivery of molecular and cellular medicine to solid tumors. Advanced Drug Delivery Reviews, 1997, 26, 71-90.	6.6	241
50	Plasma protein (albumin) catabolism by the tumor itself—implications for tumor metabolism and the genesis of cachexia. Critical Reviews in Oncology/Hematology, 1997, 26, 77-100.	2.0	264
51	Three-dimensional simulation of IgG delivery to tumors. Chemical Engineering Science, 1998, 53, 3579-3600.	1.9	50
52	Tumor oxygenation correlates with molecular growth determinants in breast cancer. Breast Cancer Research and Treatment, 1998, 48, 97-106.	1.1	77
53	Intratumoral infusion of fluid: estimation of hydraulic conductivity and implications for the delivery of therapeutic agents. British Journal of Cancer, 1998, 78, 1442-1448.	2.9	90
54	Delivery of molecular and cellular medicine to solid tumors. Journal of Controlled Release, 1998, 53, 49-67.	4.8	166
55	Tissue-level transport mechanisms of intraperitoneally-administered monoclonal antibodies. Journal of Controlled Release, 1998, 53, 69-75.	4.8	16

#	Article	IF	CITATIONS
56	Transvascular drug delivery in solid tumors. Seminars in Radiation Oncology, 1998, 8, 164-175.	1.0	111
57	Interstitial fluid pressure in cervical carcinoma. , 1998, 82, 2418-2426.		84
58	Antitumor activity of methotrexate-albumin conjugates in rats bearing a Walker-256 carcinoma. , 1998, 76, 884-890.		28
59	Pressure measurements during injection of corticosteroids. Medical and Biological Engineering and Computing, 1998, 36, 729-733.	1.6	15
60	Treatment of Large Solid Tumors in Mice with Daunomycin-Loaded Sterically Stabilized Liposomes. Drug Delivery, 1998, 5, 207-212.	2.5	8
61	Immune Modulation as Cancer Treatment Using Gene Therapy. Baylor University Medical Center Proceedings, 1999, 12, 231-236.	0.2	0
62	Enhancement of fluid filtration across tumor vessels: Implication for delivery of macromolecules. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 3137-3142.	3.3	174
63	The relationship between elevated interstitial fluid pressure and blood flow in tumors: a bioengineering analysis. International Journal of Radiation Oncology Biology Physics, 1999, 43, 1111-1123.	0.4	119
64	Oxygen tension in transplanted mouse osteosarcomas during fractionated high-LET-and Low-LET radiotherapy — Predictive aspects for choosing beam quality?. Strahlentherapie Und Onkologie, 1999, 175, 52-56.	1.0	4
65	Pressure measurements during injection of corticosteroids:in vivo studies. Medical and Biological Engineering and Computing, 1999, 37, 645-651.	1.6	10
66	Pharmacokinetics of anticancer drugs, plasmid DNA, and their delivery systems in tissue-isolated perfused tumors. Advanced Drug Delivery Reviews, 1999, 40, 19-37.	6.6	19
67	Global HDO uptake in human glioma xenografts is related to the perfused capillary distribution. Magnetic Resonance in Medicine, 1999, 42, 479-489.	1.9	10
68	A biophysical basis of enhanced interstitial fluid pressure in tumors. Medical Hypotheses, 1999, 53, 526-529.	0.8	14
69	Transport of Molecules, Particles, and Cells in Solid Tumors. Annual Review of Biomedical Engineering, 1999, 1, 241-263.	5.7	600
70	Interstitial Fluid Pressure and Capillary Diameter Distribution in Human Melanoma Xenografts. Microvascular Research, 1999, 58, 205-214.	1.1	28
71	Modeling of interstitial fluid pressure in solid tumor. Simulation Modelling Practice and Theory, 2000, 8, 17-24.	0.4	14
72	Enhancing the Uptake of Chemotherapeutic Drugs into Tumors using an "Artificial Lymphatic System― Annals of Biomedical Engineering, 2000, 28, 556-564.	1.3	6
73	Monitoring of Tumor Microcirculation during Fractionated Radiation Therapy in Patients with Rectal Carcinoma: Preliminary Results and Implications for Therapy. Radiology, 2000, 217, 385-391.	3.6	89

#	Article	IF	CITATIONS
74	"Artificial Lymphatic System― A New Approach to Reduce Interstitial Hypertension and Increase Blood Flow, pH and pO2in Solid Tumors. Annals of Biomedical Engineering, 2000, 28, 543-555.	1.3	25
75	Transduction of hepatocellular carcinoma (HCC) using recombinant adeno-associated virus (rAAV): in vitro and in vivo effects of genotoxic agents. Journal of Hepatology, 2000, 32, 975-985.	1.8	38
76	Model of interstitial pressure as a result of cyclical changes in the capillary wall fluid transport. Medical Hypotheses, 2001, 57, 161-166.	0.8	21
77	Anti-MUC-1 immunoliposomal doxorubicin in the treatment of murine models of metastatic breast cancer. Biochimica Et Biophysica Acta - Biomembranes, 2001, 1510, 43-55.	1.4	64
78	Pharmacological aspects of targeting cancer gene therapy to endothelial cells. Critical Reviews in Oncology/Hematology, 2001, 37, 169-215.	2.0	24
79	Mouse Models of Metastatic Pancreatic Adenocarcinoma. International Journal of Gastrointestinal Cancer, 2001, 29, 25-36.	0.4	14
80	Regulation of vascular endothelial growth factor expression by acidosis in human cancer cells. Oncogene, 2001, 20, 3751-3756.	2.6	219
81	Interstitial pressure gradients around joints; location of chief resistance to fluid drainage from the rabbit knee. Experimental Physiology, 2001, 86, 739-747.	0.9	10
82	Delivery of molecular medicine to solid tumors: lessons from in vivo imaging of gene expression and function. Journal of Controlled Release, 2001, 74, 7-25.	4.8	278
83	Delivery of molecular and cellular medicine to solid tumors1PII of original article: S0169-409X(97)00027-6. The article was originally published in Advanced Drug Delivery Reviews 26 (1997) 71–90.1. Advanced Drug Delivery Reviews, 2001, 46, 149-168.	6.6	546
84	Role of tumor-host interactions in interstitial diffusion of macromolecules: Cranial vs. subcutaneous tumors. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 4628-4633.	3.3	529
85	Uptake of IgG in osteosarcoma correlates inversely with interstitial fluid pressure, but not with interstitial constituents. British Journal of Cancer, 2001, 85, 1968-1977.	2.9	19
86	Lymphatic Vessels as Targets of Tumor Therapy?. Journal of Experimental Medicine, 2001, 194, F37-F42.	4.2	114
87	Tumor Transport Physiology. American Journal of Roentgenology, 2001, 177, 747-753.	1.0	77
88	Multiphase Mechanics of Capsule Formation in Tumors. Journal of Biomechanical Engineering, 2002, 124, 237-243.	0.6	66
89	The influence of combretastatin A-4 and vinblastine on interstitial fluid pressure in BT4An rat gliomas. Cancer Letters, 2002, 178, 209-217.	3.2	15
90	Melphalan availability in hypoxia-inducible factor-1?+/+ and factor-1?-/- tumors is independent of tumor vessel density and correlates with melphalan erythrocyte transport. International Journal of Cancer, 2002, 99, 514-519.	2.3	15
91	Cerebrospinal fluid concentrations of vincristine after bolus intravenous dosing. Cancer, 2002, 94, 1815-1820.	2.0	57

#	Article	IF	CITATIONS
92	The biology of the combretastatins as tumour vascular targeting agents. International Journal of Experimental Pathology, 2002, 83, 21-38.	0.6	292
93	Experimental Animal Models of Pancreatic Carcinogenesis and Metastasis. International Journal of Gastrointestinal Cancer, 2003, 33, 43-60.	0.4	21
94	A Model of Fluid Flow in Solid Tumors. Annals of Biomedical Engineering, 2003, 31, 181-194.	1.3	71
95	Regulation of cancer metastasis by stress pathways. Clinical and Experimental Metastasis, 2003, 20, 31-43.	1.7	70
96	Pathophysiological implications of stroma pattern formation in uveal melanoma. Journal of Cellular Physiology, 2003, 194, 267-271.	2.0	23
97	The vascular network of tumours ? what is it not for?. Journal of Pathology, 2003, 201, 173-180.	2.1	59
98	Effect of antivascular endothelial growth factor treatment on the intratumoral uptake of CPT-11. British Journal of Cancer, 2003, 88, 1979-1986.	2.9	296
99	Tumor microcirculation and diffusion predict therapy outcome for primary rectal carcinoma. International Journal of Radiation Oncology Biology Physics, 2003, 56, 958-965.	0.4	221
100	Interstitial Stress and Fluid Pressure Within a Growing Tumor. Annals of Biomedical Engineering, 2003, 31, 327-335.	1.3	134
101	Measuring tumour vascular response to antivascular and antiangiogenic drugs. British Journal of Radiology, 2003, 76, S23-S35.	1.0	71
102	Diffusion-weighted magnetic resonance imaging for monitoring diffusion changes in rectal carcinoma during combined, preoperative chemoradiation: preliminary results of a prospective study. European Journal of Radiology, 2003, 45, 214-222.	1.2	151
103	Collagenase Increases the Transcapillary Pressure Gradient and Improves the Uptake and Distribution of Monoclonal Antibodies in Human Osteosarcoma Xenografts. Cancer Research, 2004, 64, 4768-4773.	0.4	208
104	High-Resolution Magnetic Resonance Imaging of Disparities in the Transcapillary Transfer Rates in Orthotopically Inoculated Invasive Breast Tumors. Cancer Research, 2004, 64, 3155-3161.	0.4	33
105	Radiation Improves the Distribution and Uptake of Liposomal Doxorubicin (Caelyx) in Human Osteosarcoma Xenografts. Cancer Research, 2004, 64, 547-553.	0.4	143
106	Comparative pharmacokinetics of 14C-sucrose in RG-2 rat gliomas after intravenous and convection-enhanced delivery. Neuro-Oncology, 2004, 6, 104-112.	0.6	37
107	High interstitial fluid pressure — an obstacle in cancer therapy. Nature Reviews Cancer, 2004, 4, 806-813.	12.8	1,814
108	The human tumor microenvironment: invasive (needle) measurement of oxygen and interstitial fluid pressure. Seminars in Radiation Oncology, 2004, 14, 249-258.	1.0	140
109	Assessment of angiogenesis: implications for ultrasound imaging. Ultrasonics, 2004, 42, 325-330.	2.1	65

#	Article	IF	CITATIONS
110	New insights into vascular collapse and growth dynamics in solid tumors. Journal of Theoretical Biology, 2004, 228, 335-346.	0.8	47
111	Preclinical Data Targeting Vascular Endothelial Growth Factor in Colorectal Cancer. Clinical Colorectal Cancer, 2004, 4, S55-S61.	1.0	11
112	Time response of interstitial fluid pressure measurements in cervix cancer. Microvascular Research, 2004, 68, 63-70.	1.1	3
113	Physiological characterization of human ovarian cancer cells in a rat model of intraperitoneal antineoplastic therapy. Journal of Applied Physiology, 2004, 97, 1518-1526.	1.2	18
114	Resistance of Tumor Interstitial Pressure to the Penetration of Intraperitoneally Delivered Antibodies into Metastatic Ovarian Tumors. Clinical Cancer Research, 2005, 11, 3117-3125.	3.2	101
115	A single-cell-based model of tumor growthin vitro: monolayers and spheroids. Physical Biology, 2005, 2, 133-147.	0.8	369
116	Disrupting tumour blood vessels. Nature Reviews Cancer, 2005, 5, 423-435.	12.8	867
117	Inducible nitric oxide synthase (iNOS) in tumor biology: The two sides of the same coin. Seminars in Cancer Biology, 2005, 15, 277-289.	4.3	357
118	Blood and lymph vessels in embryonic tumors. Hematological Oncology, 2005, 23, 94-101.	0.8	12
119	Hyaluronidase induces a transcapillary pressure gradient and improves the distribution and uptake of liposomal doxorubicin (Caelyxâ"¢) in human osteosarcoma xenografts. British Journal of Cancer, 2005, 93, 81-88.	2.9	189
120	Pathobiology of brain metastases. Journal of Clinical Pathology, 2005, 58, 237-242.	1.0	166
121	Elevated Physiologic Tumor Pressure Promotes Proliferation and Chemosensitivity in Human Osteosarcoma. Clinical Cancer Research, 2005, 11, 2389-2397.	3.2	81
122	Dynamic Contrast-enhanced MR Imaging Kinetic Parameters and Molecular Weight of Dendritic Contrast Agents in Tumor Angiogenesis in Mice. Radiology, 2005, 235, 65-72.	3.6	106
123	The Progress and Promise of Molecular Imaging Probes in Oncologic Drug Development. Clinical Cancer Research, 2005, 11, 7967-7985.	3.2	219
124	A Multiscale Model for Avascular Tumor Growth. Biophysical Journal, 2005, 89, 3884-3894.	0.2	330
125	Lowering of Tumor Interstitial Fluid Pressure Reduces Tumor Cell Proliferation in a Xenograft Tumor Model. Neoplasia, 2006, 8, 89-95.	2.3	92
126	Biology of Platelet-Derived Growth Factor and Its Involvement in Disease. Mayo Clinic Proceedings, 2006, 81, 1241-1257.	1.4	304
127	Delivery of Liposomal Doxorubicin (Doxil) in a Breast Cancer Tumor Model: Investigation of Potential Enhancement by Pulsed-High Intensity Focused Ultrasound Exposure. Academic Radiology, 2006, 13, 469-479.	1.3	144

#	Article	IF	CITATIONS
128	Potential role of pulsed-high intensity focused ultrasound in gene therapy. Future Oncology, 2006, 2, 111-119.	1.1	69
129	Noninvasive Magnetic Resonance Imaging of Transport and Interstitial Fluid Pressure in Ectopic Human Lung Tumors. Cancer Research, 2006, 66, 4159-4166.	0.4	68
130	Tumour overexpression of inducible nitric oxide synthase (iNOS) increases angiogenesis and may modulate the anti-tumour effects of the vascular disrupting agent ZD6126. Microvascular Research, 2006, 71, 76-84.	1.1	32
131	Imaging vascular physiology to monitor cancer treatment. Critical Reviews in Oncology/Hematology, 2006, 58, 95-113.	2.0	53
132	Molecular mechanisms of metastasis. Cancer and Metastasis Reviews, 2006, 25, 203-220.	2.7	92
133	Delivery of Viral Vectors to Tumor Cells: Extracellular Transport, Systemic Distribution, and Strategies for Improvement. Annals of Biomedical Engineering, 2006, 34, 114-127.	1.3	60
134	Barriers to carrier mediated drug and gene delivery to brain tumors. Journal of Controlled Release, 2006, 110, 236-259.	4.8	110
135	Therapeutic implications of tumor interstitial fluid pressure in subcutaneous RG-2 tumors. Neuro-Oncology, 2006, 8, 227-233.	0.6	50
136	Selective Toxicity of NSC73306 in MDR1-Positive Cells as a New Strategy to Circumvent Multidrug Resistance in Cancer. Cancer Research, 2006, 66, 4808-4815.	0.4	162
137	Effect of Target Dynamics on Pharmacokinetics of a Novel Therapeutic Antibody against the Epidermal Growth Factor Receptor: Implications for the Mechanisms of Action. Cancer Research, 2006, 66, 7630-7638.	0.4	120
138	Effects of the Vascular Disrupting Agent ZD6126 on Interstitial Fluid Pressure and Cell Survival in Tumors. Cancer Research, 2006, 66, 2074-2080.	0.4	51
139	Pathophysiologic Effects of Vascular-Targeting Agents and the Implications for Combination with Conventional Therapies. Cancer Research, 2006, 66, 11520-11539.	0.4	237
140	Treatment with imatinib improves drug delivery and efficacy in NSCLC xenografts. British Journal of Cancer, 2007, 97, 735-740.	2.9	57
141	Interstitial Hydrostatic Pressure: a Manual for Students. American Journal of Physiology - Advances in Physiology Education, 2007, 31, 116-117.	0.8	23
142	Effect of heterogeneous vasculature on interstitial transport within a solid tumor. Microvascular Research, 2007, 73, 224-236.	1.1	98
143	Tumor microvasculature and microenvironment: Targets for anti-angiogenesis and normalization. Microvascular Research, 2007, 74, 72-84.	1.1	592
144	Effect of nitric-oxide synthesis on tumour blood volume and vascular activity: a phase I study. Lancet Oncology, The, 2007, 8, 111-118.	5.1	105
145	Biomimetic amplification of nanoparticle homing to tumors. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 932-936.	3.3	434

#	Article	IF	CITATIONS
146	Visualizing the Acute Effects of Vascular-Targeted Therapy In Vivo Using Intravital Microscopy and Magnetic Resonance Imaging: Correlation with Endothelial Apoptosis, Cytokine Induction, and Treatment Outcome. Neoplasia, 2007, 9, 128-135.	2.3	40
147	Drug Resistance and the Solid Tumor Microenvironment. Journal of the National Cancer Institute, 2007, 99, 1441-1454.	3.0	1,795
148	Effect of Vascular Normalization by Antiangiogenic Therapy on Interstitial Hypertension, Peritumor Edema, and Lymphatic Metastasis: Insights from a Mathematical Model. Cancer Research, 2007, 67, 2729-2735.	0.4	556
149	Peptide-Mediated Targeting to Tumor Blood Vessels of Lung Cancer for Drug Delivery. Cancer Research, 2007, 67, 10958-10965.	0.4	138
150	Pulsed-High Intensity Focused Ultrasound and Low Temperature–Sensitive Liposomes for Enhanced Targeted Drug Delivery and Antitumor Effect. Clinical Cancer Research, 2007, 13, 2722-2727.	3.2	436
151	Monoclonal Antibodies in Therapy of Solid Tumors. Surgical Oncology Clinics of North America, 2007, 16, 775-792.	0.6	12
152	Selective destruction of the tumour vasculature by targeting the endothelial cytoskeleton. Drug Discovery Today: Therapeutic Strategies, 2007, 4, 237-243.	0.5	6
153	Tumor microenvironment abnormalities: Causes, consequences, and strategies to normalize. Journal of Cellular Biochemistry, 2007, 101, 937-949.	1.2	498
154	Antibody constructs in cancer therapy. Cancer, 2007, 109, 170-179.	2.0	261
155	Correlations between dynamic contrast-enhanced magnetic resonance imaging–derived measures of tumor microvasculature and interstitial fluid pressure in patients with cervical cancer. Journal of Magnetic Resonance Imaging, 2007, 25, 153-159.	1.9	51
156	Mechanisms of resistance to cisplatin and carboplatin. Critical Reviews in Oncology/Hematology, 2007, 63, 12-31.	2.0	525
157	Vascular Damaging Agents. Clinical Oncology, 2007, 19, 443-456.	0.6	122
158	Electric field-mediated transport of plasmid DNA in tumor interstitium in vivo. Bioelectrochemistry, 2007, 71, 233-242.	2.4	24
159	Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Progress in Polymer Science, 2007, 32, 962-990.	11.8	935
160	The history of the angiogenic switch concept. Leukemia, 2007, 21, 44-52.	3.3	207
161	Activation of human peritoneal immune cells in early stages of gastric and colon cancer. Surgery, 2007, 141, 212-221.	1.0	11
162	On the Role of Physics in the Growth and Pattern Formation of Multi-Cellular Systems: What can we Learn from Individual-Cell Based Models?. Journal of Statistical Physics, 2007, 128, 287-345.	0.5	161
163	Field Distribution and DNA Transport in Solid Tumors During Electric Field-Mediated Gene Delivery. Journal of Pharmaceutical Sciences, 2008, 97, 691-711.	1.6	28

#	Article	IF	CITATIONS
164	Physical and chemical modifications of collagen gels: Impact on diffusion. Biopolymers, 2008, 89, 135-143.	1.2	87
165	Ultrasound mediated delivery of drugs and genes to solid tumors. Advanced Drug Delivery Reviews, 2008, 60, 1193-1208.	6.6	426
166	Time-course-dependent microvascular alterations in a model of myeloid leukemia in vivo. Leukemia, 2008, 22, 59-65.	3.3	24
167	Peripheral washout phenomenon in an animal tumour model: comparison of dynamic magnetic resonance imaging using a small molecular contrast medium with histology*. Veterinary and Comparative Oncology, 2008, 6, 151-161.	0.8	2
168	Interstitial fluid pressure, vascularity and metastasis in ectopic, orthotopic and spontaneous tumours. BMC Cancer, 2008, 8, 2.	1.1	89
169	Macromolecular diffusion in the extracellular matrix measured by fluorescence correlation spectroscopy. Journal of Biomedical Optics, 2008, 13, 054040.	1.4	33
170	Interstitial permeability and elasticity in human cervix cancer. Microvascular Research, 2008, 75, 381-390.	1.1	25
171	Non-invasive imaging of barriers to drug delivery in tumors. Microvascular Research, 2008, 76, 94-103.	1.1	31
172	A physiologically based pharmacokinetic (PBPK) model to characterize and predict the disposition of monoclonal antibody CC49 and its single chain Fv constructs. International Immunopharmacology, 2008, 8, 401-413.	1.7	100
173	Angiogenesis as a target in neuroblastoma. European Journal of Cancer, 2008, 44, 1645-1656.	1.3	58
174	Provascular strategy: Targeting functional adaptations of mature blood vessels in tumors to selectively influence the tumor vascular reactivity and improve cancer treatment. Radiotherapy and Oncology, 2008, 86, 300-313.	0.3	52
175	Interstitial fluid pressure in tumors: therapeutic barrier and biomarker of angiogenesis. Future Oncology, 2008, 4, 793-802.	1.1	103
176	Tumour vascular disrupting agents: combating treatment resistance. British Journal of Radiology, 2008, 81, S12-S20.	1.0	65
177	Enhanced intratumoral uptake of quantum dots concealed within hydrogel nanoparticles. Nanotechnology, 2008, 19, 485102.	1.3	23
178	Antiangiogenic Targeting Liposomes Increase Therapeutic Efficacy for Solid Tumors. Journal of Biological Chemistry, 2009, 284, 12905-12916.	1.6	95
179	Tumor Vascular Changes Mediated by Inhibition of Oncogenic Signaling. Cancer Research, 2009, 69, 6347-6354.	0.4	122
180	Novel technologies for antiangiogenic drug delivery in the brain. Cell Adhesion and Migration, 2009, 3, 224-229.	1.1	10
181	A Novel Peptide Enhances Therapeutic Efficacy of Liposomal Anti-Cancer Drugs in Mice Models of Human Lung Cancer. PLoS ONE, 2009, 4, e4171.	1.1	113

#	Article	IF	CITATIONS
182	Block copolymer micelles for delivery of cancer therapy: Transport at the whole body, tissue and cellular levels. Journal of Controlled Release, 2009, 138, 214-223.	4.8	298
183	Nanotechnology for breast cancer therapy. Biomedical Microdevices, 2009, 11, 49-63.	1.4	124
184	The tumor microenvironment and metastatic disease. Clinical and Experimental Metastasis, 2009, 26, 19-34.	1.7	265
185	A pharmacologically based multiscale mathematical model of angiogenesis and its use in investigating the efficacy of a new cancer treatment strategy. Journal of Theoretical Biology, 2009, 260, 545-562.	0.8	80
186	A theoretical approach for activation of a pro-drug by its conjugate and its localization in cancer chemotherapy. Mathematical and Computer Modelling, 2009, 50, 333-343.	2.0	1
187	Ultrasound triggered image-guided drug delivery. European Journal of Radiology, 2009, 70, 242-253.	1.2	129
188	Nanomedicinal strategies to treat multidrug-resistant tumors: current progress. Nanomedicine, 2010, 5, 597-615.	1.7	280
189	Morphological, functional and metabolic imaging biomarkers: assessment of vascular-disrupting effect on rodent liver tumours. European Radiology, 2010, 20, 2013-2026.	2.3	34
190	Intravital microscopy in window chambers: a unique tool to study tumor angiogenesis and delivery of nanoparticles. Angiogenesis, 2010, 13, 113-130.	3.7	56
191	Disrupting established tumor blood vessels. Cancer, 2010, 116, 1859-1871.	2.0	138
192	Rapid Delivery of Drug Carriers Propelled and Navigated by Catalytic Nanoshuttles. Small, 2010, 6, 2741-2747.	5.2	245
193	Tuning payload delivery in tumour cylindroids using gold nanoparticles. Nature Nanotechnology, 2010, 5, 465-472.	15.6	439
194	Complementary Actions of Inhibitors of Angiopoietin-2 and VEGF on Tumor Angiogenesis and Growth. Cancer Research, 2010, 70, 2213-2223.	0.4	216
195	Characterization of tumor microvascular structure and permeability: comparison between magnetic resonance imaging and intravital confocal imaging. Journal of Biomedical Optics, 2010, 15, 036004.	1.4	31
196	Delivering nanomedicine to solid tumors. Nature Reviews Clinical Oncology, 2010, 7, 653-664.	12.5	2,666
197	Pleiotropic Stromal Effects of Vascular Endothelial Growth Factor Receptor 2 Antibody Therapy in Renal Cell Carcinoma Models. Neoplasia, 2011, 13, 49-59.	2.3	18
198	Comparison of Active and Passive Targeting of Docetaxel for Prostate Cancer Therapy by HPMA Copolymer–RGDfK Conjugates. Molecular Pharmaceutics, 2011, 8, 1090-1099.	2.3	56
199	Phenomenological model of interstitial fluid pressure in a solid tumor. Physical Review E, 2011, 84, 021919.	0.8	24

#	Article	IF	CITATIONS
200	Antitumor immunity promoted by vascular occluding therapy: lessons from vascular-targeted photodynamic therapy (VTP). Photochemical and Photobiological Sciences, 2011, 10, 681-688.	1.6	43
201	Radionuclide Therapy. , 2011, , 2179-2209.		11
202	Multistage nanoparticle delivery system for deep penetration into tumor tissue. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2426-2431.	3.3	938
203	Update on vascular disrupting agents for cancer therapy. Therapy: Open Access in Clinical Medicine, 2011, 8, 403-413.	0.2	1
205	Effect of ultrasound on herpes simplex virus infection in cell culture. Virology Journal, 2011, 8, 446.	1.4	16
206	Normalization of the Vasculature for Treatment of Cancer and Other Diseases. Physiological Reviews, 2011, 91, 1071-1121.	13.1	1,275
207	Extravasation of polymeric nanomedicines across tumor vasculature. Advanced Drug Delivery Reviews, 2011, 63, 623-639.	6.6	172
208	Role of tumor vascular architecture in drug delivery. Advanced Drug Delivery Reviews, 2011, 63, 640-658.	6.6	119
209	Intratumoral Drug Delivery with Nanoparticulate Carriers. Pharmaceutical Research, 2011, 28, 1819-1830.	1.7	145
210	Sensitivity Analysis of an Image-Based Solid Tumor Computational Model with Heterogeneous Vasculature and Porosity. Annals of Biomedical Engineering, 2011, 39, 2360-2373.	1.3	84
211	Ultrasound-guided intratumoral administration of collagenase-2 improved liposome drug accumulation in solid tumor xenografts. Cancer Chemotherapy and Pharmacology, 2011, 67, 173-182.	1.1	35
212	Interstitial Fluid Pressure and Vascularity of Intradermal and Intramuscular Human Tumor Xenografts. International Journal of Radiation Oncology Biology Physics, 2011, 80, 258-264.	0.4	19
213	Predicting DNA-mediated drug delivery in interior carcinoma using electromagnetically excited nanoparticles. Computers in Biology and Medicine, 2011, 41, 771-779.	3.9	6
214	pH-responsive endosomolytic pseudo-peptides for drug delivery to multicellular spheroids tumour models. Biomaterials, 2011, 32, 2953-2958.	5.7	49
215	Hypoxia-Inducible Factor in Thyroid Carcinoma. Journal of Thyroid Research, 2011, 2011, 1-17.	0.5	42
216	Vascular Normalization as a Therapeutic Strategy for Malignant and Nonmalignant Disease. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a006486-a006486.	2.9	266
217	Effect of Wall Compliance and Permeability on Blood-Flow Rate in Counter-Current Microvessels Formed From Anastomosis During Tumor-Induced Angiogenesis. Journal of Biomechanical Engineering, 2012, 134, 041003.	0.6	7
218	Evaluation of a Voxelized Model Based on DCE-MRI for Tracer Transport in Tumor. Journal of Biomechanical Engineering, 2012, 134, 091004.	0.6	20

#	Article	IF	CITATIONS
219	Causes, consequences, and remedies for growth-induced solid stress in murine and human tumors. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15101-15108.	3.3	677
220	Multistage Nanoparticles for Improved Delivery into Tumor Tissue. Methods in Enzymology, 2012, 508, 109-130.	0.4	43
221	Convection-Enhanced Delivery: From Mechanisms to Clinical Drug Delivery for Diseases of the Central Nervous System. Neurologia Medico-Chirurgica, 2012, 52, 531-538.	1.0	14
222	Dual Targeting of Hypoxic and Acidic Tumor Environments with a Cobalt(III) Chaperone Complex. Journal of Medicinal Chemistry, 2012, 55, 11013-11021.	2.9	85
223	Odyssey of a cancer nanoparticle: From injection site to site of action. Nano Today, 2012, 7, 606-618.	6.2	318
224	A mechanistic compartmental model for total antibody uptake in tumors. Journal of Theoretical Biology, 2012, 314, 57-68.	0.8	85
225	Mechanism of a flow-gated angiogenesis switch: early signaling events at cell–matrix and cell–cell junctions. Integrative Biology (United Kingdom), 2012, 4, 863.	0.6	103
226	Interstitial Fluid and Lymph Formation and Transport: Physiological Regulation and Roles in Inflammation and Cancer. Physiological Reviews, 2012, 92, 1005-1060.	13.1	538
227	Combined-modality radioimmunotherapy: synergistic effect of paclitaxel and additive effect of bevacizumab. Nuclear Medicine and Biology, 2012, 39, 472-483.	0.3	20
228	Pulsed high intensity focused ultrasound increases penetration and therapeutic efficacy of monoclonal antibodies in murine xenograft tumors. Journal of Controlled Release, 2012, 162, 218-224.	4.8	64
229	Angiogenesis in metastatic colorectal cancer and the benefits of targeted therapy. Journal of Hematology and Oncology, 2012, 5, 63.	6.9	97
230	Delivery of molecular and cellular medicine to solid tumors. Advanced Drug Delivery Reviews, 2012, 64, 353-365.	6.6	251
231	Cancer chemotherapy: A critical analysis of its 60 years of history. Critical Reviews in Oncology/Hematology, 2012, 84, 181-199.	2.0	87
232	Enhanced permeability and retention effect for selective targeting of anticancer nanomedicine: are we there yet?. Drug Discovery Today: Technologies, 2012, 9, e161-e166.	4.0	73
233	Evaluation of the increase in permeability of the blood–brain barrier during tumor progression after pulsed focused ultrasound. International Journal of Nanomedicine, 2012, 7, 723.	3.3	29
234	In vivo tumor targeting of gold nanoparticles: effect of particle type and dosing strategy. International Journal of Nanomedicine, 2012, 7, 1251.	3.3	96
235	Apparent diffusion coefficient correlation with oesophageal tumour stroma and angiogenesis. European Radiology, 2012, 22, 1172-1177.	2.3	64
236	Ultrasound-induced cavitation enhances the delivery and therapeutic efficacy of an oncolytic virus in	4.8	75

	Сітатіс	on Report	
#	ARTICLE	IF	CITATIONS
237	Antitumor effect and pharmacokinetics of intraperitoneal <scp>NK</scp> 105, a nanomicellar paclitaxel formulation for peritoneal dissemination. Cancer Science, 2012, 103, 1304-1310.	1.7	32
238	Combining functional imaging and interstitial pressure measurements to evaluate two anti-angiogenic treatments. Investigational New Drugs, 2012, 30, 144-156.	1.2	10
239	Nanoparticle uptake in tumors is mediated by the interplay of vascular and collagen density with interstitial pressure. Nanomedicine: Nanotechnology, Biology, and Medicine, 2013, 9, 151-158.	1.7	55
240	Pericytes on the Tumor Vasculature: Jekyll or Hyde?. Cancer Microenvironment, 2013, 6, 1-17.	3.1	66
241	Ultrasound-Mediated Drug/Gene Delivery in Solid Tumor Treatment. Journal of Healthcare Engineering, 2013, 4, 223-254.	1.1	21
242	A mixture theory model of fluid and solute transport in the microvasculature of normal and malignant tissues. II: Factor sensitivity analysis, calibration, and validation. Journal of Mathematical Biology, 2013, 67, 1307-1337.	0.8	13
243	Microfluidic culture models to study the hydrodynamics of tumor progression and therapeutic response. Biotechnology and Bioengineering, 2013, 110, 2063-2072.	1.7	32
244	Normalizing Tumor Microenvironment to Treat Cancer: Bench to Bedside to Biomarkers. Journal of Clinical Oncology, 2013, 31, 2205-2218.	0.8	925
245	A serial micropipette microfluidic device with applications to cancer cell repeated deformation studies. Integrative Biology (United Kingdom), 2013, 5, 1374-1384.	0.6	62
246	Exploiting nanotechnology to overcome tumor drug resistance: Challenges and opportunities. Advanced Drug Delivery Reviews, 2013, 65, 1731-1747.	6.6	218
247	Spatial–temporal event adaptive characteristics of nanocarrier drug delivery in cancer therapy. Journal of Controlled Release, 2013, 172, 281-291.	4.8	19
248	Coevolution of Solid Stress and Interstitial Fluid Pressure in Tumors During Progression: Implications for Vascular Collapse. Cancer Research, 2013, 73, 3833-3841.	0.4	342
249	The effect of interstitial pressure on tumor growth: Coupling with the blood and lymphatic vascular systems. Journal of Theoretical Biology, 2013, 320, 131-151.	0.8	183
250	Vascular disrupting effects of combretastatin A4 phosphate on murine endometriotic lesions. Fertility and Sterility, 2013, 100, 1459-1467.e1.	0.5	10
251	Glioma-homing peptide with a cell-penetrating effect for targeting delivery with enhanced glioma localization, penetration and suppression of glioma growth. Journal of Controlled Release, 2013, 172, 921-928.	4.8	69
252	Overcoming the stromal barrier for targeted delivery of HPMA copolymers to pancreatic tumors. International Journal of Pharmaceutics, 2013, 456, 202-211.	2.6	28
253	Matrigel alters the pathophysiology of orthotopic human breast adenocarcinoma xenografts with implications for nanomedicine evaluation. Nanomedicine: Nanotechnology, Biology, and Medicine, 2013, 9, 795-805.	1.7	14
254	Ultrasound Improves the Uptake and Distribution of Liposomal Doxorubicin in Prostate Cancer Xenografts. Ultrasound in Medicine and Biology, 2013, 39, 1255-1266.	0.7	25

	CITATION REPO	ORT	
Article	IF	F (Citations
Mechanisms of tumor resistance to small-molecule vascular disrupting agents: Treatment and rationale of combination therapy. Journal of the Formosan Medical Association, 2013, 112, 115	-124. 0).8 3	30
Problems in (nano)medical mechanics. International Journal of Non-Linear Mechanics, 2013, 56	3-19. 1	4 (6
Tumor cell migration in complex microenvironments. Cellular and Molecular Life Sciences, 2013 1335-1356.	, 70, ₂	2.4	183
Targeted delivery of antibody-based therapeutic and imaging agents to CNS tumors: crossing the blood–brain barrier divide. Expert Opinion on Drug Delivery, 2013, 10, 907-926.	1e 2	2.4 9	92
Nanoscopic Agents in a Physiological Environment: The Importance of Understanding Their Characteristics. Topics in Medicinal Chemistry, 2013, , 29-54.	C).4 3	3
Convective and Diffusive Transport in Drug Delivery. , 2013, , 573-606.			1
Pulsed focused ultrasound exposures enhance locally administered gene therapy in a murine so tumor model. Journal of the Acoustical Society of America, 2013, 133, 1827-1834.	lid o).5 2	24
Strategies to Increase Drug Penetration in Solid Tumors. Frontiers in Oncology, 2013, 3, 193.	1	3	129
Computational and Experimental Models of Cancer Cell Response to Fluid Shear Stress. Frontie Oncology, 2013, 3, 44.	rs in 1	.3	158
IN SILICO MODELING OF TUMOR GROWTH. Journal of Mechanics in Medicine and Biology, 201 1350069.	3, 13, o).3 (0
Nanoparticle-Based Delivery of RNAi Therapeutics: Progress and Challenges. Pharmaceuticals, 2 85-107.	013, 6, 1	.7	171
Effect of Permeability on the Performance of Elastographic Imaging Techniques. IEEE Transactic Medical Imaging, 2013, 32, 189-199.	ns on 5	5.4 I	12
Investigation of the Spatiotemporal Responses of Nanoparticles in Tumor Tissues with a Small-S Mathematical Model. PLoS ONE, 2013, 8, e59135.	Scale 1	.1	14
Targeting the Tumour Vasculature: Exploitation of Low Oxygenation and Sensitivity to NOS Inh by Treatment with a Hypoxic Cytotoxin. PLoS ONE, 2013, 8, e76832.	bition 1	.1	10
A Mathematical Model of the Enhanced Permeability and Retention Effect for Liposome Transpo Solid Tumors. PLoS ONE, 2013, 8, e81157.	ort in 1	.1 (66
Is it time for a new paradigm for systemic cancer treatment? Lessons from a century of cancer chemotherapy. Frontiers in Pharmacology, 2013, 4, 68.	1	6	103

271	Interstitial fluid flow in cancer: implications for disease progression and treatment. Cancer Management and Research, 2014, 6, 317.	0.9	169
272	MRI-Based Computational Model of Heterogeneous Tracer Transport following Local Infusion into a Mouse Hind Limb Tumor. PLoS ONE, 2014, 9, e89594.	1.1	23

#

255

257

259

261

263

265

267

269

ARTICLE IF CITATIONS Role of Constitutive Behavior and Tumor-Host Mechanical Interactions in the State of Stress and 273 1.1 82 Growth of Solid Tumors. PLoS ONE, 2014, 9, e104717. A H2S-Nampt Dependent Energetic Circuit Is Critical to Survival and Cytoprotection from Damage in 274 1.1 Cancer Cells. PLo'S ONE, 2014, 9, e108537. 275 Development of Resistance to Anticancer Agents., 2014, , 500-513. 0 Effect of antigen-dependent clearance on pharmacokinetics of anti-heparin-binding EGF-like growth factor (HB-EĞF) monoclonal antibody. MAbs, 2014, 6, 1220-1228. Interstitial diffusion and the relationship between compartment modelling and multi-scale spatial-temporal modelling of¹⁸F-FLT tumour uptake dynamics. Physics in Medicine and 277 1.6 6 Biology, 2014, 59, 5175-5202. In pursuit of a moving target: nanotherapeutics for the treatment of non-Hodgkin B-cell lymphoma. Expert Opinion on Drug Delivery, 2014, 11, 1923-1937. 278 2.4 Ultrasound-activated Agents Comprised of 5FU-bearing Nanoparticles Bonded to Microbubbles Inhibit 279 3.7 61 Solid Tumor Growth and Improve Survival. Molecular Therapy, 2014, 22, 321-328. Flow shear stress regulates endothelial barrier function and expression of angiogenic factors in a 3D 280 1.1 160 microfluidic tumor vascular model. Cell Adhesion and Migration, 2014, 8, 517-524. 281 Modeling Tumor Microenvironments In Vitro. Journal of Biomechanical Engineering, 2014, 136, 021011. 0.6 56 Peritumoral interstitial fluid flow velocity predicts survival in cervical carcinoma. Radiotherapy and 24 Oncology, 2014, 113, 132-138. Ultrasound for Drug/Gene Delivery., 2014, , 269-283. 283 3 A multilayered cell culture model for transport study in solid tumors: Evaluation of tissue 284 6.2 penetration of polyethyleneimine based cationic micelles. Nano Today, 2014, 9, 695-704. High tumor interstitial fluid pressure identifies cervical cancer patients with improved survival from 285 radiotherapy plus cisplatin versus radiotherapy alone. International Journal of Cancer, 2014, 135, 2.329 1692-1699. Modulation of the interstitial fluid pressure by high intensity focused ultrasound as a way to alter local fluid and solute movement: insights from a mathematical model. Physics in Medicine and 1.6 Biology, 2014, 59, 6775-6795. Anti-inflammatory/antioxidant use in long-term maintenance cancer therapy: a new therapeutic 287 approach to disease progression and recurrence. Therapeutic Advances in Medical Oncology, 2014, 6, 1.4 54 52-68. Plant-derived vascular disrupting agents: compounds, actions, and clinical trials. Phytochemistry 3.1 Reviews, 2014, 13, 191-206. Pulsed-Focused Ultrasound Enhances Boron Drug Accumulation in a Human Head and Neck Cancer 289 1.39 Xenograft-Bearing Mouse Model. Molecular Imaging and Biology, 2014, 16, 95-101. A Priori Prediction of Tumor Payload Concentrations: Preclinical Case Study with an Auristatin-Based 290 2.2 Anti-5T4 Antibody-Drug Conjugate. AAPS Journal, 2014, 16, 452-463.

#	Article	IF	CITATIONS
291	Drug development for intraperitoneal chemotherapy against peritoneal carcinomatosis from gastrointestinal cancer. Surgery Today, 2014, 44, 2209-2220.	0.7	19
292	Towards an integrated systems-based modelling framework for drug transport and its effect on tumour cells. Journal of Biological Engineering, 2014, 8, 3.	2.0	7
293	Dual endogenous stimuli-responsive polyplex micelles as smart two-step delivery nanocarriers for deep tumor tissue penetration and combating drug resistance of cisplatin. Journal of Materials Chemistry B, 2014, 2, 1813-1824.	2.9	59
294	Multichannel Imaging to Quantify Four Classes of Pharmacokinetic Distribution in Tumors. Journal of Pharmaceutical Sciences, 2014, 103, 3276-3286.	1.6	23
295	Diffusion of Drug Delivery Nanoparticles into Biogels Using Time-Resolved MicroMRI. Journal of Physical Chemistry Letters, 2014, 5, 3825-3830.	2.1	17
296	Extracellularly activatable nanocarriers for drug delivery to tumors. Expert Opinion on Drug Delivery, 2014, 11, 1601-1618.	2.4	33
297	Tumor Interstitial Fluid Pressure—A Link between Tumor Hypoxia, Microvascular Density, and Lymph Node Metastasis. Neoplasia, 2014, 16, 586-594.	2.3	103
298	The Role of Mechanical Forces in Tumor Growth and Therapy. Annual Review of Biomedical Engineering, 2014, 16, 321-346.	5.7	742
299	Brain-Penetrating Nanoparticles Improve Paclitaxel Efficacy in Malignant Glioma Following Local Administration. ACS Nano, 2014, 8, 10655-10664.	7.3	215
300	EPR: Evidence and fallacy. Journal of Controlled Release, 2014, 190, 451-464.	4.8	640
300 301	EPR: Evidence and fallacy. Journal of Controlled Release, 2014, 190, 451-464. Tumor cells and neovasculature dual targeting delivery for glioblastoma treatment. Biomaterials, 2014, 35, 2374-2382.	4.8 5.7	640 86
	Tumor cells and neovasculature dual targeting delivery for glioblastoma treatment. Biomaterials,		
301	Tumor cells and neovasculature dual targeting delivery for glioblastoma treatment. Biomaterials, 2014, 35, 2374-2382. Study and evaluation of mechanisms of dual targeting drug delivery system with tumor	5.7	86
301 302	Tumor cells and neovasculature dual targeting delivery for glioblastoma treatment. Biomaterials, 2014, 35, 2374-2382. Study and evaluation of mechanisms of dual targeting drug delivery system with tumor microenvironment assays compared with normal assays. Acta Biomaterialia, 2014, 10, 858-867. Ultrasound-enhanced drug delivery in prostate cancer xenografts by nanoparticles stabilizing	5.7 4.1	86 77
301 302 303	Tumor cells and neovasculature dual targeting delivery for glioblastoma treatment. Biomaterials, 2014, 35, 2374-2382. Study and evaluation of mechanisms of dual targeting drug delivery system with tumor microenvironment assays compared with normal assays. Acta Biomaterialia, 2014, 10, 858-867. Ultrasound-enhanced drug delivery in prostate cancer xenografts by nanoparticles stabilizing microbubbles. Journal of Controlled Release, 2014, 187, 39-49.	5.7 4.1 4.8	86 77 55
301 302 303 304	Tumor cells and neovasculature dual targeting delivery for glioblastoma treatment. Biomaterials, 2014, 35, 2374-2382. Study and evaluation of mechanisms of dual targeting drug delivery system with tumor microenvironment assays compared with normal assays. Acta Biomaterialia, 2014, 10, 858-867. Ultrasound-enhanced drug delivery in prostate cancer xenografts by nanoparticles stabilizing microbubbles. Journal of Controlled Release, 2014, 187, 39-49. Neuroblastoma and Angiogenesis. Pediatric and Adolescent Medicine, 2015, , 89-106. Proposal of a hybrid approach for tumor progression and tumor-induced angiogenesis. Theoretical	5.7 4.1 4.8 0.4	86 77 55 1
301 302 303 304 305	Tumor cells and neovasculature dual targeting delivery for glioblastoma treatment. Biomaterials, 2014, 35, 2374-2382. Study and evaluation of mechanisms of dual targeting drug delivery system with tumor microenvironment assays compared with normal assays. Acta Biomaterialia, 2014, 10, 858-867. Ultrasound-enhanced drug delivery in prostate cancer xenografts by nanoparticles stabilizing microbubbles. Journal of Controlled Release, 2014, 187, 39-49. Neuroblastoma and Angiogenesis. Pediatric and Adolescent Medicine, 2015, , 89-106. Proposal of a hybrid approach for tumor progression and tumor-induced angiogenesis. Theoretical Biology and Medical Modelling, 2015, 12, 13. Poly(2â€exazoline) block copolymer based formulations of taxanes: effect of copolymer and drug structure, concentration, and environmental factors. Polymers for Advanced Technologies, 2015, 26,	5.7 4.1 4.8 0.4 2.1	 86 77 55 1 19

#	Article	IF	CITATIONS
309	Ultrasound-mediated oncolytic virus delivery and uptake for increased therapeutic efficacy: state of art. Oncolytic Virotherapy, 2015, 4, 193.	6.0	10
310	Interstitial Fluid Pressure Correlates Clinicopathological Factors of Lung Cancer. Annals of Thoracic and Cardiovascular Surgery, 2015, 21, 201-208.	0.3	15
311	Entry of Oncolytic Herpes Simplex Virus into Human Squamous Cell Carcinoma Cells by Ultrasound. Viruses, 2015, 7, 5610-5618.	1.5	3
312	Sonochemotherapy: from bench to bedside. Frontiers in Pharmacology, 2015, 6, 138.	1.6	84
313	Porous silicon for cancer therapy: from fundamental research to the clinic. Reviews in Chemical Engineering, 2015, 31, .	2.3	14
314	Interstitial hydraulic conductivity and interstitial fluid pressure for avascular or poorly vascularized tumors. Journal of Theoretical Biology, 2015, 380, 1-8.	0.8	15
315	Facile Fabrication of Near-Infrared-Resonant and Magnetic Resonance Imaging-Capable Nanomediators for Photothermal Therapy. ACS Applied Materials & Interfaces, 2015, 7, 12814-12823.	4.0	13
316	Increased extracellular pressure stimulates tumor proliferation by a mechanosensitive calcium channel and PKCâ€Î². Molecular Oncology, 2015, 9, 513-526.	2.1	35
317	Multiscale homogenization for fluid and drug transport in vascularized malignant tissues. Mathematical Models and Methods in Applied Sciences, 2015, 25, 79-108.	1.7	66
318	Influence of vascular normalization on interstitial flow and delivery of liposomes in tumors. Physics in Medicine and Biology, 2015, 60, 1477-1496.	1.6	16
319	Recent advances in targeted nanoparticles drug delivery to melanoma. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 769-794.	1.7	94
320	Advances in the synthesis and application of nanoparticles for drug delivery. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2015, 7, 494-508.	3.3	65
321	A holistic approach to targeting disease with polymeric nanoparticles. Nature Reviews Drug Discovery, 2015, 14, 239-247.	21.5	373
322	Numerical modeling of drug delivery in a dynamic solid tumor microvasculature. Microvascular Research, 2015, 99, 43-56.	1.1	122
323	Noninvasive pulmonary nodule elastometry by CT and deformable image registration. Radiotherapy and Oncology, 2015, 115, 35-40.	0.3	7
324	Numerical simulation of the tumor interstitial fluid transport: Consideration of drug delivery mechanism. Microvascular Research, 2015, 101, 62-71.	1.1	33
325	Effect of microvascular distribution and its density on interstitial fluid pressure in solid tumors: A computational model. Microvascular Research, 2015, 101, 26-32.	1.1	23
326	Modulation of the tumor vasculature and oxygenation to improve therapy. , 2015, 153, 107-124.		104

#	Article	IF	CITATIONS
327	Co-delivery of chemosensitizing siRNA and an anticancer agent via multiple monocomplexation-induced hydrophobic association. Journal of Controlled Release, 2015, 210, 105-114.	4.8	27
328	Exploring the Tumor Microenvironment with Nanoparticles. Cancer Treatment and Research, 2015, 166, 193-226.	0.2	97
329	CREKA peptide-conjugated dendrimer nanoparticles for glioblastoma multiforme delivery. Journal of Colloid and Interface Science, 2015, 450, 396-403.	5.0	76
330	Spatial and temporal mapping of heterogeneity in liposome uptake and microvascular distribution in an orthotopic tumor xenograft model. Journal of Controlled Release, 2015, 207, 101-111.	4.8	84
331	Effect of Transcatheter Intra-Arterial Therapies on Tumor Interstitial Fluid Pressure and Its Relation to Drug Penetration in a Rabbit Liver Tumor Model. Journal of Vascular and Interventional Radiology, 2015, 26, 1879-1886.	0.2	10
332	Design considerations for nanotherapeutics in oncology. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1893-1907.	1.7	208
333	Self-targeted, bacillus-shaped, and controlled-release methotrexate prodrug polymeric nanoparticles for intratumoral administration with improved therapeutic efficacy in tumor-bearing mice. Journal of Materials Chemistry B, 2015, 3, 7707-7717.	2.9	22
334	Uterine perfusion model for analyzing barriers to transport in fibroids. Journal of Controlled Release, 2015, 214, 85-93.	4.8	7
335	The role of pressure in cancer growth. European Physical Journal Plus, 2015, 130, 1.	1.2	186
336	The role of the microvascular tortuosity in tumor transport phenomena. Journal of Theoretical Biology, 2015, 364, 80-97.	0.8	49
337	Pathophysiological Basis for the Formation of the Tumor Microenvironment. Frontiers in Oncology, 2016, 6, 66.	1.3	152
338	Estimation of Tumor Interstitial Fluid Pressure (TIFP) Noninvasively. PLoS ONE, 2016, 11, e0140892.	1.1	31
339	Pharmacokinetic problems in peritoneal drug administration: an update after 20 years. Pleura and Peritoneum, 2016, 1, 183-191.	0.5	12
340	Small Molecules for Active Targeting in Cancer. Medicinal Research Reviews, 2016, 36, 494-575.	5.0	107
341	Lipid-Based Drug Delivery Systems in Cancer Therapy: What Is Available and What Is Yet to Come. Pharmacological Reviews, 2016, 68, 701-787.	7.1	537
342	Collegenase activity in fig latex could contribute to its efficacy in ethnomedicinal preparations. Journal of Herbal Medicine, 2016, 6, 73-78.	1.0	5
343	Forces and mechanotransduction in 3D vascular biology. Current Opinion in Cell Biology, 2016, 42, 73-79.	2.6	59
344	Hydrodynamics and convection enhanced macromolecular fluid transport in soft biological tissues: Application to solid tumor. Journal of Theoretical Biology, 2016, 395, 62-86.	0.8	11

ARTICLE IF CITATIONS Mounting Pressure in the Microenvironment: Fluids, Solids, and Cells in Pancreatic Ductal 345 0.6 101 Adenocarcinoma. Gastroenterology, 2016, 150, 1545-1557.e2. Interstitial Pressure in Pancreatic Ductal Adenocarcinoma Is Dominated by a Gel-Fluid Phase. 346 0.2 Biophysical Journal, 2016, 110, 2106-2119. Reengineering the Tumor Microenvironment to Alleviate Hypoxia and Overcome Cancer Heterogeneity. 347 2.9 119 Cold Spring Harbor Perspectives in Medicine, 2016, 6, a027094. Nanomedicine strategies to overcome the pathophysiological barriers of pancreatic cancer. Nature 348 Reviews Clinical Oncology, 2016, 13, 750-765. Mathematical Models of the Interaction of Cells and Cell Aggregates with the Extracellular Matrix. 349 0.1 3 Lecture Notes in Mathematics, 2016, , 131-210. MRI contrast agent concentration and tumor interstitial fluid pressure. Journal of Theoretical Biology, 2016, 406, 52-60. 0.8 Evaluation of drug penetration with cationic micelles and their penetration mechanism using an 351 5.7 41 inÂvitro tumor model. Biomaterials, 2016, 98, 120-130. Decline of Tumor Vascular Function as AssessedÂby Dynamic Contrast-Enhanced Magnetic Resonance Imaging Is Associated WithÂPoor Responses to Radiation Therapy andÂChemotherapy. International 0.4 Journal of Radiation Oncology Biology Physics, 2016, 95, 1495-1503. Interstitial fluid pressure regulates collective invasion in engineered human breast 353 0.6 81 tumors<i>via
Snail, vimentin, and E-cadherin. Integrative Biology (United Kingdom), 2016, 8, 319-331. Intelligent drug delivery systems for the treatment of solid tumors. European Journal of 354 Nanomedicine, 2016, 8, . Effect of High-Intensity Focused Ultrasound on Drug Release from Doxorubicin-Loaded PEGylated Liposomes and Therapeutic Effect in Colorectal Cancer Murine Models. Ultrasound in Medicine and 355 0.7 11 Biology, 2016, 42, 947-955. Improving cancer therapies by targeting the physical and chemical hallmarks of the tumor 3.2 56 microenvironment. Cancer Létters, 2016, 380, 330-339. Bubble-Assisted Ultrasound: Application in Immunotherapy and Vaccination. Advances in Experimental 357 0.8 26 Medicine and Biology, 2016, 880, 243-261. Sonoporation: Applications for Cancer Therapy. Advances in Experimental Medicine and Biology, 2016, 0.8 880, 263-291. Peri-tumoral leakage during intra-tumoral convection-enhanced delivery has implications for efficacy 359 2.514 of peri-tumoral infusion before removal of tumor. Drug Delivery, 2016, 23, 771-776. Cell-like pressure sensors reveal increase of mechanical stress towards the core of multicellular 5.8 181 spheroid's under compression. Nature Communications, 2017, 8, 14056. The Solid Mechanics of Cancer and Strategies for Improved Therapy. Journal of Biomechanical 361 0.6 109 Engineering, 2017, 139, . Rational Design of Cancer Nanomedicine: Nanoproperty Integration and Synchronization. Advanced 11.1 771 Materials, 2017, 29, 1606628.

	Сітаті	on Report	
#	Article	IF	CITATIONS
363	Improved Targeting of Cancers with Nanotherapeutics. Methods in Molecular Biology, 2017, 1530, 13-37.	0.4	11
364	Tranilast-induced stress alleviation in solid tumors improves the efficacy of chemo- and nanotherapeutics in a size-independent manner. Scientific Reports, 2017, 7, 46140.	1.6	87
365	Multifunctional Liposomes for Imageâ€Guided Intratumoral Chemoâ€Phototherapy. Advanced Healthcare Materials, 2017, 6, 1700253.	3.9	46
366	Targeting curcumin to specific tumour cell environments: the influence of ancillary ligands. Metallomics, 2017, 9, 699-705.	1.0	13
367	Evaluating the influence of mechanical stress on anticancer treatments through a multiphase porous media model. Journal of Theoretical Biology, 2017, 421, 179-188.	0.8	25
368	Polymeric mechanical amplifiers of immune cytokine-mediated apoptosis. Nature Communications, 2017, 8, 14179.	5.8	26
369	Spatiotemporal distribution modeling of PET tracer uptake in solid tumors. Annals of Nuclear Medicine, 2017, 31, 109-124.	1.2	24
370	Dendrimers as Nanostructured Therapeutic Carriers. , 2017, , 139-166.		0
371	Overcoming key biological barriers to cancer drug delivery and efficacy. Journal of Controlled Release, 2017, 267, 15-30.	4.8	92
372	Glioma and microenvironment dual targeted nanocarrier for improved antiglioblastoma efficacy. Drug Delivery, 2017, 24, 1401-1409.	2.5	29
373	Microfluidic modeling of the biophysical microenvironment in tumor cell invasion. Lab on A Chip, 2017, 17, 3221-3233.	3.1	45
374	Nano-sized drug carriers: Extravasation, intratumoral distribution, and their modeling. Journal of Controlled Release, 2017, 267, 31-46.	4.8	32
375	MMP-2-Sensitive HA End-Conjugated Poly(amidoamine) Dendrimers via Click Reaction To Enhance Drug Penetration into Solid Tumor. ACS Applied Materials & Interfaces, 2017, 9, 42459-42470.	4.0	94
376	Sonic-hedgehog pathway inhibition normalizes desmoplastic tumor microenvironment to improve chemo- and nanotherapy. Journal of Controlled Release, 2017, 261, 105-112.	4.8	71
377	Elevated hydrostatic pressure enhances the motility and enlarges the size of the lung cancer cells through aquaporin upregulation mediated by caveolin-1 and ERK1/2 signaling. Oncogene, 2017, 36, 863-874.	2.6	36
378	Effect of Interstitial Fluid Pressure on Ultrasound Axial Strain and Axial Shear Strain Elastography. Ultrasonic Imaging, 2017, 39, 137-146.	1.4	12
379	Immunotherapeutic Targeting of Tumor-Associated Blood Vessels. Advances in Experimental Medicine and Biology, 2017, 1036, 191-211.	0.8	17
380	Modulating the Tumor Microenvironment to Enhance Tumor Nanomedicine Delivery. Frontiers in Pharmacology, 2017, 8, 952.	1.6	106

#	Article	IF	Citations
381	Nanoparticles: A Novel Approach to Target Tumors. , 2017, , 113-129.		7
382	Multiscale biphasic modelling of peritumoural collagen microstructure: The effect of tumour growth on permeability and fluid flow. PLoS ONE, 2017, 12, e0184511.	1.1	10
383	Numerical modeling of nanodrug distribution in tumors with heterogeneous vasculature. PLoS ONE, 2017, 12, e0189802.	1.1	28
384	A Validated Multiscale In-Silico Model for Mechano-sensitive Tumour Angiogenesis and Growth. PLoS Computational Biology, 2017, 13, e1005259.	1.5	45
385	Quantifying the effects of antiangiogenic and chemotherapy drug combinations on drug delivery and treatment efficacy. PLoS Computational Biology, 2017, 13, e1005724.	1.5	38
386	Interstitial fluid pressure of thymic epithelial tumoursâ€. Interactive Cardiovascular and Thoracic Surgery, 2017, 25, 167-172.	0.5	5
387	Stress alleviation strategy in cancer treatment: Insights from a mathematical model. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2018, 98, 2295-2306.	0.9	13
388	Investigating Low-Velocity Fluid Flow in Tumors with Convection-MRI. Cancer Research, 2018, 78, 1859-1872.	0.4	32
389	Multi-modal characterization of vasculature and nanoparticle accumulation in five tumor xenograft models. Journal of Controlled Release, 2018, 279, 292-305.	4.8	34
390	Covalent functionalization of SWCNT with combretastatin A4 for cancer therapy. Nanotechnology, 2018, 29, 245101.	1.3	19
391	Magnetically assisted intraperitoneal drug delivery for cancer chemotherapy. Drug Delivery, 2018, 25, 846-861.	2.5	71
392	Reengineering the Physical Microenvironment of Tumors to Improve Drug Delivery and Efficacy: From Mathematical Modeling to Bench to Bedside. Trends in Cancer, 2018, 4, 292-319.	3.8	389
393	Toward a noninvasive estimate of interstitial fluid pressure by dynamic contrastâ€enhanced <scp>MRI</scp> in a rat model of cerebral tumor. Magnetic Resonance in Medicine, 2018, 80, 2040-2052.	1.9	21
394	Real-time monitoring of tumor vascular disruption induced by radiofrequency assisted gadofullerene. Science China Materials, 2018, 61, 1101-1111.	3.5	11
395	Sonopermeation to improve drug delivery to tumors: from fundamental understanding to clinical translation. Expert Opinion on Drug Delivery, 2018, 15, 1249-1261.	2.4	76
396	Chemoresistance of Cancer Cells: Requirements of Tumor Microenvironment-mimicking <i>In Vitro</i> Models in Anti-Cancer Drug Development. Theranostics, 2018, 8, 5259-5275.	4.6	138
397	Precise nanomedicine for intelligent therapy of cancer. Science China Chemistry, 2018, 61, 1503-1552.	4.2	336
398	The Tumor Vascular Endothelium as Decision Maker in Cancer Therapy. Frontiers in Oncology, 2018, 8, 367.	1.3	140

#	Article	IF	CITATIONS
399	Computational fluid dynamics with imaging of cleared tissue and of in vivo perfusion predicts drug uptake and treatment responses in tumours. Nature Biomedical Engineering, 2018, 2, 773-787.	11.6	91
400	A model-based approach to investigate the effect of elevated interstitial fluid pressure on strain elastography. Physics in Medicine and Biology, 2018, 63, 215011.	1.6	10
401	A Continuum Mechanics Model of Enzyme-Based Tissue Degradation in Cancer Therapies. Bulletin of Mathematical Biology, 2018, 80, 3184-3226.	0.9	6
402	Bio-nano: Theranostic at Cellular Level. AAPS Advances in the Pharmaceutical Sciences Series, 2018, , 85-170.	0.2	1
403	MRI analysis to map interstitial flow in the brain tumor microenvironment. APL Bioengineering, 2018, 2,	3.3	50
404	Perspectives on the past, present, and future of cancer nanomedicine. Advanced Drug Delivery Reviews, 2018, 130, 3-11.	6.6	210
405	In vivo mimicking model for solid tumor towards hydromechanics of tissue deformation and creation of necrosis. Journal of Biological Physics, 2018, 44, 361-400.	0.7	3
406	Tumor-Shed Antigen Affects Antibody Tumor Targeting: Comparison of Two ⁸⁹ Zr-Labeled Antibodies Directed against Shed or Nonshed Antigens. Contrast Media and Molecular Imaging, 2018, 2018, 1-12.	0.4	7
407	Animal Tumor Models. , 2018, , 89-110.		0
408	Tumor targeting via EPR: Strategies to enhance patient responses. Advanced Drug Delivery Reviews, 2018, 130, 17-38.	6.6	897
409	Oxygen-independent combined photothermal/photodynamic therapy delivered by tumor acidity-responsive polymeric micelles. Journal of Controlled Release, 2018, 284, 15-25.	4.8	61
410	Prognostic value of microvessel density in stage II and III colon cancer patients: a retrospective cohort study. BMC Gastroenterology, 2019, 19, 146.	0.8	14
411	Regulation of Epithelial Cell Functions by the Osmolality and Hydrostatic Pressure Gradients: A Possible Role of the Tight Junction as a Sensor. International Journal of Molecular Sciences, 2019, 20, 3513.	1.8	19
412	Effect of Ultrasound Combined With Microbubble Therapy on Interstitial Fluid Pressure and VX2 Tumor Structure in Rabbit. Frontiers in Pharmacology, 2019, 10, 716.	1.6	19
413	Ultrasonic Methods. , 2019, , 209-228.		0
414	Dynamic Contrast-Enhanced Magnetic Resonance Imaging in Brain Tumors. , 2019, , 405-428.		0
415	Emergence of tissue-like mechanics from fibrous networks confined by close-packed cells. Nature, 2019, 573, 96-101.	13.7	118
416	Numerical modeling of high-intensity focused ultrasound-mediated intraperitoneal delivery of thermosensitive liposomal doxorubicin for cancer chemotherapy. Drug Delivery, 2019, 26, 898-917.	2.5	41

#	ARTICLE	IF	Citations
417	Effect of Hydrostatic Pressure, Boundary Constraints and Viscosity on the Vaporization Threshold of Low-Boiling-Point Phase-Change Contrast Agents. Ultrasound in Medicine and Biology, 2019, 45, 968-979.	0.7	19
418	Image-based spatio-temporal model of drug delivery in a heterogeneous vasculature of a solid tumor — Computational approach. Microvascular Research, 2019, 123, 111-124.	1.1	59
419	Smart Nanodrug with Nuclear Localization Sequences in the Presence of MMPâ€⊋ To Overcome Biobarriers and Drug Resistance. Chemistry - A European Journal, 2019, 25, 1895-1900.	1.7	19
420	Microfluidic modelling of the tumor microenvironment for anti-cancer drug development. Lab on A Chip, 2019, 19, 369-386.	3.1	182
421	Impact of hydrostatic pressure on phase-change contrast agent activation by pulsed ultrasound. Journal of the Acoustical Society of America, 2019, 145, 3457-3466.	0.5	12
422	Modelling the transport of fluid through heterogeneous, whole tumours in silico. PLoS Computational Biology, 2019, 15, e1006751.	1.5	35
423	Intratumor Heterogeneity in Interstitial Fluid Pressure in Cervical and Pancreatic Carcinoma Xenografts. Translational Oncology, 2019, 12, 1079-1085.	1.7	11
424	A thermoporoelastic model for fluid transport in tumour tissues. Journal of the Royal Society Interface, 2019, 16, 20190030.	1.5	18
425	A quantitative in silico platform for simulating cytotoxic and nanoparticle drug delivery to solid tumours. Interface Focus, 2019, 9, 20180063.	1.5	21
426	Penetration of different molecule sizes upon ultrasound combined with microbubbles in a superficial tumour model. Journal of Drug Targeting, 2019, 27, 1068-1075.	2.1	12
427	Stimuli-responsive polymeric micelles for extracellular and intracellular drug delivery. , 2019, , 269-304.		5
428	Transferrin Receptorâ€Mediated Sequential Intercellular Nanoparticles Relay for Tumor Deep Penetration and Sonodynamic Therapy. Advanced Therapeutics, 2019, 2, 1800152.	1.6	24
429	Potential physical and biological barriers leading to failure of cancer chemotherapy. , 2019, , 1-21.		1
430	Biological barriers to cancer drug delivery, efficacy and cancer models. , 2019, , 359-423.		1
431	Engineered nanomedicines with enhanced tumor penetration. Nano Today, 2019, 29, 100800.	6.2	317
432	Improving accessibility of EPR-insensitive tumor phenotypes using EPR-adaptive strategies: Designing a new perspective in nanomedicine delivery. Theranostics, 2019, 9, 8091-8108.	4.6	70
433	Targeting tumor interstitial fluid pressure: will it yield novel successful therapies for solid tumors?. Expert Opinion on Therapeutic Targets, 2019, 23, 1005-1014.	1.5	47
434	Delivery of Cancer Nanotherapeutics. Bioanalysis, 2019, , 163-205.	0.1	2

#	Article	IF	CITATIONS
435	Addressing barriers to effective cancer immunotherapy with nanotechnology: achievements, challenges, and roadmap to the next generation of nanoimmunotherapeutics. Advanced Drug Delivery Reviews, 2019, 141, 3-22.	6.6	44
436	Tumor Microenvironment. , 2020, , 108-126.e7.		3
437	Effect of nanoparticle size, magnetic intensity, and tumor distance on the distribution of the magnetic nanoparticles in a heterogeneous tumor microenvironment. Journal of Magnetism and Magnetic Materials, 2020, 498, 166089.	1.0	20
438	Investigation of solid tumor progression with account of proliferation/migration dichotomy via Darwinian mathematical model. Journal of Mathematical Biology, 2020, 80, 601-626.	0.8	11
439	Methods to measure, model and manipulate fluid flow in brain. Journal of Neuroscience Methods, 2020, 333, 108541.	1.3	21
440	Key considerations in designing CRISPR/Cas9-carrying nanoparticles for therapeutic genome editing. Nanoscale, 2020, 12, 21001-21014.	2.8	20
441	Radiosensitisation of Hepatocellular Carcinoma Cells by Vandetanib. Cancers, 2020, 12, 1878.	1.7	12
442	Hyperthermia can alter tumor physiology and improve chemo- and radio-therapy efficacy. Advanced Drug Delivery Reviews, 2020, 163-164, 98-124.	6.6	77
443	Cancer cells grown in 3D under fluid flow exhibit an aggressive phenotype and reduced responsiveness to the anti-cancer treatment doxorubicin. Scientific Reports, 2020, 10, 12020.	1.6	27
444	Evaluation of cytotoxic T lymphocyte-mediated anticancer response against tumor interstitium-simulating physical barriers. Scientific Reports, 2020, 10, 13662.	1.6	14
445	<p>Noninvasive Molecular Imaging of the Enhanced Permeability and Retention Effect by ⁶⁴Cu-Liposomes: In vivo Correlations with ⁶⁸Ga-RGD, Fluid Pressure, Diffusivity and ¹⁸F-FDG</p> . International Journal of Nanomedicine, 2020, Volume 15, 8571-8581.	3.3	15
446	Physical traits of cancer. Science, 2020, 370, .	6.0	371
447	Intranodal pressure of a metastatic lymph node reflects the response to lymphatic drug delivery system. Cancer Science, 2020, 111, 4232-4241.	1.7	7
448	Mechanistic insight into hydroxamate transfer reaction mimicking the inhibition of zinc-containing enzymes. Chemical Science, 2020, 11, 9017-9021.	3.7	2
449	Biomechanical modelling of spinal tumour anisotropic growth. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2020, 476, 20190364.	1.0	9
450	Ultrasound-Mediated Delivery of Chemotherapy into the Transgenic Adenocarcinoma of the Mouse Prostate Model. Ultrasound in Medicine and Biology, 2020, 46, 3032-3045.	0.7	5
451	Effects of pulsating heat source on interstitial fluid transport in tumour tissues. Journal of the Royal Society Interface, 2020, 17, 20200612.	1.5	12
452	Tumor shapes effect on metastatic state: A theoretical derivation embedding thermodynamic laws. Chinese Journal of Physics, 2020, 68, 684-698.	2.0	3

#	Article	IF	CITATIONS
453	Pulsed focused ultrasound lowers interstitial fluid pressure and increases nanoparticle delivery and penetration in head and neck squamous cell carcinoma xenograft tumors. Physics in Medicine and Biology, 2020, 65, 125017.	1.6	16
454	Mechanosensing of Mechanical Confinement by Mesenchymal-Like Cells. Frontiers in Physiology, 2020, 11, 365.	1.3	14
455	The Mechanical Microenvironment in Breast Cancer. Cancers, 2020, 12, 1452.	1.7	32
456	Mathematical Modeling Shows That the Response of a Solid Tumor to Antiangiogenic Therapy Depends on the Type of Growth. Mathematics, 2020, 8, 760.	1.1	9
457	Extension of a multiphase tumour growth model to study nanoparticle delivery to solid tumours. PLoS ONE, 2020, 15, e0228443.	1.1	18
458	Active matter therapeutics. Nano Today, 2020, 31, 100836.	6.2	54
459	Bacterial proteolytic activity improves drug delivery in tumors in a size, pharmacokinetic, and binding affinity dependent manner – A mechanistic understanding. Journal of Controlled Release, 2020, 321, 348-362.	4.8	6
460	A role for caveolaâ€forming proteins caveolinâ€1 and CAVIN1 in the proâ€invasive response of glioblastoma to osmotic and hydrostatic pressure. Journal of Cellular and Molecular Medicine, 2020, 24, 3724-3738.	1.6	9
461	Polymeric Nanoparticles for the Treatment of Malignant Gliomas. Cancers, 2020, 12, 175.	1.7	63
462	Renal clearable nanocarriers: Overcoming the physiological barriers for precise drug delivery and clearance. Journal of Controlled Release, 2020, 322, 64-80.	4.8	37
463	Evaluation of inverse methods for estimation of mechanical parameters in solid tumors. Biomedical Physics and Engineering Express, 2020, 6, 035027.	0.6	7
464	Ultrasound in tumor immunotherapy: Current status and future developments. Journal of Controlled Release, 2020, 323, 12-23.	4.8	55
465	Targeted Engineering of Medicinal Chemistry for Cancer Therapy: Recent Advances and Perspectives. Angewandte Chemie - International Edition, 2021, 60, 5626-5643.	7.2	47
466	Zielgerichtete Wirkstoffe für die Krebstherapie: Aktuelle Entwicklungen und Perspektiven. Angewandte Chemie, 2021, 133, 5686-5705.	1.6	3
467	Effect of Acoustic Radiation Force on the Distribution of Nanoparticles in Solid Tumors. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68, 432-445.	1.7	17
468	Role of Regular Physical Exercise in Tumor Vasculature: Favorable Modulator of Tumor Milieu. International Journal of Sports Medicine, 2021, 42, 389-406.	0.8	9
469	Challenges and pitfalls in the development of liposomal delivery systems for cancer therapy. Seminars in Cancer Biology, 2021, 69, 337-348.	4.3	62
470	Tumor microenvironment. , 2021, , 1-10.		2

C .	TAT		D -		
		() N	- I₹ F	PU	2

#	Article	IF	CITATIONS
471	Simulating drug penetration during hyperthermic intraperitoneal chemotherapy. Drug Delivery, 2021, 28, 145-161.	2.5	19
472	A Magnetically Actuated Novel Robotic Capsule for Site-Specific Drug Delivery Inside the Gastrointestinal Tract. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52, 4010-4020.	5.9	7
473	Chemically Propelled Nano and Micromotors in the Body: Quo Vadis?. Small, 2021, 17, e2007102.	5.2	35
474	Non-Invasive Assessment of the Spatial and Temporal Distributions of Interstitial Fluid Pressure, Fluid Velocity and Fluid Flow in Cancers <i>In Vivo</i> . IEEE Access, 2021, 9, 89222-89233.	2.6	15
475	Utilizing Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) to Analyze Interstitial Fluid Flow and Transport in Glioblastoma and the Surrounding Parenchyma in Human Patients. Pharmaceutics, 2021, 13, 212.	2.0	11
476	Convection-enhanced drug delivery for glioblastoma: a review. Journal of Neuro-Oncology, 2021, 151, 415-427.	1.4	50
477	Progression of Metastasis through Lymphatic System. Cells, 2021, 10, 627.	1.8	51
479	Endothelin Inhibition Potentiates Cancer Immunotherapy Revealing Mechanical Biomarkers Predictive of Response. Advanced Therapeutics, 2021, 4, 2000289.	1.6	8
480	Importance and Considerations of Antibody Engineering in Antibody-Drug Conjugates Development from a Clinical Pharmacologist's Perspective. Antibodies, 2021, 10, 30.	1.2	13
481	Molecular cancer cell responses to solid compressive stress and interstitial fluid pressure. Cytoskeleton, 2021, 78, 312-322.	1.0	13
482	Improved therapeutic antibody delivery to xenograft tumors using cavitation nucleated by gas-entrapping nanoparticles. Nanomedicine, 2021, 16, 37-50.	1.7	10
485	Barriers to Drug Delivery in Cancer: Clinical Implications. , 2009, , 81-104.		1
486	Microenvironmental Regulation of Tumor Angiogenesis: Biological and Engineering Considerations. Biological and Medical Physics Series, 2011, , 167-202.	0.3	1
487	Tumor Oxygenation and Radiosensitivity. , 1995, , 187-199.		3
488	Lymph and Lymphatic Capillaries in Cancer. , 2013, , 121-142.		1
489	Long Circulation and Tumor Accumulation. , 2013, , 543-571.		3
490	Complex Transport Around Tumor: Need for Realistic In Vitro Tumor Transport Model. , 2013, , 667-685.		1
491	Pressure Gradients in Solid Tumors. , 2013, , 241-272.		2

		CITATION REPORT	
#	Article	IF	CITATIONS
492	Extravasation and Interstitial Transport in Tumors. Pharmaceutical Biotechnology, 1993, , 441-465.	0.3	3
493	Hypoxia and angiogenesis in experimental tumor models: Therapeutic implications. Exs, 1997, 79, 335-360.	1.4	13
494	The Role of the Microcirculation in the Treatment of Malignant Tumors: Facts and Fiction. Medical Radiology, 2000, , 19-39.	0.0	10
495	Immunotoxins for Brain Tumor Therapy. Current Topics in Microbiology and Immunology, 1998, 234, 97-114.	0.7	15
496	Two Approaches for Enhancing Radioimmunotherapy: â^•Emitters and Hyperthermia. Recent Results in Cancer Research, 1996, 141, 101-122.	1.8	14
497	Mass Transport via Cellular Barriers and Endocytosis. Fundamental Biomedical Technologies, 2011, , 3-55.	0.2	4
498	Tumour hypoxia: challenges for cancer chemotherapy. Cancer Biology and Medicine, 1992, , 87-131.	0.1	9
499	Antibody targeted therapy: delivery of radionuclides, toxins and drugs. , 2001, , 195-217.		1
500	Compatibility and the genesis of residual stress by volumetric growth. Journal of Mathematical Biology, 1996, 34, 889-914.	0.8	28
501	Vascular and Interstitial Biology of Tumors. , 2008, , 105-124.		2
502	Vascular and Interstitial Biology of Tumors. , 2014, , 108-126.e5.		3
503	Mechanics of Fluid-Filled Interstitial Gaps. II. Gap Characteristics in Xenopus Embryonic Ectoderm. Biophysical Journal, 2017, 113, 923-936.	0.2	15
504	Numerical Modeling of Fluid Flow in Solid Tumors. PLoS ONE, 2011, 6, e20344.	1.1	132
505	High Interstitial Fluid Pressure Is Associated with Tumor-Line Specific Vascular Abnormalities in Human Melanoma Xenografts. PLoS ONE, 2012, 7, e40006.	1.1	63
506	Modulation of Invasive Phenotype by Interstitial Pressure-Driven Convection in Aggregates of Human Breast Cancer Cells. PLoS ONE, 2012, 7, e45191.	1.1	40
507	Impediments to Enhancement of CPT-11 Anticancer Activity by E. coli Directed Beta-Glucuronidase Therapy. PLoS ONE, 2015, 10, e0118028.	1.1	7
508	Multistep, effective drug distribution within solid tumors. Oncotarget, 2015, 6, 39564-39577.	0.8	22
509	Basic Fibroblast Growth Factor-Mediated Lymphangiogenesis of Lymphatic Endothelial Cells Isolated from Dog Thoracic Ducts: Effects of Heparin The Japanese Journal of Physiology, 1998, 48, 133-141.	0.9	35

#	Article	IF	CITATIONS
510	Effects of VEGF on Ca2+-Translent in Cultured Lymphatic Endothelial Cells and Mechanical Activity of Isolated Lymph Vessels The Japanese Journal of Physiology, 2000, 50, 343-355.	0.9	7
511	Photodynamic Therapy for Recurrent Head and Neck Malignancy. Korean Journal of Otorhinolaryngology-Head and Neck Surgery, 2011, 54, 271.	0.0	2
512	Personalizing medicine for metastatic colorectal cancer: Current developments. World Journal of Gastroenterology, 2014, 20, 10425.	1.4	12
513	Convection-enhanced drug delivery for glioblastoma: A systematic review focused on methodological differences in the use of the convection-enhanced delivery method. Journal of Innovative Optical Health Sciences, 2019, 14, 5-14.	0.5	19
514	Interstitial Chemotherapy for Malignant Gliomas. , 0, , .		1
515	Incorporating cross-voxel exchange into the analysis of dynamic contrast-enhanced imaging data: theory, simulations and experimental results. Physics in Medicine and Biology, 2021, 66, 205018.	1.6	5
516	Tumor Immunobiology. , 2002, , 193-213.		0
517	Radionuclide. , 2003, , 1613-1645.		0
518	Intraperitoneal Chemotherapy. , 2009, , 861-883.		0
519	Blood Perfusion in Solid Tumor with "Normalized―Microvasculature. , 2012, , 361-398.		0
520	Pharmacology of cancer chemotherapy drugs for hyperthermic intraperitoneal peroperative chemotherapy in epithelial ovarian cancer. World Journal of Obstetrics and Gynecology, 2013, 2, 143.	0.5	1
521	Kinetic Modeling of Peritoneal Dialysis. Studies in Computational Intelligence, 2013, , 1427-1475.	0.7	0
522	Resistance to Antiangiogenic Treatments via Upregulation of Substitution Pathways. , 2014, , 397-419.		0
523	INTERSTITIAL HYPERTENSION IN EXPERIMENTAL AND HUMAN TUMORS: ETIOLOGY AND THERAPEUTIC IMPLICATIONS. , 1992, , 768-771.		0
524	Use of the Hypertensive Agent Angiotensin Ii for Modifying Oxygen Delivery to Tumours. Advances in Experimental Medicine and Biology, 1994, 345, 423-429.	0.8	1
525	Tumor Microcirculation: Role in Drug and Nutrient Delivery. , 1997, , 46-70.		0
526	Tumor Microcirculation. , 1998, , 319-345.		0
527	Role of Mechanosensitive TRP Channels in Abnormal Vasculature of Tumors. , 2016, , 255-273.		0

#	Article	IF	CITATIONS
532	Interstitial fluid pressure, perfusion rate and oxygen tension in human melanoma xenografts. The British Journal of Cancer Supplement, 1996, 27, S252-5.	0.1	9
533	Cytotoxicity of gemcitabine-loaded thermosensitive liposomes in pancreatic cancer cell lines. Integrative Cancer Science and Therapeutics, 2015, 2, 133-142.	0.1	8
534	Imaging radiation response in tumor and normal tissue. American Journal of Nuclear Medicine and Molecular Imaging, 2015, 5, 317-32.	1.0	10
535	The Biophysics of Cancer: Emerging Insights from Micro―and Nanoscale Tools. Advanced NanoBiomed Research, 2022, 2, 2100056.	1.7	9
536	A mathematical model for understanding nanoparticle biodistribution after intratumoral injection in cancer tumors. Journal of Drug Delivery Science and Technology, 2022, 68, 103048.	1.4	12
537	Mathematical Modeling of Targeted Drug Delivery Using Magnetic Nanoparticles during Intraperitoneal Chemotherapy. Pharmaceutics, 2022, 14, 324.	2.0	12
538	Pressure Drives Rapid Burstâ€Like Coordinated Cellular Motion from 3D Cancer Aggregates. Advanced Science, 2022, 9, e2104808.	5.6	8
539	Chemotherapy response prediction with diffuser elapser network. Scientific Reports, 2022, 12, 1628.	1.6	4
540	Real-time monitoring of drug pharmacokinetics within tumor tissue in live animals. Science Advances, 2022, 8, eabk2901.	4.7	26
541	Mechanical Properties in the Glioma Microenvironment: Emerging Insights and Theranostic Opportunities. Frontiers in Oncology, 2021, 11, 805628.	1.3	12
542	Towards principled design of cancer nanomedicine to accelerate clinical translation. Materials Today Bio, 2022, 13, 100208.	2.6	47
543	Inducing Biomechanical Heterogeneity in Brain Tumor Modeling by MR Elastography: Effects on Tumor Growth, Vascular Density and Delivery of Therapeutics. Cancers, 2022, 14, 884.	1.7	8
544	Computational Modeling of Combination of Magnetic Hyperthermia and Temperature-Sensitive Liposome for Controlled Drug Release in Solid Tumor. Pharmaceutics, 2022, 14, 35.	2.0	13
545	Macro-scale models for fluid flow in tumour tissues: impact of microstructure properties. Journal of Mathematical Biology, 2022, 84, 27.	0.8	2
547	Photoacoustic delivery and imaging methods in PDT. , 2022, , .		0
548	Microfluidic one-directional interstitial flow generation from cancer to cancer associated fibroblast. Acta Biomaterialia, 2022, 144, 258-265.	4.1	10
549	Effect of different dynamic microvasculature in a solid tumor with the necrotic region during magnetic hyperthermia: An in-silico study. International Journal of Heat and Mass Transfer, 2022, 189, 122662.	2.5	2
551	Modulating tumor physical microenvironment for fueling CAR-T cell therapy. Advanced Drug Delivery Reviews, 2022, 185, 114301.	6.6	28

IF ARTICLE CITATIONS # Microbubbles Ultrasonic Cavitation Regulates Tumor Interstitial Fluid Pressure and Enhances 552 1.32 Sonodynamic Therapy. Frontiers in Oncology, 2022, 12, 852454. Towards Immunotherapy-Induced Normalization of the Tumor Microenvironment. Frontiers in Cell and Developmental Biology, 2022, 10, . 1.8 Nanomedicine Penetration to Tumor: Challenges, and Advanced Strategies to Tackle This Issue. 554 1.7 19 Cancers, 2022, 14, 2904. Chemistry, Biological Activities, and Uses of Ficus carica Latex. Reference Series in Phytochemistry, 2022, , 801-822. The malignant phenotype., 2006, 116,. 557 0 Polymeric Nanoparticles to Target Glioblastoma Tumors. Environmental Chemistry for A Sustainable World, 2022, , 329-349. 0.3 Mechanical regulation of the early stages of angiogenesis. Journal of the Royal Society Interface, 559 1.5 7 2022, 19, . Differential Angiogenic Induction Impacts Nasal Polyp Tissue Growth. Indian Journal of Otolaryngology and Head and Neck Surgery, 0, , .

CITATION REPORT

0

561 Intraperitoneal Chemotherapy. , 2023, , 899-926.