A note on the distribution of earthquake damage in Lon

Bulletin of the Seismological Society of America 66, 1001-1005

DOI: 10.1785/bssa0660031001

Citation Report

#	Article	IF	CITATIONS
1	Nonlinear soil response as a natural passive isolation mechanismâ€"the 1994 Northridge, California, earthquake. Soil Dynamics and Earthquake Engineering, 1998, 17, 41-51.	3.8	83
2	Nonlinear soil response as a natural passive isolation mechanism. Paper II. The 1933, Long Beach, California earthquake. Soil Dynamics and Earthquake Engineering, 2003, 23, 549-562.	3.8	41
3	World Earthquake Fatalities from the Past: Implications for the Present and Future. Natural Hazards Review, 2008, 9, 179-189.	1.5	19
4	Estimated Temporal Variation of Losses Due to a Recurrence of the 1933 Long Beach Earthquake. Earthquake Spectra, 2012, 28, 347-365.	3.1	1
5	Shear Wave Velocity Estimates through Combined Use of Passive Techniques in a Tectonically Active Area. Acta Geophysica, 2016, 64, 2051-2076.	2.0	5
6	Site conditions and earthquake ground motion – A review. Soil Dynamics and Earthquake Engineering, 2016, 90, 88-100.	3.8	53
7	Economic and Societal Challenges Imposed by Seismic Risk on the Built Environment. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 2017, 3, .	1.7	1
8	Assessing shear wave velocity profiles using multiple passive techniques of Shillong region of northeast India. Natural Hazards, 2018, 94, 1023-1041.	3.4	6
9	Ground motions in urban Los Angeles from the 2019 Ridgecrest earthquake sequence. Earthquake Spectra, 2021, 37, 2493-2522.	3.1	7
11	Evaluation of the relation between near-surface geological units and ground response in the vicinity of Long Beach, California. Bulletin of the Seismological Society of America, 1979, 69, 1603-1622.	2.3	25
12	First-generation site-response maps for the Los Angeles region based on earthquake ground motions. Bulletin of the Seismological Society of America, 1998, 88, 463-472.	2.3	22
13	Determination of site amplification in the Los Angeles urban area from inversion of strong-motion records. Bulletin of the Seismological Society of America, 1997, 87, 866-887.	2.3	48
14	Site response for urban Los Angeles using aftershocks of the Northridge earthquake. Bulletin of the Seismological Society of America, 1996, 86, S168-S192.	2.3	38