The Biologically Relevant Coordination Chemistry of Ire Structure and Reactivity

Chemical Reviews 121, 14682-14905

DOI: 10.1021/acs.chemrev.1c00253

Citation Report

#	Article	IF	CITATIONS
1	Why intermolecular nitric oxide (NO) transfer? Exploring the factors and mechanistic aspects of NO transfer reaction. Chemical Science, 2022, 13, 1706-1714.	7.4	5
2	Synthesis and characterization of a model complex for flavodiiron NO reductases that stabilizes a diiron mononitrosyl complex. Journal of Inorganic Biochemistry, 2022, 229, 111723.	3.5	3
3	Controlling the Direction of <i>S</i> -Nitrosation versus Denitrosation: Reversible Cleavage and Formation of an S–N Bond within a Dicopper Center. Journal of the American Chemical Society, 2022, 144, 2867-2872.	13.7	5
4	Simultaneous binding of heme and Cu with amyloid \hat{I}^2 peptides: active site and reactivities. Dalton Transactions, 2022, 51, 4986-4999.	3.3	7
5	Ruthenium-nitrosyl complexes as NO-releasing molecules, potential anticancer drugs, and photoswitches based on linkage isomerism. Dalton Transactions, 2022, 51, 5367-5393.	3.3	35
6	Albumin as a prospective carrier of the nitrosyl iron complex with thiourea and thiosulfate ligands under aerobic conditions. Dalton Transactions, 2022, 51, 6473-6485.	3.3	6
7	Defenses of multidrug resistant pathogens against reactive nitrogen species produced in infected hosts. Advances in Microbial Physiology, 2022, 80, 85-155.	2.4	6
8	Triphenylmethyl Thionitrite: An Efficient NO Transfer Reagent During the Synthesis of a Triruthenium Nitrosyl Cluster. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2022, 648, .	1.2	1
9	Formation of polynuclear iron(III) complexes of N-(2-pyridylmethyl)iminodipropanol depending on pseudohalide ions: synthesis, crystal structure, and magnetic properties. Journal of Industrial and Engineering Chemistry, 2022, , .	5.8	0
10	Recent developments in the synthesis of bio-inspired iron porphyrins for small molecule activation. Chemical Communications, 2022, 58, 5808-5828.	4.1	9
11	A Copper(II)â€Nitrite Complex Hydrogenâ€Bonded to a Protonated Amine in the Secondâ€Coordinationâ€5phere. European Journal of Inorganic Chemistry, 2022, 2022, .	2.0	3
12	Mechanisms of nitric oxide reactions with globins using mammalian myoglobin as a model system. Journal of Inorganic Biochemistry, 2022, 233, 111839.	3.5	6
13	Characterization of a Half-Bent RuNO Mode on a Dinuclear Ruthenium Complex through Reduction Reaction. Bulletin of the Chemical Society of Japan, 2022, 95, 1214-1216.	3.2	0
14	Cu ^{II} Lewis Acid, Proton-Coupled Electron Transfer Mechanism for Cu-Metal–Organic Framework-Catalyzed NO Release from <i>S</i> -Nitrosoglutathione. ACS Catalysis, 2022, 12, 8055-8068.	11.2	5
15	Structural characterization of the water-soluble porphyrin complexes [FeII(TPPS) (NO•)]4─ and [μ-O-([FeIII(TPPS)])2]8─. Heliyon, 2022, 8, e09555.	3.2	0
16	Anionic dinitrosyl iron complexes – new nitric oxide donors with selective toxicity to human glioblastoma cells. Journal of Molecular Structure, 2022, 1266, 133506.	3.6	3
17	Visible-light NO photolysis of ruthenium nitrosyl complexes with N ₂ O ₂ ligands bearing l€-extended rings and their photorelease dynamics. Dalton Transactions, 2022, 51, 11404-11415.	3.3	1
18	Effect of solvents and glutathione on the decomposition of the nitrosyl iron complex with N-ethylthiourea ligands: An experimental and theoretical study. Journal of Inorganic Biochemistry, 2022, 235, 111926.	3.5	5

#	Article	IF	CITATIONS
19	NO Coupling at Copper to <i>cis</i> -Hyponitrite: N ₂ O Formation via Protonation and H-Atom Transfer. Journal of the American Chemical Society, 2022, 144, 15093-15099.	13.7	5
20	Nontoxic Tb ³⁺ -induced hyaluronic nano-poached egg aggregates for colorimetric and luminescent detection of Fe ³⁺ ions. RSC Advances, 2022, 12, 22285-22294.	3.6	2
21	Adventures in the photo-uncaging of small molecule bioregulators. Advances in Inorganic Chemistry, 2022, , .	1.0	0
22	Features of the decomposition of the nitrosyl iron complex with thiourea ligands under aerobic conditions: experiment and kinetic and quantum chemical modeling. Russian Chemical Bulletin, 2022, 71, 1604-1613.	1.5	5
23	What Is the Right Level of Activation of a High-Spin {FeNO} ⁷ Complex to Enable Direct N–N Coupling? Mechanistic Insight into Flavodiiron NO Reductases. Journal of the American Chemical Society, 2022, 144, 16395-16409.	13.7	5
24	Nitrosylation of ferric zebrafish nitrobindin: A spectroscopic, kinetic, and thermodynamic study. Journal of Inorganic Biochemistry, 2022, , 111996.	3.5	4
25	The crystal structure of nitroxyl- <i>β</i> <i>N</i> -{hydridotris(3-trifluoromethyl-5-methylpyrazolyl-1-yl- <i>βN</i> ³)borato}nickel(II), C ₁₅ H ₁₃ BF ₉ N ₇ NiO. Zeitschrift Fur Kristallographie - New Crystal Structures, 2022	0.3	0
26	The Role of Heme Peroxo Oxidants in the Rational Mechanistic Modeling of Nitric Oxide Synthase: Characterization of Key Intermediates and Elucidation of the Mechanism. Angewandte Chemie - International Edition, 0, , .	13.8	1
27	Chemistry of a Nitrosyl Ligand κ:Î⊷Bridging a Ditungsten Center: Rearrangement and N–O Bond Cleavage Reactions. Inorganic Chemistry, 2022, 61, 14929-14933.	4.0	2
28	The Role of Heme Peroxo Oxidants in the Rational Mechanistic Modeling of Nitric Oxide Synthase: Characterization of Key Intermediates and Elucidation of the Mechanism. Angewandte Chemie, 0, , .	2.0	0
29	Stable Bimetallic Fe ^{II} /{Fe(NO) ₂ } ⁹ Moiety Derived from Reductive Transformations of a Diferrous-dinitrosyl Species. Inorganic Chemistry, 2022, 61, 16325-16332.	4.0	2
30	Particle Swarm Fitting of Spin Hamiltonians: Magnetic Circular Dichroism of Reduced and NO-Bound Flavodiiron Protein. Inorganic Chemistry, 2022, 61, 16520-16527.	4.0	1
31	Novel Type of Tetranitrosyl Iron Salt: Synthesis, Structure and Antibacterial Activity of Complex [FeL'2(NO)2][FeL'Lâ€(NO)2] with L'-thiobenzamide and L―thiosulfate. Molecules, 2022, 27, 6886.	3.8	2
32	Recent progress in nitric oxide-generating nanomedicine for cancer therapy. Journal of Controlled Release, 2022, 352, 179-198.	9.9	14
33	Positive (Regulatory) and Negative (Cytotoxic) Effects of Dinitrosyl Iron Complexes on Living Organisms. Biochemistry (Moscow), 2022, 87, 1367-1386.	1.5	4
34	Role of a Redox-Active Ligand Close to a Dinuclear Activating Framework. Topics in Organometallic Chemistry, 2022, , .	0.7	0
35	Ordered Motions in the Nitric-Oxide Dioxygenase Mechanism of Flavohemoglobin and Assorted Globins with Tightly Coupled Reductases. Advances in Experimental Medicine and Biology, 2022, , .	1.6	0
36	Antiviral Activity of Nitrosonium Cations against SARS-CoV-2 on a Syrian Hamster Model. Biophysics (Russian Federation), 2022, 67, 785-795.	0.7	6

#	Article	IF	CITATIONS
37	NEW VARIANTS OF DINITROSYL IRON COMPLEXES. ANTIOXIDANT AND ANTIRADICAL EFFECT. , 2022, 7, 624-627.		0
38	Research into Dinitrosyl Iron Complexes in Living Organisms Through EPR as an Example of Applying this Method in Biology: A Review. Applied Magnetic Resonance, 2023, 54, 289-309.	1.2	2
39	Electronic Configurations and the Effect of Peripheral Substituents of (Nitrosyl)iron Corroles. Inorganic Chemistry, 2022, 61, 20385-20396.	4.0	0
40	Role of Nitric Oxide-Derived Metabolites in Reactions of Methylglyoxal with Lysine and Lysine-Rich Protein Leghemoglobin. International Journal of Molecular Sciences, 2023, 24, 168.	4.1	3
41	Reductive NO Coupling at Dicopper Center via a [Cu ₂ (NO) ₂] ²⁺ Diamond-Core Intermediate. Journal of the American Chemical Society, 2022, 144, 22633-22640.	13.7	2
42	One-Pot Photosynthesis of Cubic Fe@Fe ₃ O ₄ Core–Shell Nanoparticle Well-Dispersed in N-Doping Carbonaceous Polymer Using a Molecular Dinitrosyl Iron Precursor. Inorganic Chemistry, 2022, 61, 20719-20724.	4.0	1
43	Involvement of Nitric Oxide in Protecting against Radical Species and Autoregulation of M1-Polarized Macrophages through Metabolic Remodeling. Molecules, 2023, 28, 814.	3.8	6
44	Reductive Coupling of Nitric Oxide by Cu(I): Stepwise Formation of Mono- and Dinitrosyl Species <i>En Route</i> to a Cupric Hyponitrite Intermediate. Journal of the American Chemical Society, 2023, 145, 2230-2242.	13.7	1
45	Electrochemical Investigations on the NO-Releasing Property of Ruthenium Nitrosyl Complex. Asian Journal of Chemistry, 2023, 35, 52-56.	0.3	1
46	NO and Heme Proteins: Cross-Talk between Heme and Cysteine Residues. Antioxidants, 2023, 12, 321.	5.1	2
47	A nitrosyl iron complex with 3.4-dichlorothiophenolyl ligands: synthesis, structures and its reactions with targets – carriers of nitrogen oxide (NO) <i>in vivo</i> . Dalton Transactions, 2023, 52, 2641-2662.	3.3	4
48	Experimental Determination of an Isolated <i>trans</i> â€Đinitrosyl Manganese(II) Heme Analogue. Angewandte Chemie - International Edition, 2023, 62, .	13.8	1
49	Experimental Determination of an Isolated <i>trans</i> â€Đinitrosyl Manganese(II) Heme Analogue. Angewandte Chemie, 2023, 135, .	2.0	0
50	Chalcogenocarbonyl and Chalcogenonitrosyl Metal Complexes. , 2023, , 27-57.		0
51	Capturing a <i>bis</i> -Fe(IV) State in <i>Methylosinus trichosporium</i> OB3b MbnH. Biochemistry, 2023, 62, 1082-1092.	2.5	1
52	Accurate non-covalent interaction energies on noisy intermediate-scale quantum computers <i>via</i> second-order symmetry-adapted perturbation theory. Chemical Science, 2023, 14, 3587-3599.	7.4	4
53	Acid-induced nitrite reduction of nonheme iron(<scp>ii</scp>)-nitrite: mimicking biological Fe–NiR reactions. Chemical Science, 2023, 14, 2935-2942.	7.4	5
54	Lightâ€induced <scp>NO</scp> release from ironâ€nitrosylâ€thiolato complex: The role of noncovalent thiol/thioether. Journal of the Chinese Chemical Society, 2023, 70, 1125-1135.	1.4	2

#	Article	IF	CITATIONS
55	Exploring the nitric oxide dioxygenation (NOD) reactions of manganese–peroxo complexes. Dalton Transactions, 2023, 52, 5095-5100.	3.3	3
56	The rs2682826 Polymorphism of the NOS1 Gene Is Associated with the Degree of Disability of Erectile Dysfunction. Life, 2023, 13, 1082.	2.4	1
58	Dioxygen and glucose force motion of the electron-transfer switch in the iron(III) flavohemoglobin-type nitric oxide dioxygenase. Journal of Inorganic Biochemistry, 2023, 245, 112257.	3.5	0
59	Bio-Inspired Electrochemical Detection of Nitric Oxide Promoted by Coordinating the Histamine-Iron Phthalocyanine Catalytic Center on Microelectrode. Analytical Chemistry, 2023, 95, 8842-8849.	6.5	2
60	Bacterial nitric oxide reductase (NorBC) models employing click chemistry. Journal of Inorganic Biochemistry, 2023, 246, 112280.	3.5	1
61	Role of distal arginine residue in the mechanism of heme nitrite reductases. Chemical Science, 2023, 14, 7875-7886.	7.4	1
62	The metal ion in single-atom NO reduction electrocatalysts dictates product selectivity. Chem Catalysis, 2023, 3, 100660.	6.1	0
63	Theoretical Investigation of Electrocatalytic Reduction of Nitrates to Ammonia on Highly Efficient and Selective g-C ₂ N Monolayer-Supported Single Transition-Metal Atoms. Journal of Physical Chemistry Letters, 2023, 14, 4185-4191.	4.6	4
64	Nitric Oxide Oxygenation Reactions of Cobalt-Peroxo and Cobalt-Nitrosyl Complexes. Inorganic Chemistry, 2023, 62, 7385-7392.	4.0	4
66	NO Reactions Inside Crystals. European Journal of Inorganic Chemistry, 0, , .	2.0	0
66 67	NO Reactions Inside Crystals. European Journal of Inorganic Chemistry, 0, , . Modeling Reactivity of Nitrite and Nitrous Acid at a Phenolate Bridged Dizinc(II) Site: Insights into NO Signaling at Zinc. Chemistry - A European Journal, 2023, 29, .	2.0 3.3	0 3
66 67 68	NO Reactions Inside Crystals. European Journal of Inorganic Chemistry, 0, , . Modeling Reactivity of Nitrite and Nitrous Acid at a Phenolate Bridged Dizinc(II) Site: Insights into NO Signaling at Zinc. Chemistry - A European Journal, 2023, 29, . Elucidation of the Electrocatalytic Nitrite Reduction Mechanism by Bio-Inspired Copper Complexes. ACS Catalysis, 2023, 13, 10094-10103.	2.0 3.3 11.2	0 3 4
66 67 68 69	NO Reactions Inside Crystals. European Journal of Inorganic Chemistry, 0, , . Modeling Reactivity of Nitrite and Nitrous Acid at a Phenolate Bridged Dizinc(II) Site: Insights into NO Signaling at Zinc. Chemistry - A European Journal, 2023, 29, . Elucidation of the Electrocatalytic Nitrite Reduction Mechanism by Bio-Inspired Copper Complexes. ACS Catalysis, 2023, 13, 10094-10103. Electron paramagnetic resonance (EPR) for investigating relevant players of redox reactions: Radicals, metalloproteins and transition metal ions. , 2023, 5-6, 100009.	2.0 3.3 11.2	0 3 4 1
 66 67 68 69 70 	NO Reactions Inside Crystals. European Journal of Inorganic Chemistry, 0, , . Modeling Reactivity of Nitrite and Nitrous Acid at a Phenolate Bridged Dizinc(II) Site: Insights into NO Signaling at Zinc. Chemistry - A European Journal, 2023, 29, . Elucidation of the Electrocatalytic Nitrite Reduction Mechanism by Bio-Inspired Copper Complexes. ACS Catalysis, 2023, 13, 10094-10103. Electron paramagnetic resonance (EPR) for investigating relevant players of redox reactions: Radicals, metalloproteins and transition metal ions. , 2023, 5-6, 100009. Nitric oxide binding to ferrous nitrobindins: A computer simulation investigation. Journal of Inorganic Biochemistry, 2023, 248, 112336.	2.0 3.3 11.2 3.5	0 3 4 1
 66 67 68 69 70 71 	NO Reactions Inside Crystals. European Journal of Inorganic Chemistry, 0, , . Modeling Reactivity of Nitrite and Nitrous Acid at a Phenolate Bridged Dizinc(II) Site: Insights into NO Signaling at Zinc. Chemistry - A European Journal, 2023, 29, . Elucidation of the Electrocatalytic Nitrite Reduction Mechanism by Bio-Inspired Copper Complexes. ACS Catalysis, 2023, 13, 10094-10103. Electron paramagnetic resonance (EPR) for investigating relevant players of redox reactions: Radicals, metalloproteins and transition metal ions. , 2023, 5-6, 100009. Nitric oxide binding to ferrous nitrobindins: A computer simulation investigation. Journal of Inorganic Biochemistry, 2023, 248, 112336. Mechanistic Study of Reduction of Nitrite to NO by the Copper(II) Complex: Different Concerted Protonâ€"Electron Transfer Reactivity between Nitrite and Nitro Complexes. Inorganic Chemistry, 2023, 62, 13765-13774.	2.0 3.3 11.2 3.5 4.0	0 3 4 1 0
 66 67 68 69 70 71 72 	NO Reactions Inside Crystals. European Journal of Inorganic Chemistry, 0, , . Modeling Reactivity of Nitrite and Nitrous Acid at a Phenolate Bridged Dizinc(II) Site: Insights into NO Signaling at Zinc. Chemistry - A European Journal, 2023, 29, . Elucidation of the Electrocatalytic Nitrite Reduction Mechanism by Bio-Inspired Copper Complexes. ACS Catalysis, 2023, 13, 10094-10103. Electron paramagnetic resonance (EPR) for investigating relevant players of redox reactions: Radicals, metalloproteins and transition metal ions. , 2023, 5-6, 100009. Nitric oxide binding to ferrous nitrobindins: A computer simulation investigation. Journal of Inorganic Biochemistry, 2023, 248, 112336. Mechanistic Study of Reduction of Nitrite to NO by the Copper(II) Complex: Different Concerted Protonáe"Electron Transfer Reactivity between Nitrite and Nitro Complexes. Inorganic Chemistry, 2023, 62, 13765-13774. Stepwise Sulfite Reduction on a Dinuclear Ruthenium Complex Leading to Hydrogen Sulfide. Journal of the American Chemical Society, 0,	2.0 3.3 11.2 3.5 4.0	0 3 4 1 0 0
 66 67 68 69 70 71 72 73 	NO Reactions Inside Crystals. European Journal of Inorganic Chemistry, 0, , . Modeling Reactivity of Nitrite and Nitrous Acid at a Phenolate Bridged Dizinc(II) Site: Insights into NO Signaling at Zinc. Chemistry - A European Journal, 2023, 29, . Elucidation of the Electrocatalytic Nitrite Reduction Mechanism by Bio-Inspired Copper Complexes. ACS Catalysis, 2023, 13, 10094-10103. Electron paramagnetic resonance (EPR) for investigating relevant players of redox reactions: Radicals, metalloproteins and transition metal ions. , 2023, 5-6, 100009. Nitric oxide binding to ferrous nitrobindins: A computer simulation investigation. Journal of Inorganic Biochemistry, 2023, 248, 112336. Mechanistic Study of Reduction of Nitrite to NO by the Copper(II) Complex: Different Concerted Proton&C"Electron Transfer Reactivity between Nitrite and Nitro Complexes. Inorganic Chemistry, 2023, 62, 13765-13774. Stepwise Sulfite Reduction on a Dinuclear Ruthenium Complex Leading to Hydrogen Sulfide. Journal of the American Chemical Society, 0, Unraveling Metal&E"Ligand Bonding in an HNO-Evolving {FeNO} ⁶ Complex with a Combined X-ray Spectroscopic Approach. Journal of the American Chemical Society, 2023, 145, 20733-20738.	2.0 3.3 11.2 3.5 4.0 13.7 13.7	0 3 4 1 0 0 0

# 75	ARTICLE Selective Electrocatalytic Reduction of NO to NH ₃ by Iron Porphyrins at Physiologically Relevant Potentials. ACS Catalysis, 2023, 13, 13181-13194.	IF 11.2	CITATIONS 2
76	Dinitrosyl Iron Complexes with Thiol-Containing Ligands as Sources of Universal Cytotoxins, Nitrosonium Cations. Biophysics (Russian Federation), 2023, 68, 329-340.	0.7	0
77	A Personal Account on Inorganic Reaction Mechanisms. Chemical Record, 2023, 23, .	5.8	0
78	Sequential Deoxygenation of CO ₂ and NO ₂ [–] via Redox-Control of a Pyridinediimine Ligand with a Hemilabile Phosphine. Inorganic Chemistry, 2023, 62, 15173-15179.	4.0	0
79	Reaction of a Co(<scp>iii</scp>)-peroxo complex with nitric oxide: putative formation of a peroxynitrite intermediate. Dalton Transactions, 0, , .	3.3	0
80	Sixth Ligand Induced HNO/NO [–] Release by a Five-Coordinated Cobalt(II) Nitrosyl Complex Having a {CoNO} ⁸ Configuration. Inorganic Chemistry, 2023, 62, 17074-17082.	4.0	0
81	Nitrite Formation at a Diiron Dinitrosyl Complex. Journal of the American Chemical Society, 2023, 145, 22993-22999.	13.7	1
82	Effect of F Substituents in Thiophenol on the Structure and Properties of µ2-S-(Difluorothiolate)tetranitrosyl Iron Binuclear Complexes. Russian Journal of Inorganic Chemistry, 0, , .	1.3	0
83	Stabilization of a Heme-HNO Model Complex Using a Bulky Bis-Picket Fence Porphyrin and Reactivity Studies with NO. Journal of the American Chemical Society, 2023, 145, 23014-23026.	13.7	1
84	Mechanistic insights into nitric oxide oxygenation (NOO) reactions of {CrNO} ⁵ and {CoNO} ⁸ . Dalton Transactions, 0, , .	3.3	1
85	Acid-induced conversion of nitrite to nitric oxide at the copper(<scp>ii</scp>) center: a new catalytic pathway. Inorganic Chemistry Frontiers, 2023, 10, 7285-7295.	6.0	1
86	Chemical biology of reactive nitrogen species (RNS) and its application in postharvest horticultural crops. , 2024, , 75-110.		0
87	Exploring second coordination sphere effects in flavodiiron nitric oxide reductase model complexes. Dalton Transactions, 2023, 52, 17360-17374.	3.3	0
88	Reversible Reactions of Nitric Oxide with a Binuclear Iron(III) Nitrophorin Mimic. Chemistry - A European Journal, 0, , .	3.3	0
89	Effect of Electronâ€donating Group on NO Photolysis of {RuNO} ⁶ Ruthenium Nitrosyl Complexes with N ₂ O ₂ Lgands Bearing Ï€â€Extended Rings. Chemistry - an Asian Journal, 0, , .	3.3	0
90	Local Oxidation States in {FeNO} ^{6–8} Porphyrins: Insights from DMRG/CASSCF–CASPT2 Calculations. Inorganic Chemistry, 2023, 62, 20496-20505.	4.0	1
91	Graphene nanocomposites for real-time electrochemical sensing of nitric oxide in biological systems. Applied Physics Reviews, 2023, 10, .	11.3	2
92	Novel Plant Growth Regulators and Gaseous Signaling Molecules. , 2023, , 479-515.		0

#	Article	IF	CITATIONS
93	Dinityrosyl Iron Complexes with Thiol-Containing Ligands as a Functionally Active "Working Form―of Nitric Oxide System in Living Organisms: A Review. Molecular Biology, 2023, 57, 929-940.	1.3	0
94	Photodynamic O ₂ Economizer Encapsulated with DNAzyme for Enhancing Mitochondrial Geneâ€Photodynamic Therapy. Advanced Healthcare Materials, 2024, 13, .	7.6	0
95	Nitric Oxideâ€Based Nanomedicines for Conquering TME Fortress: Say "NO―to Insufficient Tumor Treatment. Advanced Functional Materials, 0, , .	14.9	0
96	Dinitrosyl Iron Complex-Derived Nanosized Zerovalent Iron (NZVI) as a Template for the Fe–Co Cracked NZVI: An Electrocatalyst for the Oxygen Evolution Reaction. Inorganic Chemistry, 0, , .	4.0	0
97	Binuclear nitrosyl iron complex with 4-acetamidothiophenolyl: Synthesis and study of its decomposition in a system with glutathione and albumin. Polyhedron, 2024, 250, 116819.	2.2	0
98	Ratiometric fluorescent biosensor for detection and real-time imaging of nitric oxide in mitochondria of living cells. Biosensors and Bioelectronics, 2024, 248, 116000.	10.1	0
99	Gas Therapy: Generating, Delivery, and Biomedical Applications. Small Methods, 0, , .	8.6	0
100	Exposure to environmental levels of 2,4-di-tert-butylphenol affects digestive glands and induces inflammation in Asian Clam (Corbicula fluminea). Science of the Total Environment, 2024, 915, 170054.	8.0	1
101	T-Shaped Palladium and Platinum {MNO} ¹⁰ Nitrosyl Complexes. Inorganic Chemistry, 2024, 63, 1709-1713.	4.0	0
102	Low Part-Per-Trillion, Humidity Resistant Detection of Nitric Oxide Using Microtoroid Optical Resonators. ACS Applied Materials & Interfaces, 2024, 16, 5120-5128.	8.0	0
103	Electronic Structure and Transformation of Dinitrosyl Iron Complexes (DNICs) Regulated by Redox Non-Innocent Imino-Substituted Phenoxide Ligand. Inorganic Chemistry, 2024, 63, 2431-2442.	4.0	0
104	Recent advances on the development of NO-releasing molecules (NORMs) for biomedical applications. European Journal of Medicinal Chemistry, 2024, 268, 116217.	5.5	0
105	Development of (NO)Fe(N ₂ S ₂) as a Metallodithiolate Spin Probe Ligand: A Case Study Approach. Accounts of Chemical Research, 2024, 57, 831-844.	15.6	0
106	Recent mechanistic developments for cytochrome c nitrite reductase, the key enzyme in the dissimilatory nitrate reduction to ammonium pathway. Journal of Inorganic Biochemistry, 2024, 256, 112542.	3.5	0
107	Exploring the carbonic anhydrase-mimetic [(PMDTA) ₂ ZnII2(OH ^{â^'}) ₂] ²⁺ for nitric oxide monooxygenation. Dalton Transactions, 2024, 53, 6173-6177.	3.3	0
108	Unveiling the electronic and molecular structure of a trinuclear ruthenium cluster containing one nitrosyl ligand. Journal of Molecular Structure, 2024, 1308, 138119.	3.6	0
109	Reduction of molecular oxygen in flavodiiron proteins - Catalytic mechanism and comparison to heme-copper oxidases. Journal of Inorganic Biochemistry, 2024, 255, 112534.	3.5	0